@inproceedings{nagireddy-etal-2025-damager,
title = "{DAMAG}e{R}: Deploying Automatic and Manual Approaches to {G}en{AI} Red-teaming",
author = "Nagireddy, Manish and
Feffer, Michael and
Baldini, Ioana",
editor = "Lomeli, Maria and
Swayamdipta, Swabha and
Zhang, Rui",
booktitle = "Proceedings of the 2025 Annual Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 5: Tutorial Abstracts)",
month = may,
year = "2025",
address = "Albuquerque, New Mexico",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.naacl-tutorial.2/",
doi = "10.18653/v1/2025.naacl-tutorial.2",
pages = "10--14",
ISBN = "979-8-89176-193-3",
abstract = "In this tutorial, we will review and apply current automatic and manual red-teaming techniques for GenAI models(including LLMs and multimodal models). In doing so, we aim to emphasize the importance of using a mixture of techniques and establishing a balance between automatic and manual approaches. Lastly, we aim to engage tutorial participants in live red-teaming activities to collaboratively learn impactful red-teaming strategies and share insights."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="nagireddy-etal-2025-damager">
<titleInfo>
<title>DAMAGeR: Deploying Automatic and Manual Approaches to GenAI Red-teaming</title>
</titleInfo>
<name type="personal">
<namePart type="given">Manish</namePart>
<namePart type="family">Nagireddy</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Michael</namePart>
<namePart type="family">Feffer</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ioana</namePart>
<namePart type="family">Baldini</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-05</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2025 Annual Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 5: Tutorial Abstracts)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Maria</namePart>
<namePart type="family">Lomeli</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Swabha</namePart>
<namePart type="family">Swayamdipta</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Rui</namePart>
<namePart type="family">Zhang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Albuquerque, New Mexico</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-193-3</identifier>
</relatedItem>
<abstract>In this tutorial, we will review and apply current automatic and manual red-teaming techniques for GenAI models(including LLMs and multimodal models). In doing so, we aim to emphasize the importance of using a mixture of techniques and establishing a balance between automatic and manual approaches. Lastly, we aim to engage tutorial participants in live red-teaming activities to collaboratively learn impactful red-teaming strategies and share insights.</abstract>
<identifier type="citekey">nagireddy-etal-2025-damager</identifier>
<identifier type="doi">10.18653/v1/2025.naacl-tutorial.2</identifier>
<location>
<url>https://aclanthology.org/2025.naacl-tutorial.2/</url>
</location>
<part>
<date>2025-05</date>
<extent unit="page">
<start>10</start>
<end>14</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T DAMAGeR: Deploying Automatic and Manual Approaches to GenAI Red-teaming
%A Nagireddy, Manish
%A Feffer, Michael
%A Baldini, Ioana
%Y Lomeli, Maria
%Y Swayamdipta, Swabha
%Y Zhang, Rui
%S Proceedings of the 2025 Annual Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 5: Tutorial Abstracts)
%D 2025
%8 May
%I Association for Computational Linguistics
%C Albuquerque, New Mexico
%@ 979-8-89176-193-3
%F nagireddy-etal-2025-damager
%X In this tutorial, we will review and apply current automatic and manual red-teaming techniques for GenAI models(including LLMs and multimodal models). In doing so, we aim to emphasize the importance of using a mixture of techniques and establishing a balance between automatic and manual approaches. Lastly, we aim to engage tutorial participants in live red-teaming activities to collaboratively learn impactful red-teaming strategies and share insights.
%R 10.18653/v1/2025.naacl-tutorial.2
%U https://aclanthology.org/2025.naacl-tutorial.2/
%U https://doi.org/10.18653/v1/2025.naacl-tutorial.2
%P 10-14
Markdown (Informal)
[DAMAGeR: Deploying Automatic and Manual Approaches to GenAI Red-teaming](https://aclanthology.org/2025.naacl-tutorial.2/) (Nagireddy et al., NAACL 2025)
ACL
- Manish Nagireddy, Michael Feffer, and Ioana Baldini. 2025. DAMAGeR: Deploying Automatic and Manual Approaches to GenAI Red-teaming. In Proceedings of the 2025 Annual Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 5: Tutorial Abstracts), pages 10–14, Albuquerque, New Mexico. Association for Computational Linguistics.