@inproceedings{li-2025-towards,
title = "Towards Practical and Knowledgeable {LLM}s for a Multilingual World: A Thesis Proposal",
author = "Li, Bryan",
editor = "Ebrahimi, Abteen and
Haider, Samar and
Liu, Emmy and
Haider, Sammar and
Leonor Pacheco, Maria and
Wein, Shira",
booktitle = "Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 4: Student Research Workshop)",
month = apr,
year = "2025",
address = "Albuquerque, USA",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.naacl-srw.30/",
doi = "10.18653/v1/2025.naacl-srw.30",
pages = "301--310",
ISBN = "979-8-89176-192-6",
abstract = "The frontier of large language model (LLM) development has largely been substantiated by knowledge-intensive tasks specified in English. In this proposed thesis, I argue for the key role that multilinguality occupies in the development of \textit{practical} and \textit{knowledgeable} LLMs.First, I consider practical methods to improve LLM{'}s performance on standard natural language processing (NLP) tasks by leveraging their existing multilingual knowledge.Then, I investigate the underlying multilingual knowledge of LLMs with two benchmarks: on complex reasoning, and on territorial disputes. These benchmarks reveal LLMs' inconsistent performance across languages. I then design efficient techniques, both at inference-time and training-time, to address these discrepancies. Finally, I extend the territorial disputes benchmark to retrieval-augmented generation (RAG) setting, comparing the effects of different retrieval settings on cross-lingual robustness. My proposal shows that informed use of multilinguality enhances LLMs' capabilities, and our understanding thereof."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="li-2025-towards">
<titleInfo>
<title>Towards Practical and Knowledgeable LLMs for a Multilingual World: A Thesis Proposal</title>
</titleInfo>
<name type="personal">
<namePart type="given">Bryan</namePart>
<namePart type="family">Li</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-04</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 4: Student Research Workshop)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Abteen</namePart>
<namePart type="family">Ebrahimi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Samar</namePart>
<namePart type="family">Haider</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Emmy</namePart>
<namePart type="family">Liu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sammar</namePart>
<namePart type="family">Haider</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Maria</namePart>
<namePart type="family">Leonor Pacheco</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Shira</namePart>
<namePart type="family">Wein</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Albuquerque, USA</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-192-6</identifier>
</relatedItem>
<abstract>The frontier of large language model (LLM) development has largely been substantiated by knowledge-intensive tasks specified in English. In this proposed thesis, I argue for the key role that multilinguality occupies in the development of practical and knowledgeable LLMs.First, I consider practical methods to improve LLM’s performance on standard natural language processing (NLP) tasks by leveraging their existing multilingual knowledge.Then, I investigate the underlying multilingual knowledge of LLMs with two benchmarks: on complex reasoning, and on territorial disputes. These benchmarks reveal LLMs’ inconsistent performance across languages. I then design efficient techniques, both at inference-time and training-time, to address these discrepancies. Finally, I extend the territorial disputes benchmark to retrieval-augmented generation (RAG) setting, comparing the effects of different retrieval settings on cross-lingual robustness. My proposal shows that informed use of multilinguality enhances LLMs’ capabilities, and our understanding thereof.</abstract>
<identifier type="citekey">li-2025-towards</identifier>
<identifier type="doi">10.18653/v1/2025.naacl-srw.30</identifier>
<location>
<url>https://aclanthology.org/2025.naacl-srw.30/</url>
</location>
<part>
<date>2025-04</date>
<extent unit="page">
<start>301</start>
<end>310</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Towards Practical and Knowledgeable LLMs for a Multilingual World: A Thesis Proposal
%A Li, Bryan
%Y Ebrahimi, Abteen
%Y Haider, Samar
%Y Liu, Emmy
%Y Haider, Sammar
%Y Leonor Pacheco, Maria
%Y Wein, Shira
%S Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 4: Student Research Workshop)
%D 2025
%8 April
%I Association for Computational Linguistics
%C Albuquerque, USA
%@ 979-8-89176-192-6
%F li-2025-towards
%X The frontier of large language model (LLM) development has largely been substantiated by knowledge-intensive tasks specified in English. In this proposed thesis, I argue for the key role that multilinguality occupies in the development of practical and knowledgeable LLMs.First, I consider practical methods to improve LLM’s performance on standard natural language processing (NLP) tasks by leveraging their existing multilingual knowledge.Then, I investigate the underlying multilingual knowledge of LLMs with two benchmarks: on complex reasoning, and on territorial disputes. These benchmarks reveal LLMs’ inconsistent performance across languages. I then design efficient techniques, both at inference-time and training-time, to address these discrepancies. Finally, I extend the territorial disputes benchmark to retrieval-augmented generation (RAG) setting, comparing the effects of different retrieval settings on cross-lingual robustness. My proposal shows that informed use of multilinguality enhances LLMs’ capabilities, and our understanding thereof.
%R 10.18653/v1/2025.naacl-srw.30
%U https://aclanthology.org/2025.naacl-srw.30/
%U https://doi.org/10.18653/v1/2025.naacl-srw.30
%P 301-310
Markdown (Informal)
[Towards Practical and Knowledgeable LLMs for a Multilingual World: A Thesis Proposal](https://aclanthology.org/2025.naacl-srw.30/) (Li, NAACL 2025)
ACL