@inproceedings{baskar-etal-2025-cper,
title = "({CPER}) From Guessing to Asking: An Approach to Resolving Persona Knowledge Gap in {LLM}s during Multi-Turn Conversations",
author = "Baskar, Sarvesh and
Gaur, Manas and
Parthasarathy, Srinivasan and
Verlekar, Tanmay Tulsidas",
editor = "Ebrahimi, Abteen and
Haider, Samar and
Liu, Emmy and
Haider, Sammar and
Leonor Pacheco, Maria and
Wein, Shira",
booktitle = "Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 4: Student Research Workshop)",
month = apr,
year = "2025",
address = "Albuquerque, USA",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.naacl-srw.42/",
doi = "10.18653/v1/2025.naacl-srw.42",
pages = "435--447",
ISBN = "979-8-89176-192-6",
abstract = "In multi-turn dialogues, large language models face a critical challenge of ensuring coherence while adapting to user-specific information.. This study introduces the persona knowledge gap, the discrepancy between a model{'}s internal understanding and the knowledge required for coherent, personalized conversations. While prior research has recognized these gaps, computational methods for their identification and resolution remain underexplored. We propose Conversation Preference Elicitation and Recommendation (CPER), a novel framework that dynamically detects and resolves persona knowledge gaps using intrinsic uncertainty quantification and feedback-driven refinement. CPER consists of three key modules: a Contextual Understanding Module for preference extraction, a Dynamic Feedback Module for measuring uncertainty and refining persona alignment, and a Persona-Driven Response Generation module for adapting responses based on accumulated user context. We evaluate CPER on two real-world datasets: CCPE-M for preferential movie recommendations and ESConv for mental health support. Using A/B testing, human evaluators preferred CPER{'}s responses 42{\%} more often than baseline models in CCPE-M and 27{\%} more often in ESConv. A qualitative human evaluation confirms that CPER{'}s responses are preferred for maintaining contextual relevance and coherence, particularly in longer (12+ turn) conversations."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="baskar-etal-2025-cper">
<titleInfo>
<title>(CPER) From Guessing to Asking: An Approach to Resolving Persona Knowledge Gap in LLMs during Multi-Turn Conversations</title>
</titleInfo>
<name type="personal">
<namePart type="given">Sarvesh</namePart>
<namePart type="family">Baskar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Manas</namePart>
<namePart type="family">Gaur</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Srinivasan</namePart>
<namePart type="family">Parthasarathy</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tanmay</namePart>
<namePart type="given">Tulsidas</namePart>
<namePart type="family">Verlekar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-04</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 4: Student Research Workshop)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Abteen</namePart>
<namePart type="family">Ebrahimi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Samar</namePart>
<namePart type="family">Haider</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Emmy</namePart>
<namePart type="family">Liu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sammar</namePart>
<namePart type="family">Haider</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Maria</namePart>
<namePart type="family">Leonor Pacheco</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Shira</namePart>
<namePart type="family">Wein</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Albuquerque, USA</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-192-6</identifier>
</relatedItem>
<abstract>In multi-turn dialogues, large language models face a critical challenge of ensuring coherence while adapting to user-specific information.. This study introduces the persona knowledge gap, the discrepancy between a model’s internal understanding and the knowledge required for coherent, personalized conversations. While prior research has recognized these gaps, computational methods for their identification and resolution remain underexplored. We propose Conversation Preference Elicitation and Recommendation (CPER), a novel framework that dynamically detects and resolves persona knowledge gaps using intrinsic uncertainty quantification and feedback-driven refinement. CPER consists of three key modules: a Contextual Understanding Module for preference extraction, a Dynamic Feedback Module for measuring uncertainty and refining persona alignment, and a Persona-Driven Response Generation module for adapting responses based on accumulated user context. We evaluate CPER on two real-world datasets: CCPE-M for preferential movie recommendations and ESConv for mental health support. Using A/B testing, human evaluators preferred CPER’s responses 42% more often than baseline models in CCPE-M and 27% more often in ESConv. A qualitative human evaluation confirms that CPER’s responses are preferred for maintaining contextual relevance and coherence, particularly in longer (12+ turn) conversations.</abstract>
<identifier type="citekey">baskar-etal-2025-cper</identifier>
<identifier type="doi">10.18653/v1/2025.naacl-srw.42</identifier>
<location>
<url>https://aclanthology.org/2025.naacl-srw.42/</url>
</location>
<part>
<date>2025-04</date>
<extent unit="page">
<start>435</start>
<end>447</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T (CPER) From Guessing to Asking: An Approach to Resolving Persona Knowledge Gap in LLMs during Multi-Turn Conversations
%A Baskar, Sarvesh
%A Gaur, Manas
%A Parthasarathy, Srinivasan
%A Verlekar, Tanmay Tulsidas
%Y Ebrahimi, Abteen
%Y Haider, Samar
%Y Liu, Emmy
%Y Haider, Sammar
%Y Leonor Pacheco, Maria
%Y Wein, Shira
%S Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 4: Student Research Workshop)
%D 2025
%8 April
%I Association for Computational Linguistics
%C Albuquerque, USA
%@ 979-8-89176-192-6
%F baskar-etal-2025-cper
%X In multi-turn dialogues, large language models face a critical challenge of ensuring coherence while adapting to user-specific information.. This study introduces the persona knowledge gap, the discrepancy between a model’s internal understanding and the knowledge required for coherent, personalized conversations. While prior research has recognized these gaps, computational methods for their identification and resolution remain underexplored. We propose Conversation Preference Elicitation and Recommendation (CPER), a novel framework that dynamically detects and resolves persona knowledge gaps using intrinsic uncertainty quantification and feedback-driven refinement. CPER consists of three key modules: a Contextual Understanding Module for preference extraction, a Dynamic Feedback Module for measuring uncertainty and refining persona alignment, and a Persona-Driven Response Generation module for adapting responses based on accumulated user context. We evaluate CPER on two real-world datasets: CCPE-M for preferential movie recommendations and ESConv for mental health support. Using A/B testing, human evaluators preferred CPER’s responses 42% more often than baseline models in CCPE-M and 27% more often in ESConv. A qualitative human evaluation confirms that CPER’s responses are preferred for maintaining contextual relevance and coherence, particularly in longer (12+ turn) conversations.
%R 10.18653/v1/2025.naacl-srw.42
%U https://aclanthology.org/2025.naacl-srw.42/
%U https://doi.org/10.18653/v1/2025.naacl-srw.42
%P 435-447
Markdown (Informal)
[(CPER) From Guessing to Asking: An Approach to Resolving Persona Knowledge Gap in LLMs during Multi-Turn Conversations](https://aclanthology.org/2025.naacl-srw.42/) (Baskar et al., NAACL 2025)
ACL