@inproceedings{liao-etal-2025-forest,
title = "Forest for the Trees: Overarching Prompting Evokes High-Level Reasoning in Large Language Models",
author = "Liao, Haoran and
Hu, Shaohua and
Zhu, Zhihao and
He, Hao and
Jin, Yaohui",
editor = "Chiruzzo, Luis and
Ritter, Alan and
Wang, Lu",
booktitle = "Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)",
month = apr,
year = "2025",
address = "Albuquerque, New Mexico",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.naacl-long.66/",
doi = "10.18653/v1/2025.naacl-long.66",
pages = "1433--1453",
ISBN = "979-8-89176-189-6",
abstract = "Chain-of-thought (CoT) and subsequent methods adopted a deductive paradigm that decomposes the reasoning process, demonstrating remarkable performances across NLP tasks. However, such a paradigm faces the challenge of getting bogged down in low-level semantic details, hindering large language models (LLMs) from correctly understanding, selecting, and compositing conditions. In this work, we present Overarching Prompting (OaP), a simple prompting method that elicits the high-level thinking of LLMs. Specifically, OaP first abstracts the whole problem into a simplified archetype and formulates strategies grounded in concepts and principles, establishing an overarching perspective for guiding reasoning. We conducted experiments with SoTA models, including ChatGPT, InstructGPT, and Llama3-70B-instruct, and received promising performances across tasks including Knowledge QA, Mathematical, and Open-Domain Reasoning. For instance, OaP improved ChatGPT and CoT by 19.0{\%} and 3.1{\%} on MMLU{'}s College Physics, 8.8{\%} and 2.3{\%} on GSM8k, and 10.3{\%} and 2.5{\%} on StrategyQA, respectively."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="liao-etal-2025-forest">
<titleInfo>
<title>Forest for the Trees: Overarching Prompting Evokes High-Level Reasoning in Large Language Models</title>
</titleInfo>
<name type="personal">
<namePart type="given">Haoran</namePart>
<namePart type="family">Liao</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Shaohua</namePart>
<namePart type="family">Hu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zhihao</namePart>
<namePart type="family">Zhu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hao</namePart>
<namePart type="family">He</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yaohui</namePart>
<namePart type="family">Jin</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-04</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Luis</namePart>
<namePart type="family">Chiruzzo</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alan</namePart>
<namePart type="family">Ritter</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lu</namePart>
<namePart type="family">Wang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Albuquerque, New Mexico</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-189-6</identifier>
</relatedItem>
<abstract>Chain-of-thought (CoT) and subsequent methods adopted a deductive paradigm that decomposes the reasoning process, demonstrating remarkable performances across NLP tasks. However, such a paradigm faces the challenge of getting bogged down in low-level semantic details, hindering large language models (LLMs) from correctly understanding, selecting, and compositing conditions. In this work, we present Overarching Prompting (OaP), a simple prompting method that elicits the high-level thinking of LLMs. Specifically, OaP first abstracts the whole problem into a simplified archetype and formulates strategies grounded in concepts and principles, establishing an overarching perspective for guiding reasoning. We conducted experiments with SoTA models, including ChatGPT, InstructGPT, and Llama3-70B-instruct, and received promising performances across tasks including Knowledge QA, Mathematical, and Open-Domain Reasoning. For instance, OaP improved ChatGPT and CoT by 19.0% and 3.1% on MMLU’s College Physics, 8.8% and 2.3% on GSM8k, and 10.3% and 2.5% on StrategyQA, respectively.</abstract>
<identifier type="citekey">liao-etal-2025-forest</identifier>
<identifier type="doi">10.18653/v1/2025.naacl-long.66</identifier>
<location>
<url>https://aclanthology.org/2025.naacl-long.66/</url>
</location>
<part>
<date>2025-04</date>
<extent unit="page">
<start>1433</start>
<end>1453</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Forest for the Trees: Overarching Prompting Evokes High-Level Reasoning in Large Language Models
%A Liao, Haoran
%A Hu, Shaohua
%A Zhu, Zhihao
%A He, Hao
%A Jin, Yaohui
%Y Chiruzzo, Luis
%Y Ritter, Alan
%Y Wang, Lu
%S Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)
%D 2025
%8 April
%I Association for Computational Linguistics
%C Albuquerque, New Mexico
%@ 979-8-89176-189-6
%F liao-etal-2025-forest
%X Chain-of-thought (CoT) and subsequent methods adopted a deductive paradigm that decomposes the reasoning process, demonstrating remarkable performances across NLP tasks. However, such a paradigm faces the challenge of getting bogged down in low-level semantic details, hindering large language models (LLMs) from correctly understanding, selecting, and compositing conditions. In this work, we present Overarching Prompting (OaP), a simple prompting method that elicits the high-level thinking of LLMs. Specifically, OaP first abstracts the whole problem into a simplified archetype and formulates strategies grounded in concepts and principles, establishing an overarching perspective for guiding reasoning. We conducted experiments with SoTA models, including ChatGPT, InstructGPT, and Llama3-70B-instruct, and received promising performances across tasks including Knowledge QA, Mathematical, and Open-Domain Reasoning. For instance, OaP improved ChatGPT and CoT by 19.0% and 3.1% on MMLU’s College Physics, 8.8% and 2.3% on GSM8k, and 10.3% and 2.5% on StrategyQA, respectively.
%R 10.18653/v1/2025.naacl-long.66
%U https://aclanthology.org/2025.naacl-long.66/
%U https://doi.org/10.18653/v1/2025.naacl-long.66
%P 1433-1453
Markdown (Informal)
[Forest for the Trees: Overarching Prompting Evokes High-Level Reasoning in Large Language Models](https://aclanthology.org/2025.naacl-long.66/) (Liao et al., NAACL 2025)
ACL