@inproceedings{bertsch-etal-2025-context,
title = "In-Context Learning with Long-Context Models: An In-Depth Exploration",
author = "Bertsch, Amanda and
Ivgi, Maor and
Xiao, Emily and
Alon, Uri and
Berant, Jonathan and
Gormley, Matthew R. and
Neubig, Graham",
editor = "Chiruzzo, Luis and
Ritter, Alan and
Wang, Lu",
booktitle = "Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)",
month = apr,
year = "2025",
address = "Albuquerque, New Mexico",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.naacl-long.605/",
doi = "10.18653/v1/2025.naacl-long.605",
pages = "12119--12149",
ISBN = "979-8-89176-189-6",
abstract = "As model context lengths continue to increase, the number of demonstrations that can be provided in-context approaches the size of entire training datasets. We study the behavior of in-context learning (ICL) at this extreme scale on multiple datasets and models. We show that, for many datasets with large label spaces, performance continues to increase with thousands of demonstrations. We contrast this with example retrieval and finetuning: example retrieval shows excellent performance at low context lengths but has diminished gains with more demonstrations; finetuning is more data hungry than ICL but can exceed long-context ICL performance with additional data. We use the ICL setting to study several properties of both in-context learning and long-context models. We show that long-context ICL is less sensitive to random input shuffling than short-context ICL, that grouping of same-label examples negatively impacts performance, and that the performance boosts do not arise from cumulative gain from encoding many examples together. We conclude that long-context ICL can be an effective tool, and may not require long-context attention for encoding the demonstration set at all."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="bertsch-etal-2025-context">
<titleInfo>
<title>In-Context Learning with Long-Context Models: An In-Depth Exploration</title>
</titleInfo>
<name type="personal">
<namePart type="given">Amanda</namePart>
<namePart type="family">Bertsch</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Maor</namePart>
<namePart type="family">Ivgi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Emily</namePart>
<namePart type="family">Xiao</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Uri</namePart>
<namePart type="family">Alon</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jonathan</namePart>
<namePart type="family">Berant</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Matthew</namePart>
<namePart type="given">R</namePart>
<namePart type="family">Gormley</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Graham</namePart>
<namePart type="family">Neubig</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-04</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Luis</namePart>
<namePart type="family">Chiruzzo</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alan</namePart>
<namePart type="family">Ritter</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lu</namePart>
<namePart type="family">Wang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Albuquerque, New Mexico</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-189-6</identifier>
</relatedItem>
<abstract>As model context lengths continue to increase, the number of demonstrations that can be provided in-context approaches the size of entire training datasets. We study the behavior of in-context learning (ICL) at this extreme scale on multiple datasets and models. We show that, for many datasets with large label spaces, performance continues to increase with thousands of demonstrations. We contrast this with example retrieval and finetuning: example retrieval shows excellent performance at low context lengths but has diminished gains with more demonstrations; finetuning is more data hungry than ICL but can exceed long-context ICL performance with additional data. We use the ICL setting to study several properties of both in-context learning and long-context models. We show that long-context ICL is less sensitive to random input shuffling than short-context ICL, that grouping of same-label examples negatively impacts performance, and that the performance boosts do not arise from cumulative gain from encoding many examples together. We conclude that long-context ICL can be an effective tool, and may not require long-context attention for encoding the demonstration set at all.</abstract>
<identifier type="citekey">bertsch-etal-2025-context</identifier>
<identifier type="doi">10.18653/v1/2025.naacl-long.605</identifier>
<location>
<url>https://aclanthology.org/2025.naacl-long.605/</url>
</location>
<part>
<date>2025-04</date>
<extent unit="page">
<start>12119</start>
<end>12149</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T In-Context Learning with Long-Context Models: An In-Depth Exploration
%A Bertsch, Amanda
%A Ivgi, Maor
%A Xiao, Emily
%A Alon, Uri
%A Berant, Jonathan
%A Gormley, Matthew R.
%A Neubig, Graham
%Y Chiruzzo, Luis
%Y Ritter, Alan
%Y Wang, Lu
%S Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)
%D 2025
%8 April
%I Association for Computational Linguistics
%C Albuquerque, New Mexico
%@ 979-8-89176-189-6
%F bertsch-etal-2025-context
%X As model context lengths continue to increase, the number of demonstrations that can be provided in-context approaches the size of entire training datasets. We study the behavior of in-context learning (ICL) at this extreme scale on multiple datasets and models. We show that, for many datasets with large label spaces, performance continues to increase with thousands of demonstrations. We contrast this with example retrieval and finetuning: example retrieval shows excellent performance at low context lengths but has diminished gains with more demonstrations; finetuning is more data hungry than ICL but can exceed long-context ICL performance with additional data. We use the ICL setting to study several properties of both in-context learning and long-context models. We show that long-context ICL is less sensitive to random input shuffling than short-context ICL, that grouping of same-label examples negatively impacts performance, and that the performance boosts do not arise from cumulative gain from encoding many examples together. We conclude that long-context ICL can be an effective tool, and may not require long-context attention for encoding the demonstration set at all.
%R 10.18653/v1/2025.naacl-long.605
%U https://aclanthology.org/2025.naacl-long.605/
%U https://doi.org/10.18653/v1/2025.naacl-long.605
%P 12119-12149
Markdown (Informal)
[In-Context Learning with Long-Context Models: An In-Depth Exploration](https://aclanthology.org/2025.naacl-long.605/) (Bertsch et al., NAACL 2025)
ACL
- Amanda Bertsch, Maor Ivgi, Emily Xiao, Uri Alon, Jonathan Berant, Matthew R. Gormley, and Graham Neubig. 2025. In-Context Learning with Long-Context Models: An In-Depth Exploration. In Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers), pages 12119–12149, Albuquerque, New Mexico. Association for Computational Linguistics.