@inproceedings{garcia-corral-etal-2025-missing,
title = "The Missing Cause: An Analysis of Causal Attributions in Reporting on {P}alestine",
author = "Garcia Corral, Paulina and
Bechara, Hannah and
Manohara, Krishnamoorthy and
Jankin, Slava",
editor = "Jarrar, Mustafa and
Habash, Habash and
El-Haj, Mo",
booktitle = "Proceedings of the first International Workshop on Nakba Narratives as Language Resources",
month = jan,
year = "2025",
address = "Abu Dhabi",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.nakbanlp-1.11/",
pages = "103--113",
abstract = "Missing cause bias is a specific type of bias in media reporting that relies on consistently omitting causal attribution to specific events, for example when omitting specific actors as causes of incidents. Identifying these patterns in news outlets can be helpful in assessing the level of bias present in media content. In this paper, we examine the prevalence of this bias in reporting on Palestine by identifying causal constructions in headlines. We compare headlines from three main news media outlets: CNN, the BBC, and AJ (AlJazeera), that cover the Israel-Palestine conflict. We also collect and compare these findings to data related to the Ukraine-Russia war to analyze editorial style within press organizations. We annotate a subset of this data and evaluate two causal language models (UniCausal and GPT-4o) for the identification and extraction of causal language in news headlines. Using the top performing model, GPT-4o, we machine annotate the full corpus and analyze missing bias prevalence within and across news organizations. Our findings reveal that BBC headlines tend to avoid directly attributing causality to Israel for the violence in Gaza, both when compared to other news outlets, and to its own reporting on other conflicts."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="garcia-corral-etal-2025-missing">
<titleInfo>
<title>The Missing Cause: An Analysis of Causal Attributions in Reporting on Palestine</title>
</titleInfo>
<name type="personal">
<namePart type="given">Paulina</namePart>
<namePart type="family">Garcia Corral</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hannah</namePart>
<namePart type="family">Bechara</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Krishnamoorthy</namePart>
<namePart type="family">Manohara</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Slava</namePart>
<namePart type="family">Jankin</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-01</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the first International Workshop on Nakba Narratives as Language Resources</title>
</titleInfo>
<name type="personal">
<namePart type="given">Mustafa</namePart>
<namePart type="family">Jarrar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Habash</namePart>
<namePart type="family">Habash</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mo</namePart>
<namePart type="family">El-Haj</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Abu Dhabi</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Missing cause bias is a specific type of bias in media reporting that relies on consistently omitting causal attribution to specific events, for example when omitting specific actors as causes of incidents. Identifying these patterns in news outlets can be helpful in assessing the level of bias present in media content. In this paper, we examine the prevalence of this bias in reporting on Palestine by identifying causal constructions in headlines. We compare headlines from three main news media outlets: CNN, the BBC, and AJ (AlJazeera), that cover the Israel-Palestine conflict. We also collect and compare these findings to data related to the Ukraine-Russia war to analyze editorial style within press organizations. We annotate a subset of this data and evaluate two causal language models (UniCausal and GPT-4o) for the identification and extraction of causal language in news headlines. Using the top performing model, GPT-4o, we machine annotate the full corpus and analyze missing bias prevalence within and across news organizations. Our findings reveal that BBC headlines tend to avoid directly attributing causality to Israel for the violence in Gaza, both when compared to other news outlets, and to its own reporting on other conflicts.</abstract>
<identifier type="citekey">garcia-corral-etal-2025-missing</identifier>
<location>
<url>https://aclanthology.org/2025.nakbanlp-1.11/</url>
</location>
<part>
<date>2025-01</date>
<extent unit="page">
<start>103</start>
<end>113</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T The Missing Cause: An Analysis of Causal Attributions in Reporting on Palestine
%A Garcia Corral, Paulina
%A Bechara, Hannah
%A Manohara, Krishnamoorthy
%A Jankin, Slava
%Y Jarrar, Mustafa
%Y Habash, Habash
%Y El-Haj, Mo
%S Proceedings of the first International Workshop on Nakba Narratives as Language Resources
%D 2025
%8 January
%I Association for Computational Linguistics
%C Abu Dhabi
%F garcia-corral-etal-2025-missing
%X Missing cause bias is a specific type of bias in media reporting that relies on consistently omitting causal attribution to specific events, for example when omitting specific actors as causes of incidents. Identifying these patterns in news outlets can be helpful in assessing the level of bias present in media content. In this paper, we examine the prevalence of this bias in reporting on Palestine by identifying causal constructions in headlines. We compare headlines from three main news media outlets: CNN, the BBC, and AJ (AlJazeera), that cover the Israel-Palestine conflict. We also collect and compare these findings to data related to the Ukraine-Russia war to analyze editorial style within press organizations. We annotate a subset of this data and evaluate two causal language models (UniCausal and GPT-4o) for the identification and extraction of causal language in news headlines. Using the top performing model, GPT-4o, we machine annotate the full corpus and analyze missing bias prevalence within and across news organizations. Our findings reveal that BBC headlines tend to avoid directly attributing causality to Israel for the violence in Gaza, both when compared to other news outlets, and to its own reporting on other conflicts.
%U https://aclanthology.org/2025.nakbanlp-1.11/
%P 103-113
Markdown (Informal)
[The Missing Cause: An Analysis of Causal Attributions in Reporting on Palestine](https://aclanthology.org/2025.nakbanlp-1.11/) (Garcia Corral et al., NakbaNLP 2025)
ACL