@inproceedings{bakos-etal-2025-alignfreeze,
title = "{A}lign{F}reeze: Navigating the Impact of Realignment on the Layers of Multilingual Models Across Diverse Languages",
author = "Bakos, Steve and
Guzm{\'a}n, David and
More, Riddhi and
Li, Kelly Chutong and
Gaschi, F{\'e}lix and
Lee, En-Shiun Annie",
editor = "Chiruzzo, Luis and
Ritter, Alan and
Wang, Lu",
booktitle = "Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 2: Short Papers)",
month = apr,
year = "2025",
address = "Albuquerque, New Mexico",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.naacl-short.48/",
doi = "10.18653/v1/2025.naacl-short.48",
pages = "562--586",
ISBN = "979-8-89176-190-2",
abstract = "Realignment techniques are often employed to enhance cross-lingual transfer in multilingual language models, still, they can sometimes degrade performance in languages that differ significantly from the fine-tuned source language. This paper introduces AlignFreeze, a method that freezes either the layers' lower half or upper half during realignment. Through controlled experiments on 4 tasks, 3 models, and in 35 languages, we find that realignment affects all the layers but can be the most detrimental to the lower ones. Freezing the lower layers can prevent performance degradation. Particularly, AlignFreeze improves Part-of-Speech (PoS) tagging performances in languages where full realignment fails: with XLM-R, it provides improvements of more than one standard deviation in accuracy in seven more languages than full realignment."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="bakos-etal-2025-alignfreeze">
<titleInfo>
<title>AlignFreeze: Navigating the Impact of Realignment on the Layers of Multilingual Models Across Diverse Languages</title>
</titleInfo>
<name type="personal">
<namePart type="given">Steve</namePart>
<namePart type="family">Bakos</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">David</namePart>
<namePart type="family">Guzmán</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Riddhi</namePart>
<namePart type="family">More</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kelly</namePart>
<namePart type="given">Chutong</namePart>
<namePart type="family">Li</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Félix</namePart>
<namePart type="family">Gaschi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">En-Shiun</namePart>
<namePart type="given">Annie</namePart>
<namePart type="family">Lee</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-04</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 2: Short Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Luis</namePart>
<namePart type="family">Chiruzzo</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alan</namePart>
<namePart type="family">Ritter</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lu</namePart>
<namePart type="family">Wang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Albuquerque, New Mexico</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-190-2</identifier>
</relatedItem>
<abstract>Realignment techniques are often employed to enhance cross-lingual transfer in multilingual language models, still, they can sometimes degrade performance in languages that differ significantly from the fine-tuned source language. This paper introduces AlignFreeze, a method that freezes either the layers’ lower half or upper half during realignment. Through controlled experiments on 4 tasks, 3 models, and in 35 languages, we find that realignment affects all the layers but can be the most detrimental to the lower ones. Freezing the lower layers can prevent performance degradation. Particularly, AlignFreeze improves Part-of-Speech (PoS) tagging performances in languages where full realignment fails: with XLM-R, it provides improvements of more than one standard deviation in accuracy in seven more languages than full realignment.</abstract>
<identifier type="citekey">bakos-etal-2025-alignfreeze</identifier>
<identifier type="doi">10.18653/v1/2025.naacl-short.48</identifier>
<location>
<url>https://aclanthology.org/2025.naacl-short.48/</url>
</location>
<part>
<date>2025-04</date>
<extent unit="page">
<start>562</start>
<end>586</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T AlignFreeze: Navigating the Impact of Realignment on the Layers of Multilingual Models Across Diverse Languages
%A Bakos, Steve
%A Guzmán, David
%A More, Riddhi
%A Li, Kelly Chutong
%A Gaschi, Félix
%A Lee, En-Shiun Annie
%Y Chiruzzo, Luis
%Y Ritter, Alan
%Y Wang, Lu
%S Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 2: Short Papers)
%D 2025
%8 April
%I Association for Computational Linguistics
%C Albuquerque, New Mexico
%@ 979-8-89176-190-2
%F bakos-etal-2025-alignfreeze
%X Realignment techniques are often employed to enhance cross-lingual transfer in multilingual language models, still, they can sometimes degrade performance in languages that differ significantly from the fine-tuned source language. This paper introduces AlignFreeze, a method that freezes either the layers’ lower half or upper half during realignment. Through controlled experiments on 4 tasks, 3 models, and in 35 languages, we find that realignment affects all the layers but can be the most detrimental to the lower ones. Freezing the lower layers can prevent performance degradation. Particularly, AlignFreeze improves Part-of-Speech (PoS) tagging performances in languages where full realignment fails: with XLM-R, it provides improvements of more than one standard deviation in accuracy in seven more languages than full realignment.
%R 10.18653/v1/2025.naacl-short.48
%U https://aclanthology.org/2025.naacl-short.48/
%U https://doi.org/10.18653/v1/2025.naacl-short.48
%P 562-586
Markdown (Informal)
[AlignFreeze: Navigating the Impact of Realignment on the Layers of Multilingual Models Across Diverse Languages](https://aclanthology.org/2025.naacl-short.48/) (Bakos et al., NAACL 2025)
ACL