@inproceedings{floquet-etal-2025-scaling,
title = "Scaling Graph-Based Dependency Parsing with Arc Vectorization and Attention-Based Refinement",
author = "Floquet, Nicolas and
Roux, Joseph Le and
Tomeh, Nadi and
Charnois, Thierry",
editor = "Chiruzzo, Luis and
Ritter, Alan and
Wang, Lu",
booktitle = "Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 2: Short Papers)",
month = apr,
year = "2025",
address = "Albuquerque, New Mexico",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.naacl-short.60/",
doi = "10.18653/v1/2025.naacl-short.60",
pages = "722--734",
ISBN = "979-8-89176-190-2",
abstract = "We propose a novel architecture for graph-based dependency parsing that explicitly constructs vectors, from which both arcs and labels are scored. Our method addresses key limitations of the standard two-pipeline approach by unifying arc scoring and labeling into a single network, reducing scalability issues caused by the information bottleneck and lack of parameter sharing. Additionally, our architecture overcomes limited arc interactions with transformer layers to efficiently simulate higher-order dependencies. Experiments on PTB and UD show that our model outperforms state-of-the-art parsers in both accuracy and efficiency."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="floquet-etal-2025-scaling">
<titleInfo>
<title>Scaling Graph-Based Dependency Parsing with Arc Vectorization and Attention-Based Refinement</title>
</titleInfo>
<name type="personal">
<namePart type="given">Nicolas</namePart>
<namePart type="family">Floquet</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Joseph</namePart>
<namePart type="given">Le</namePart>
<namePart type="family">Roux</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nadi</namePart>
<namePart type="family">Tomeh</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Thierry</namePart>
<namePart type="family">Charnois</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-04</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 2: Short Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Luis</namePart>
<namePart type="family">Chiruzzo</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alan</namePart>
<namePart type="family">Ritter</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lu</namePart>
<namePart type="family">Wang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Albuquerque, New Mexico</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-190-2</identifier>
</relatedItem>
<abstract>We propose a novel architecture for graph-based dependency parsing that explicitly constructs vectors, from which both arcs and labels are scored. Our method addresses key limitations of the standard two-pipeline approach by unifying arc scoring and labeling into a single network, reducing scalability issues caused by the information bottleneck and lack of parameter sharing. Additionally, our architecture overcomes limited arc interactions with transformer layers to efficiently simulate higher-order dependencies. Experiments on PTB and UD show that our model outperforms state-of-the-art parsers in both accuracy and efficiency.</abstract>
<identifier type="citekey">floquet-etal-2025-scaling</identifier>
<identifier type="doi">10.18653/v1/2025.naacl-short.60</identifier>
<location>
<url>https://aclanthology.org/2025.naacl-short.60/</url>
</location>
<part>
<date>2025-04</date>
<extent unit="page">
<start>722</start>
<end>734</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Scaling Graph-Based Dependency Parsing with Arc Vectorization and Attention-Based Refinement
%A Floquet, Nicolas
%A Roux, Joseph Le
%A Tomeh, Nadi
%A Charnois, Thierry
%Y Chiruzzo, Luis
%Y Ritter, Alan
%Y Wang, Lu
%S Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 2: Short Papers)
%D 2025
%8 April
%I Association for Computational Linguistics
%C Albuquerque, New Mexico
%@ 979-8-89176-190-2
%F floquet-etal-2025-scaling
%X We propose a novel architecture for graph-based dependency parsing that explicitly constructs vectors, from which both arcs and labels are scored. Our method addresses key limitations of the standard two-pipeline approach by unifying arc scoring and labeling into a single network, reducing scalability issues caused by the information bottleneck and lack of parameter sharing. Additionally, our architecture overcomes limited arc interactions with transformer layers to efficiently simulate higher-order dependencies. Experiments on PTB and UD show that our model outperforms state-of-the-art parsers in both accuracy and efficiency.
%R 10.18653/v1/2025.naacl-short.60
%U https://aclanthology.org/2025.naacl-short.60/
%U https://doi.org/10.18653/v1/2025.naacl-short.60
%P 722-734
Markdown (Informal)
[Scaling Graph-Based Dependency Parsing with Arc Vectorization and Attention-Based Refinement](https://aclanthology.org/2025.naacl-short.60/) (Floquet et al., NAACL 2025)
ACL