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Abstract

The emergence of large language models
(LLMs) has significantly influenced numerous
fields, including healthcare, by enhancing the
capabilities of automated systems to process
and generate human-like text. However, de-
spite their advancements, the reliability and
accuracy of LLMs in medical contexts remain
critical concerns. Current evaluation methods
often lack robustness and fail to provide a com-
prehensive assessment of LLM performance,
leading to potential risks in clinical settings. In
this work, we propose Med-CoDE, a specifi-
cally designed evaluation framework for med-
ical LLMs to address these challenges. The
framework leverages a critique-based approach
to quantitatively measure the degree of dis-
agreement between model-generated responses
and established medical ground truths. This
framework captures both accuracy and reliabil-
ity in medical settings. The proposed evalu-
ation framework aims to fill the existing gap
in LLM assessment by offering a systematic
method to evaluate the quality and trustwor-
thiness of medical LLMs. Through extensive
experiments and case studies, we illustrate the
practicality of our framework in providing a
comprehensive and reliable evaluation of medi-
cal LLMs.

1 Introduction

Medical Question Answering systems based on
Large Language Models represent a significant
leap in leveraging artificial intelligence for health-
care. These systems are designed to process and
respond to medical queries. The primary aim of
Medical QA LLMs is to provide accurate, reli-
able, and timely information to support clinicians,
researchers, and patients. Evaluating the perfor-
mance of these LLMs is crucial to ensure their
reliability and effectiveness in real-world medical
applications. Performance evaluation typically in-
volves assessing the accuracy, relevance, and co-
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Question: A multi-specialty physician practice is meeting to determine which
compensation scheme would best serve the practice and its patient population. Which of
the following are true in regards to physician compensation?
Ground Truth: Fee-for-service may incentivize physicians to increase healthcare
utilization irrespective of quality.

Prediction: Capitation poses the least financial risk to physicians.

Critique: The prediction is incorrect. The critique is that the model failed to identify the
correct incentive structure associated with Fee-for-service compensation scheme. The
ground-truth accurately states that Fee-for-service may incentivize physicians to
increase healthcare utilization, regardless of quality, which is a key consideration in
determining the best compensation scheme for the practice.

None Low Moderate High

Degree of Disagreement

Figure 1: Med-Code Framework

herence of the generated responses compared to
established medical standards or expert opinions.

Traditional methods for evaluating text genera-
tion, such as string similarity metrics (e.g., ME-
TEOR, BLEU, ROUGE), have been used widely
across various domains. These metrics compare
the overlap between generated and reference text-
based on the n-gram matching, synonymy, and para-
phrasing. While effective in general text generation
tasks, these metrics pose significant limitations in
the medical QA domain. Medical texts often re-
quire precise and contextually accurate responses
where minor discrepancies can lead to substantial
misunderstandings or clinical errors. Traditional
metrics fail to capture the nuanced medical context,
thereby providing an inadequate measure of LLM
performance in this sensitive field.

To address the shortcomings of traditional evalu-
ation methods, researchers have started exploring
the use of LLMs themselves for evaluating other
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LLMs. Frameworks such as Harness (Gao et al.,
2023), DeepEval1, MLFlow2 represent this shift
towards LLM-assisted evaluation. These frame-
works aim to provide more contextual and com-
prehensive evaluations by leveraging the advanced
capabilities of LLMs to understand the generated
responses. Despite these advancements, the cur-
rent LLM-assisted evaluation methods still lack a
structured approach to quantifying disagreement
and assessing reliability.

This research paper presents an reliable evalu-
ation framework tailored for Medical QA LLMs.
Drawing inspiration from the work of (Wang et al.,
2023), our framework introduces a critique-based
methodology that quantitatively assesses the dis-
crepancies between model-generated responses and
established medical ground truths. By employing
a critique model, we analyzed the differences in
LLM outputs and provide a comprehensive evalu-
ation of their accuracy and reliability. The visual
representation of Med-Code framework is shown
in Fig. 1.

The contributions of this work are as follows.

• We curated a specialized medical cri-
tique dataset, incorporating medical Q&A
pairs from benchmark datasets such as
Medqa (Zhang et al., 2018), Medmcqa (Pal
et al., 2022). etc. The dataset includes re-
sponses from various medical language mod-
els (LLMs) and a degree of disagreement la-
bel between the ground-truth answers and the
models’ responses.

• We developed an advanced evaluation pipeline
based on the Shepherd model (Wang et al.,
2023), where we fine-tuned the Phi-3 model
for generating critiques and employed a BERT
model for classifying them.

• To demonstrate the effectiveness of our eval-
uation framework, we conducted comprehen-
sive experiments across four medical bench-
mark datasets, utilizing diverse evaluation
techniques to ensure robust validation.

2 Related Work

This section discusses related work in the field
of evaluation, highlighting previous contribu-
tions. Our motivation stems from the Shepherd

1https://docs.confident-ai.com/
2https://mlflow.org/

Model (Wang et al., 2023), which introduces a large
language model designed to generate critiques of
model responses to given prompts. We extend this
work by using critiques to evaluate discrepancies
between model responses and ground truth.

Recent studies have shown that traditional met-
rics such as METEOR (Banerjee and Lavie, 2005),
ROUGE (Lin, 2004) and BLEUScore (Zhang et al.,
2020) are inadequate for accurately evaluating
open-ended generation tasks due to their reliance
on reference text (Chiang and Lee, 2023; Gu et al.,
2021; Guan et al., 2021; Polišenská et al., 2020;
Wu et al., 2021). Advances have led to new re-
search using LLMs as evaluators, demonstrating
their potential to overcome these limitations (Kim
et al., 2024; Kocmi and Federmann, 2023; Liu et al.,
2024b,c). Notably, approaches employing power-
ful LLMs like GPT-4 have achieved remarkable
performance (Fu et al., 2024; Liu et al., 2023).
However, current LLM-based evaluators exhibit
shortcomings in robustness, as their performance
is highly sensitive to prompts, leading to instabil-
ity in the evaluation process. Recent studies have
sought to address these challenges by generating
explanations for evaluation outputs (Chiang and
Lee, 2023), but this approach does not inherently
improve robustness or reliability due to issues such
as hallucinations (Xu et al., 2023).

In the context of medical AI, where accuracy and
reliability are crucial, several research efforts pro-
pose strategies to evaluate LLM responses. An au-
tomatic evaluation metric and algorithm for LLMs’
clinical capabilities is proposed in (Liu et al.,
2024a), featuring a multi-agent framework with
Retrieval-Augmented Evaluation (RAE) to assess
the behaviors of a doctor agent. (Awasthi et al.,
2023) propose a structured method for compre-
hensive human evaluation of LLM outputs, intro-
ducing the HumanELY guidance and tool. (Liao
et al., 2024) introduce the Automated Interactive
Evaluation (AIE) framework, which provides a
dynamic, realistic platform for assessing LLMs
through multi-turn doctor-patient simulations.

3 Methodology

In this section, we discuss the process of creating a
fine-tuning dataset for the medical domain critique
model, the approach we used for fine-tuning the
LLM, and the development of classification model.
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Figure 2: The overall Fine-tuning pipeline for Critique Generator & Classifier.

3.1 Dataset

In this research, we curated a specialized dataset
using the OpenAI GPT-4 model to build a fine-
tuning dataset for our critique generation model.
Our final critique dataset comprises 38,819 sam-
ples, with an average critique length of 58.95 words.
This dataset enables us to assess how well LLM
responses align with ground-truth answers and to
measure the degree of disagreement, providing a
robust foundation for evaluating the performance
of medical QA LLMs.

For medical domain data, we selected and com-
bined small random subsets from standard medical
QA datasets including Medqa (Zhang et al., 2018),
Medmcqa (Pal et al., 2022), MMLU (Hendrycks
et al., 2021), and Pubmedqa (Jin et al., 2019).
These datasets encompass medical question-answer
pairs from various medical fields, covering differ-
ent levels of difficulty and types of questions. This
comprehensive combination ensures that our cri-
tique model can effectively evaluate both objective
and subjective questions.

<|user|>
You are a expert ai assistant. You are given a question, its ground-truth
answer and the prediction from a model. Your task is to generate critique for
the given prediction with respect to the given question, and ground-truth.
This is very important and crucial task. While generating the critique, please
keep the critique precise, clear and short.

### Question:  {sample['question']}
### Ground-Truth:  {sample['ground-truth']}
### Prediction:  {sample['prediction']}

Only return the helpful answer below and nothing else.<|end|>
<|assistant|>

Figure 3: Critique Generation Prompt Template

After merging the random subsets, we employed
SOTA medical domain LLMs, such as Meditron-
7B (Chen et al., 2023), SelfBioRAG-7B (Jeong
et al., 2024), to generate answers for each ques-

tion. Each response was then critically evaluated
using OpenAI GPT-4, which assigned a disagree-
ment label from one of four categories: None, Low,
Medium, and High. A High disagreement label
indicates that the model-generated response is en-
tirely incorrect and does not align with the ground
truth in any aspect, whereas a None disagreement
label signifies that the response is accurate and
fully aligns with the ground truth without any ex-
traneous information. In Low disagreement label
the response is mostly accurate with minor addi-
tional details or slight deviations from the ground
truth, lastly, the Moderate disagreement label, the
response contains a mix of correct and incorrect
information, with significant deviations from the
ground truth, meaning the model is hallucinating.

3.2 Models

To build this lightweight evaluation framework, we
employed two small models: Phi-3 3.8B (Abdin
et al., 2024) for generating critiques & BERT (De-
vlin et al., 2019) for classifying the critiques. Al-
though larger models with superior text generation
capabilities and understanding are available, our
objective was to create a domain-specific model tai-
lored for a single task. Hence, these models were
chosen. The visual representation of fine-tuning
model architectures is shown in Fig. 2. This inte-
grated pipeline proved efficient across all aspects,
including computation, speed, and accuracy.

4 Experiments

In this section, we will delve into the experiment
setup we have used for building this framework.
It is divided into two subsections, first is for the
critique generation model, and second is for the
critique classification model.
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4.1 Critique Generation Model
The objective of this model is to generate critiques
based on a given question, its ground-truth answer,
and the model’s response. For this purpose, we
employed the phi-3-mini model, which contains
3.8 billion parameters.

The hyperparameters configured for fine-tuning
include 5 epochs, a batch size of 128, a learning
rate of 1.41e-5, and the AdamW 8-bit optimizer.
We utilized the LORA technique for efficient fine-
tuning, with a rank parameter r = 16. The training
process consumed an average of 20 GBs VRAM
and required approximately 4-5 hours of GPU time.
The data set was split into 30,000 samples for train-
ing, 4,409 for testing, and 4,410 for validation. The
prompt template used in the fine-tuning and infer-
ence is given in Fig. 3.

Examples for each class of disagreement are pro-
vided in Fig. 4. These examples illustrate that the
critiques generated by the model are highly precise
and clear in identifying discrepancies between the
ground-truth answers and the model’s predictions,
thereby supporting the efficacy of the fine-tuning
process. To evaluate the quality of the dataset, we
conducted a quality assessment on a small subset,
as detailed in Section 5.1.

4.2 Critique Classification Model
For the critique classification model, we utilized
the BERT base model, which contains 110M pa-
rameters. This model is lightweight yet offers a
deep bidirectional understanding of context, effec-
tively capturing nuanced language patterns. The
architecture of the entire classification network is
depicted in Fig. 2.

Framework Accuracy
GPT-3.5 78.12
Med-Code 71.72

Table 1: Human Evaluation Results of Disagreement
Classification

The hyperparameters configured for fine-tuning
are 25 epochs, a learning rate of 1e-3, a dropout rate
of 0.3, a batch size of 16, and a maximum sequence
length of 208 tokens. The fine-tuning process em-
ployed a weighted average of all classes, with class
weights specified as [5.96, 1.34, 0.83, 0.52]. The
divergence function used is the Negative Log Like-
lihood. The total GPU utilization for fine-tuning
this network is 2,771 MiB with 1 hour of GPU time.

The data split used in this model training is 27,173
samples for training, 5,823 samples for validation,
and 5,823 samples for testing.

We conducted a performance analysis of Ope-
nAI’s GPT-3.5 and our proposed framework, Med-
Code, on a human labeled subset of 265 randomly
selected samples. Each model received a question,
a ground-truth answer, and the model’s prediction,
and we evaluated their accuracy in disagreement
classification based on the critiques they generated.
As shown in Table. 1, GPT-3.5 correctly classified
approximately 207 out of 265 samples, and our
proposed Med-Code framework produced results
comparable to those of GPT-3.5 which is around
190 samples.

5 Results & Analysis

To assess the effectiveness of evaluating responses
from large language models, we conducted ex-
periments on four medical benchmark datasets:
Medqa (Zhang et al., 2018), Medmcqa (Pal
et al., 2022), Pubmedqa (Jin et al., 2019), and
Mmlu (Hendrycks et al., 2021). These datasets are
widely used in medical benchmarking and consist
of objective-type questions. Our analysis focused
on the test sets of these datasets using three LLMs:
LLaMA-3 (AI@Meta, 2024), Mistral (Jiang et al.,
2023), and BioMistral (Labrak et al., 2024). We
selected these LLMs due to their demonstrated su-
perior performance on general tasks and medical
benchmarks.

We utilized Meteor and Rouge-L scores for au-
tomatic evaluation, the LLaMA-3 model for LLM-
assisted evaluation, and our Med-Code framework
to analyze LLM performance comprehensively.
Med-Code categorizes responses into four degrees
of disagreement, where an ideal model would show
the highest average probability for “None” dis-
agreement and the lowest for “High” disagreement.
Detailed descriptions of each disagreement label
are provided in the Section 3.1.

In Table 2, LLaMA-3, BioMistral, and Mis-
tral models were used for inference. LLaMA-3
performed best on the MMLU dataset, achieving
high scores in both automatic and LLM-assisted
evaluations. Med-Code results showed that the
“None” disagreement probability was the highest,
indicating strong alignment between the model’s re-
sponses and the ground-truth answers. Conversely,
the “High” disagreement probability was the low-
est, supporting the model’s accuracy.
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Dataset Automatic Evaluation LLM-Accuracy Dis-agreement Evaluation
Meteor Rouge-L None ↑↑ Low ↑ Moderate ↓ High ↓↓

Results for LLaMA-3
MEDQA USMLE 0.51 0.52 0.69 0.53 0.22 0.13 0.12

MEDMCQA 0.12 0.26 0.53 0.47 0.32 0.13 0.07

PUBMEDQA 0.11 0.12 0.39 0.55 0.30 0.10 0.05

MMLU 0.71 0.71 0.70 0.57 0.31 0.09 0.04

Results for BioMistral 7B
MEDQA USMLE 0.14 0.07 0.74 0.44 0.29 0.16 0.11

MEDMCQA 0.16 0.08 0.61 0.35 0.39 0.18 0.08

PUBMEDQA 0.21 0.16 0.73 0.54 0.30 0.11 0.05

MMLU 0.33 0.19 0.70 0.32 0.41 0.19 0.07

Results for Mistral 7B v2.0
MEDQA USMLE 0.16 0.12 0.68 0.47 0.28 0.15 0.01

MEDMCQA 0.56 0.11 0.56 0.33 0.38 0.20 0.08

PUBMEDQA 0.21 0.19 0.68 0.60 0.26 0.09 0.05

MMLU 0.37 0.25 0.65 0.36 0.37 0.19 0.07

Table 2: Evaluation Results for LLaMA-3, BioMistral 7B and Mistral 7B v2.0

The automatic evaluation results for BioMis-
tral, a medical domain-specific LLM, did not
convey significant information due to its poor
string/semantic matching. However, BioMistral
outperformed Mistral in LLM-assisted evaluation
accuracy across all datasets, which was expected.

There was a strong positive correlation between
accuracy and “None” disagreement probability,
demonstrating that Med-Code effectively identified
correct responses. Additionally, there is a posi-
tive correlation between METEOR scores and a
’Low’ disagreement probability, suggesting that the
low semantic relation between ground truth and
model predictions. The low positive correlation be-
tween LLM-assisted accuracy and both ’Moderate’
and ’High’ disagreement probabilities confirmed
instances where the models hallucinated or pro-
duced incorrect results.

When examining the correlation between au-
tomatic evaluation scores like METEOR and
ROUGE-L scores and LLM accuracy, the corre-
lation is inconsistent across different LLMs. This
inconsistency may be due to the fact that automatic
metrics are based on string matching, while LLM-
assisted accuracy relies on the model’s knowledge
and logic. For example,

"If the model generates medicine X for disease D,
but the ground truth answer lists medicine Y for
the same disease, the automatic evaluation scores
might be low. However, the LLM-assisted accuracy
could still be correct because the model knows that
X is equivalent to Y for disease D."

5.1 Human Evaluation

To assess the quality of the critique data generated
by the OpenAI model for fine-tuning purposes, we
conducted a thorough evaluation on a randomly
selected subset of 265 samples. Each sample was
manually reviewed to determine how effectively
the model understood the relationship between the
ground-truth answer and the model’s prediction,
and whether it could accurately identify minute
discrepancies and details within the predictions.

Upon analysis, we found that approximately 240
out of the 265 samples (about 91%) were accurately
critiqued. The generated critiques successfully
highlighted the flaws and discrepancies between
the ground-truth and the predictions, demonstrating
the model’s capability to provide precise and de-
tailed feedback. This quality assessment validates
the reliability of the generated data for fine-tuning
the critique generation model. The ground-truth
critiques are noted for their clarity and precision,
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Question: Where does the trabecular bone forming the marrow space show?
Ground Truth: at the margins.

Prediction: The trabecular bone forming the marrow space is shown in the image as a red and
yellow pattern. The red and yellow colors represent the bone structure, while the marrow space is
depicted as a yellow area. This image provides a visual representation of the bone structure and its
marrow space, which is essential for the production of blood cells and other functions.

Critique: The model's response does not address the question of where the
trabecular bone forming the marrow space is shown. Instead, it describes the
color patterns representing bone and marrow space in an image, without
specifying the location 'at the margins' as indicated in the ground truth.

High

Question: what shows concentric lamellae along with osteocytic lacunae surrounding
central blood vessels, while the trabecular bone forming the marrow space shows
trabeculae with osteoclastic activity at the margins?
Ground Truth: cortical bone forming the outer shell.

Prediction: The image shows a cross-section of a bone, with concentric lamellae and osteocytic
lacunae surrounding central blood vessels. The bone is surrounded by a marrow space, which is
filled with trabeculae. Osteoclastic activity can be observed at the margins of the trabeculae,
indicating ongoing bone remodeling and maintenance.

Critique: The model's response accurately describes the structure of bone,
including concentric lamellae, osteocytic lacunae, and osteoclastic activity in
trabeculae. However, it fails to identify that these features are characteristic
of cortical bone forming the outer shell, which is the correct and specific
answer to the question.

Moderate

Question: what is aids?
Ground Truth: acquired immunodeficiency syndrome.

Prediction: AIDS (Acquired Immune Deficiency Syndrome) is a chronic and potentially life-
threatening condition caused by the human immunodeficiency virus (HIV). HIV attacks and
weakens the immune system, making the body more susceptible to infections and diseases.
AIDS is the most advanced stage of HIV infection. AIDS is primarily spread through contact with
infected blood, semen, and other bodily fluids. Prevention measures include safe sex practices,
needle-sharing prevention, and early detection and treatment of HIV infection.

Critique: The model's response provides a detailed and accurate explanation
of AIDS, including its definition, cause, progression, and prevention methods.
However, it exceeds the simplicity required by the question. The question
asks for a direct definition, which is 'acquired immunodeficiency syndrome.'

Low

Figure 4: Critique data samples with different dis-agreement Labels

effectively pinpointing subtle differences between
the ground-truth answers and the model’s predic-
tions. This ensures that the data can be effectively
used for fine-tuning the critique generation model,
allowing it to learn and adapt with high accuracy
and precision.

6 Conclusion

In this work, we introduce Med-CoDE, an evalua-
tion framework designed to assess the performance
of Medical LLMs using critiques and degrees of
disagreement. Med-CoDE excels in identifying
subtle discrepancies between ground-truth answers
and model predictions, offering a nuanced evalua-
tion with four levels of disagreement. These levels
provide insights into the model’s behavior, such
as hallucinations, accuracy, and adherence to the
question. Our framework aids researchers in pin-
pointing areas where LLMs fall short, enabling
targeted improvements. Extensive experiments on
standard medical benchmark datasets demonstrate
Med-CoDE’s effectiveness in thoroughly and ef-
ficiently analyzing model behavior. This robust
evaluation method is crucial for advancing the reli-
ability and safety of AI-driven healthcare solutions.
This evaluation framework is adaptable for assess-
ing large language models across various domain-
specific tasks as well as general tasks, simply by
modifying the critique dataset.

7 Limitations

In this paper, we assess both automatic and human
evaluation. Despite experimenting with a substan-
tial number of data examples and utilizing human
annotators to the best of our financial capabilities,
there is room for further enhancement. Limited ac-
cess to the costly OpenAI APIs meant that we used

these resources judiciously, focusing on crucial
areas. Additionally, computational constraints re-
stricted the scope of our experiments. Nonetheless,
these limitations highlight opportunities for future
work to expand and refine the proposed framework
with more extensive experimental analysis and re-
source allocation.

8 Ethical Considerations

The Med-CoDE framework, designed to assess the
reliability and accuracy of medical LLMs, operates
within a domain where the potential consequences
of errors are particularly significant, given the di-
rect impact on patient care and treatment outcomes.

In this work, only the publicly available stan-
dard benchmark medical QA datasets are used for
training and evaluations. The Med-CoDE frame-
work aims to enhance the evaluation of LLMs to
ensure they meet rigorous standards of accuracy
and reliability. However, it is essential to recognize
that even well-evaluated models are not infallible
and should not replace human judgment. Instead,
they should be used as tools to support healthcare
professionals, who must remain the final arbiters
in clinical decision-making.

By addressing these ethical considerations, the
Med-CoDE framework can contribute to the re-
sponsible development and deployment of medical
LLMs, ultimately supporting safer and more effec-
tive healthcare solutions.
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