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Introduction

Welcome to the 5th edition of the Natural Logic Meets MAchine Learning workshop (NALOMA).

NALOMA continues to serve as a venue dedicated to bridging the gap between machine/deep learning
approaches on the one hand, and symbolic/logic-based approaches to natural language understanding and
reasoning on the other. A central focus of the workshop remains the development of hybrid approaches
and the exploration of theoretical insights that shape and guide computational models of reasoning.

NALOMA took place in August 4-8 during ESSLLI 2025, hosted at Ruhr University Bochum, Germany.
We are deeply grateful to the ESSLLI organizers for their support. The workshop was held over a period
of five days, with time slots of about one and a half hours. This year’s program featured three inspiring
keynotes, five regular talks with accompanying archival papers included in this proceedings, and three
contributed talks based on non-archival submissions.

We would like to thank all authors of archival or non-archival submissions, as well as the dedicated
members of the program committee whose careful reviews ensured the quality of the workshop. Our
thanks also go to our keynote speakers for sharing their expertise and vision.

As in prior years, NALOMA serves as a platform connecting the symbolic Al and logic communities
with the machine learning community, with the dual purpose of promoting discussion and fostering joint
research initiatives. We look forward to the collaborations and insights that will arise from this year’s
event.

NALOMA is endorsed by the Special Interest Group on Computational Semantics (SIGSEM), for which
we are grateful.

Lasha Abzianidze and Valeria de Paiva, Program Co-Chairs
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Keynote Talk
Understanding Complex Situation Descriptions

Aaron Steven White
University of Rochester

Abstract: We use natural language to convey information about situations: things that happen or stuff
that is true. This ability is supported by systematic relationships between the way we conceptualize
situations and the way we describe them. These systematic relationships in turn underwrite inferences
that go beyond what one strictly says in describing a situation. The question that motivates this talk is
how to design systems that correctly capture the inferences we draw about situations on the basis of their
descriptions.

Classical approaches to this question-exemplified in their modern form by graph-based representations,
such Uniform Meaning Representation-attempt to capture the situation conceptualization associated with
a description using a symbolic situation ontology and to draw inferences on the basis of rules stated over
that ontology. An increasingly popular alternative to such ontology-factored approaches are ontology-
free approaches, which attempt to directly represent inferences about a situation as natural language
strings associated with a situation description, thereby bypassing the problem of engineering a situation
ontology entirely.

I discuss the benefits and drawbacks of these two approaches and present case studies in synthesizing
them that focus specifically on how best to capture inferences about complex situations-i.e. situations,
like building a house, that themselves may be composed of subsituations, like laying the house’s founda-
tions, framing the house, etc. I argue that we should ultimately strive for ontology-free representations
but that the challenges inherent to reasoning about complex situations highlight the persistent benefits of
situation ontologies in providing representational scaffolding for the construction and evaluation of such
representations.

Bio: Aaron Steven White is an Associate Professor of Linguistics at the University of Rochester, with a
secondary appointment in Computer Science and an affiliation with the Goergen Institute for Data Scien-
ce. He directs both the Center for Language Sciences and the FACTS.lab (Formal and Computational
Semantics Lab) at the University of Rochester. His research focuses on the development of large-scale,
theoretically informed semantic annotation frameworks and natural language understanding systems.
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Keynote Talk
How Can Large Language Model Become More Human?

Mehrnoosh Sadrzadeh
University College London

Abstract: Psycholinguistic experiments reveal that efficiency of human language use is founded on pre-
dictions at both syntactic and lexical levels. Previous models of human prediction exploiting LLMs have
used an information theoretic measure called surprisal, with success on naturalistic text in a wide variety
of languages, but under-performance on challenging text such as garden path sentences. This paper in-
troduces a novel framework that combines the lexical predictions of an LLM with the syntactic structures
provided by a dependency parser. The framework gives rise to an Incompatibility Fraction. When tested
on two garden path datasets, it correlated well with human reading times, distinguished between easy
and hard garden path, and outperformed surprisal.

Bio: Mehrnoosh is a professor of Computer Science at University College London. She holds a Royal
Academy of Engineering Research Chair and leads a lab on mathematical and quantum methods in
Al Her research mainly focuses on studying logical and mathematical models of natural language, in
particular, uisng algebraic grammars for syntax modeling and tensor spaces for semantics, often these
methoids incorporating machine learning and quantum methods.



Keynote Talk
Understanding the Logic of Generative Al through Logic

Kyle Richardson
Allen Institute for Al

Abstract: Symbolic logic has long served as the de-facto language for expressing complex knowledge
throughout computer science, owing to its clean semantics. Symbolic approaches to reasoning that are
driven by declarative knowledge, in sharp contrast to purely machine learning-based approaches, have
the advantage of allowing us to reason transparently about the behavior and correctness of the resulting
systems. In this talk, we focus on the broad question: Can the declarative approach be leveraged to better
understand and formally specify algorithms for large language models (LLMs)? We focus on formalizing
recent direct preference alignment (DPA) loss functions, such as DPO, that are currently at the forefront
of LLM alignment. Specifically, we ask: Given an existing DPA loss, can we systematically derive a
symbolic expression that characterizes its semantics? We outline the details of a novel formalism we de-
veloped for these purposes. We also discuss how this formal view of preference learning sheds new light
on both the size and structure of the DPA loss landscape and makes it possible to derive new alignment
algorithms from first principles. Our framework and approach aim not only to provide guidance for the
Al alignment community, but also to open up new opportunities for researchers in formal semantics to
engage more directly with the development and analysis of LLM algorithms.

Bio: Kyle Richardson is a senior research scientist at the Allen Institute for Al (AI2) in Seattle. He
works at the intersection of NLP and Machine Learning on the Aristo team, with a particular focus on
generative Al and language models. Recently, he has been interested in using formal methods to better
understand and specify algorithms for large language models. Prior to AI2 he was at the IMS and the
University of Stuttgart, where he obtained his PhD in 2018.
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Unpacking Legal Reasoning in LLLMs: Chain-of-Thought as a Key to
Human-Machine Alignment in Essay-Based NLU Tasks

Ying-Chu Yu!, Sieh-Chuen Huang!, Hsuan-Lei Shao**
ICollege of Law, National Taiwan University, Taipei, Taiwan
2Graduate Institute of Health and Biotechnology Law, Taipei Medical University, Taipei, Taiwan
eangelyul1278@gmail.com, schhuang@ntu.edu. tw, hlshao@tmu.edu. tw

Abstract

This study evaluates how Large Language Mod-
els (LLMs) perform deep legal reasoning on
Taiwanese Status Law questions and investi-
gates how Chain-of-Thought (CoT) prompting
affects interpretability, alignment, and gener-
alization. Using a two-stage evaluation frame-
work, we first decomposed six real legal es-
say questions into 68 sub-questions covering
issue spotting, statutory application, and inher-
itance computation. In Stage Two, full-length
answers were collected under baseline and CoT-
prompted conditions. Four LLMs—ChatGPT-
40, Gemini, Grok3, and Copilot—were tested.
Results show CoT prompting significantly im-
proved accuracy for Gemini (from 83.2% to
94.5%, p < 0.05) and Grok3, with moderate
but consistent gains for ChatGPT and Copilot.
Human evaluation of full-length responses re-
vealed CoT answers received notably higher
scores in issue coverage and reasoning clarity,
with ChatGPT and Gemini gaining +2.67 and
+1.92 points respectively. Despite these gains,
legal misclassifications persist, highlighting
alignment gaps between surface-level fluency
and expert legal reasoning. This work opens
the black box of legal NLU by tracing LLM rea-
soning chains, quantifying performance shifts
under structured prompting, and providing a di-
agnostic benchmark for complex, open-ended
legal tasks beyond multiple-choice settings.

1 Introduction

Legal reasoning presents unique challenges for
Large Language Models (LLMs) due to the logic-
intensive and statute-bound nature of legal texts.
Existing evaluations often focus on multiple-choice
formats that fail to capture the stepwise reason-
ing required in legal analysis. This study intro-
duces a Chain-of-Thought (CoT) prompting strat-
egy tailored for legal essay questions. By guiding
LLMs through decomposed sub-questions, we aim

* Corresponding author. ORCID: 0000-0002-7101-5272
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to reveal how structured prompting enhances in-
terpretability, aligns with human reasoning, and
supports complex legal inference.

We propose a two-stage diagnostic evaluation
to assess how CoT affects legal reasoning gen-
eralization. Stage One decomposes six real le-
gal exam questions into 68 sub-questions evalu-
ating fact recognition, statutory application, and
logic chaining. Stage Two compares full-length
responses under baseline and CoT-prompted con-
ditions. Four LLMs are tested, and answers are
scored by both a professor and a student, enabling
analysis of human-machine agreement and mis-
alignment across reasoning dimensions.

By moving beyond answer correctness toward
an analysis of legal reasoning structure, this study
contributes new methods for evaluating alignment,
generalization, and interpretability in legal NLU
tasks. It offers a scalable benchmark and experi-
mental protocol to guide the development of more
transparent and human-aligned legal language sys-
tems.

2 Related Work

With the advancement of Large Language Mod-
els (LLMs), their applications in the legal domain
have grown rapidly, yielding promising results in
tasks such as contract analysis, judgment summa-
rization, legal consultation, and case prediction
. To promote research in legal language process-
ing, several benchmark datasets and evaluation plat-
forms for LLMs have emerged in recent years, in-
cluding LexGLUE (Chalkidis et al., 2021, 2020),
LegalBench (Guha et al., 2023), and the COL-
IEE competition on statutory entailment and re-
trieval. These benchmarks primarily cover tasks
such as multiple-choice questions, case classifica-
tion, statute matching, and legal question answer-
ing. However, most of them focus on English-
language corpora and closed-form problems, lack-

Proceedings of the 5th Workshop on Natural Logic Meets Machine Learning (NALOMA ), pages 1-7
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ing the design needed to evaluate the type of open-
ended, reasoning-intensive essay questions encoun-
tered in real-world legal practice. As noted by
the creators of LegalBench, current benchmarks
“still fall short of comprehensively evaluating the
open-ended reasoning required in law school ex-
ams and legal writing assignments” (Guha et al.,
2023), which often involve deep statutory subsump-
tion and integrated legal analysis.

Chain-of-Thought (CoT) prompting has recently
emerged as a promising strategy for improving
multi-step reasoning and computation, validated
on tasks such as math word problems and common-
sense reasoning (Wei et al., 2022). CoT prompt-
ing has to be effective even without in-context ex-
amples: simple natural language cues like “Let’s
think step by step” can activate internal reasoning
chains and significantly improve performance in
zero-shot settings (Kojima et al., 2022). CoT has
since been widely applied in mathematical reason-
ing (e.g., GSM8K, MATH), logic puzzles, scien-
tific domains, and programming tasks. Prior studies
consistently find CoT especially useful for tasks
that require intermediate inference steps, as it helps
maintain contextual coherence and supports longer,
structured chains of reasoning.

Although legal reasoning itself is inherently a
multi-step logical task, systematic analysis of CoT
prompting in the legal domain remains limited.
Some notable attempts include the KIS team’s In-
terpretable CoT strategy in the COLIEE 2024 en-
tailment task, which enhances interpretability in
statutory subsumption through structured prompt-
ing (Fujita et al., 2024). Another example is the
LegalGPT framework, which integrates CoT mod-
ules within a multi-agent architecture to simulate
the collaborative logic of real-world legal practice
(Shi et al., 2024).

Mainstream approaches to evaluating legal
LLMs typically rely on automated metrics (e.g., ac-
curacy, BLEU, F1-score) or multiple-choice style
datasets to compare model performance. How-
ever, such closed-form evaluations fail to reflect
the logical depth and reasoning quality required for
open-ended generative tasks. Recent studies have
begun to incorporate human evaluation to better
assess consistency and subsumption performance
in long-form legal QA. Representative systems
such as Length-Controlled AlpacaEval (Dubois
et al., 2024), MT-Bench (Zheng et al., 2023) , and
PromptBench (Jiang et al., 2023) use human prefer-
ence ratings or expert judgments as quality signals,

augmented by ranking-based metrics, weighted av-
erages, or Elo-style comparisons.

we conduct qualitative analysis by selecting
cases with high inter-rater agreement to compare
the logical structure of reasoning chains, thereby
supplementing the current lack of process trans-
parency and error traceability in legal LLM evalua-
tion.

3 Experiment Design

3.1 Stage 1: Decomposed Reasoning
Evaluation

3.1.1 Test Set Design

The test set used in this study consists of six es-
say questions, all adapted from previous Judicial
Officer Examinations and the National Taiwan Uni-
versity Graduate Law School entrance exams in the
field of Status Law. These questions cover a range
of key topics, including the validity of marriage,
division of marital property, legal guardianship, in-
heritance, bigamy, and adoption.

The test set comprises six essay questions
adapted from Taiwan’s judicial exams and law
school admissions, focusing on key topics in Sta-
tus Law such as marriage validity, inheritance, and
guardianship. Each question was decomposed into
multiple sub-questions—68 in total—targeting fac-
tual analysis, statutory application, and logic chain-
ing. Status Law was selected due to its blended
demands of symbolic reasoning, legal interpreta-
tion, and numerical computation, making it an ideal
domain for evaluating LLMs’ integrated legal rea-
soning capabilities.

The six essay questions selected for this study
cover the following legal topics: A. Validity of
marriage, B. Division of residual marital prop-
erty, C. Limitations on parental rights in rela-
tion to children’s interests, D. Limited succes-
sion and creditor claims, E, Legal consequences
of bigamy, F. Collation issues in inheritance dis-
tribution.

The sub-questions are primarily framed as nu-
merical problems and binary (yes/no) questions,
with a few short-answer questions. Each sub-
question presents a specific legal scenario and re-
quires the LLM to provide a definitive judgment or
calculation. To ensure stricter evaluation, this study
adopts a rigorous scoring standard: if the model
arrives at the correct final answer but misidenti-
fies roles, relationships, or inheritance rankings
within its reasoning, the response is marked incor-



rect. This prevents models from “guessing cor-
rectly” and emphasizes the need for accurate legal
reasoning and comprehension.

3.1.2 Model Selection

The study evaluates four mainstream LLMs:
ChatGPT-40 (OpenAl), Grok 3 (xAl), Gemini 1.5
Flash (Google), and Copilot (Microsoft, based on
GPT-4-turbo). These models were selected to rep-
resent the current state-of-the-art offerings from the
four major LLM platforms, balancing accessibility,
popularity, and architectural diversity. All mod-
els were tested under identical formats and prompt
templates to ensure fairness.

While some LLMs—such as ChatGPT or Gem-
ini—exhibit emergent Chain-of-Thought (CoT) rea-
soning capabilities without explicit prompting, our
experiments show that these models still often dis-
play under-reasoning behaviors, skipping interme-
diate legal logic steps or prematurely concluding
without sufficient statutory justification.

Rather than designing a universal prompt for
all models or modifying LLM parameters, our ap-
proach centers on a specialist-in-the-loop interac-
tion. Here, a legal expert provides real-time valida-
tion at each reasoning stage, enabling targeted scaf-
folding and reducing cumulative error. This con-
trolled feedback setup aims not merely to improve
answer correctness, but to systematically expose
and align the model’s legal reasoning flow with
doctrinal logic. Such design reflects pedagogical
principles of legal education and offers a practi-
cal pathway for integrating LLMs into high-stakes,
explainable legal workflows.

These sub-questions were manually constructed
to reflect three core legal reasoning types: factual
classification, statutory mapping, and inheritance
computation. Each sub-task is framed as either a
binary (yes/no), numerical, or short-form reasoning
prompt. This design captures both surface-level
legal recognition and deeper multi-step logic.

3.2 Stage Two: Comparison of CoT vs. Direct
Answering

3.2.1 Response Format and Prompting Design

In Stage Two, models were tested on the full le-
gal questions under two conditions: baseline an-
swering (one-shot response) and Chain-of-Thought
(CoT) prompting.

Responses were evaluated by a professor and a
law student, blind to the model type and prompting
condition. Scoring followed a 0—10 rubric covering

issue coverage, statutory accuracy, and reasoning
clarity. This design simulated realistic exam set-
tings while enabling structured analysis of model
reasoning quality.

Vo
( Model Input

- ,,/ \
W user:

Question 5: After A and B experienced marital difficulties, A—seeking a divorce—deceived B by
falsely claiming that his father (C) and mother (D) consented to the divorce and were willing to
serve as witnesses. A then forged the signatures of C and D on the divorce agreement. B, feeling
pressured, reluctantly consented to the divorce, which was registered with the household
registration office.

Subsequently, A married E. One year later, E gave birth to a daughter, F, and the three lived
together as a family. However, on December 1, 2015, A died in a car accident. At the time of his
death, his only asset was a piece of land (Parcel A). On March 1, 2016, for the benefit of all heirs,
E registered the inheritance of Parcel A as jointly owned by herself and F.

On December 1, 2019, B claimed to be A’s lawful heir and demanded that E and F cancel the
inheritance registration.

\Does B have a valid legal basis for this claim? /
Model Output \

W Model:

This case primarily concerns three issues:

(1) the validity of the mutual consent divorce registration,

(2) whether the former spouse retains inheritance rights if the divorce is invalid, and

(3) the legal inheritance status of the new spouse and their child.

These involve the Civil Code provisions on divorce, invalid marriage, inheritance rights, and
\incorrect property registration. The following analysis proceeds accordingly: ...

Figure 1: Example of Baseline Prompting

In contrast, Figure 2 depicts the Chain-of-
Thought (CoT) prompting setting. The model is
prompted to answer each sub-question step by step,
with immediate user feedback at each stage to con-
firm or correct the response. This interactive scaf-
folding prevents early-stage reasoning errors from
propagating and encourages structured legal anal-
ysis. After completing all sub-steps, the model is
prompted to synthesize a full-length answer based
on the verified intermediate results.

( Phase 1: Full case given )
\_ Y,

M User:
| will give you the full case. After that, | will ask one question at a time. Please answer each
question step-by-step. After each response, | will tell you whether it is correct, then move on

Case:

After A and B experienced marital discord, A—seeking divorce—falsely told B that his father and
mother agreed to the divorce and would act as witnesses. A forged their signatures. B reluctantly
agreed, and the mutual consent divorce was registered...

Phase 2: Step-by-step QA |

W user:

Q1. How many individuals are mentioned in this case?
W Model:

There are 6 individuals: A, B, C, D, E, and F.

W user:

Correct. Next question:. . .

M User:

Q14. Because E's registration is invalid, can F also not inherit Parcel A? (Yes/No)
B Model:

No.

prompt \\
/

( Phase 3: Final i

W user:

Now, based on the previous sub-questions and your answers,

please provide a full and structured response to the original case question.

W Model:

[Model proceeds to generate a complete, structured legal response based on prior reasoning.]

Figure 2: Example of CoT Prompting



This contrast illustrates how CoT prompting
transforms the model’s reasoning process from
a monolithic, opaque response into an interac-
tive, modular sequence of logic steps, allowing
for clearer observation and evaluation.

3.2.2 Scoring Mechanism

Both response versions were evaluated by scorers
with formal legal training, who rated each answer
holistically on a 0-10 scale, with higher scores
reflecting better overall quality. Scoring was based
on three key criteria:

1. Issue coverage: Whether the model identified
and addressed the key legal issues and factual
disputes in the question.

2. Accuracy of statutory application: Whether
the cited or applied legal provisions were cor-
rect and logically relevant.

3. Clarity of legal reasoning: Whether the rea-
soning was coherent, structured, and logically
sound.

4 Experiment Result

4.1 Stage One Results: Accuracy in
Decomposed Reasoning Evaluation

This stage also examined the effect of Chain-of-
Thought (CoT) prompting on answer accuracy. The
table below presents the accuracy performance of
the four LLMs under baseline and CoT conditions,
along with results from a paired-sample t-test:

Model Raw Accuracy CoT Accuracy t-value p-value
ChatGPT 0.842 0.866 -0.92 0.398
Gemini 0.833 0.9445 -3.71 0.013
Copilot 0.822 0.864 -2.14 0.089
Grok3 0.843 0.895 -2.98 0.031

Table 1: Accuracy comparison between raw and CoT
prompting across LLMs

Overall, even though the unit of observation in
this stage was the model’s performance on decom-
posed sub-questions, the results clearly demon-
strate that CoT prompting significantly enhanced
accuracy for certain models. The effect was partic-
ularly pronounced in question types that involved
multi-step reasoning and structured analysis, such
as inheritance calculation, classification of legal
status relationships, and precise statutory mapping.
These findings provide a quantitative foundation
for the holistic answer evaluations conducted in
Stage Two.

4.2 Stage Two Results: Human Evaluation of
Full-Length Responses Under CoT
Prompting

The goal of the Stage Two experiment was to sim-
ulate realistic legal exam conditions and assess
whether the overall quality of LLM-generated re-
sponses to unsegmented, full-length legal ques-
tions could be improved by introducing Chain-
of-Thought (CoT) prompting. The same six Sta-
tus Law questions used in Stage One were em-
ployed, but this time they were presented in their
entirety—without decomposition—requiring the
model to generate a complete answer in one go.

Raw CoT Average Improv. Improv. Scoring
Model Ave.  Ave. Improv. Stud. Prof. Consistency

Score  Score Rater Rater  (Pearson’s r)
ChatGPT 6.50 9.17 +2.67 +3.00 +2.33 0.716
Gemini 6.12 8.04 +1.92 +2.83 +1.00 0.853
Copilot 583 742 +1.58 +2.00 +1.17 0.752
Grok3 6.25 8.08 +1.83 +2.17 +1.50 0.835

Table 2: Human evaluation results under baseline vs.
CoT prompting

4.2.1 Overall Model Scoring Results

The results show that all models demonstrated im-
proved performance when CoT prompting was ap-
plied. Among them, ChatGPT exhibited the largest
improvement (+2.67 points) and the most consis-
tent performance across questions. Gemini and
Grok3 also showed marked improvements, each
with gains exceeding 1.8 points. Although Copilot
lagged behind the other models in terms of raw
scores, it too displayed consistent improvement
under CoT prompting.

In terms of inter-rater agreement, Pearson corre-
lation coefficients ranged from 0.71 to 0.85 across
the four models, indicating a moderate to high
level of scoring consistency between the two raters.
Notably, Gemini and Grok3 achieved the highest
consistency, suggesting particularly stable perfor-
mance as evaluated by both expert and student
raters.

Q. Raw Avg. CoT Avg. Score Gain p-value
1 4.50 7.75 +3.25 0.068
2 6.12 7.12 +1.00 0.430
3 6.25 6.38 +0.12 0.919
4 3.88 5.50 +1.62 0.080
5 3.88 7.00 +3.12 0.002
6 4.63 7.50 +2.88 0.011

Table 3: Average scores for each legal question under
raw vs. CoT prompting



4.3 Qualitative Analysis of Model Responses
on a Representative Question

To illustrate model reasoning differences, we se-
lected Question 5 as a representative case based on
high inter-rater agreement. Gemini’s baseline re-
sponse exhibited flawed assumptions and incorrect
citations, such as misapplying Article 92 instead
of the correct divorce statute. Its CoT-prompted
version showed clearer structure and partial legal
improvement, yet still missed key statutes and over-
generalized inheritance logic. This contrast high-
lights CoT’s benefit in structuring legal reasoning,
though gaps remain in precise statutory application
and doctrinal subsumption (see Appendix A for
question details).

Table 4 provides a visual comparison of key
statutes that should be cited in an ideal answer
like Figure 3.

Issue Original Reasoning  CoT Reasoning
Divorce  Assumes  validity; Finds formal defect;
cites §92 (intent cites §1050

defect)
Remarriage Treats E as lawful  Void due to bigamy; E
spouse not in good faith
F’s Assumes F is legiti- F is non-marital but
Inheri- mate heir legally recognized
tance
RegistrationBoth E and F must Only E is void; F re-
cancel tains right

Table 4: Comparison of original and CoT reasoning on
four legal issues.

The original version erroneously cited Article
92, which pertains to the revocation of declarations
of intent due to fraud. This reflects a misunder-
standing of the legal nature of the problem—it mis-
classified the issue as a defect in intent rather than
a formal defect that invalidates the divorce. Fur-
thermore, it failed to mention several key statutes,
including those governing bigamy and non-marital
inheritance.

The CoT version correctly cited Articles 1050
and 1138, capturing part of the statutory logic.
However, it omitted Article 767 and did not clearly
reference the provisions governing non-marital
children, resulting in a fragmented presentation
of the statutory framework.

5 Conclusion and Limitations

5.1 CoT-on-CoT

This paper presents a two-stage diagnostic frame-
work to evaluate how Large Language Models

Divorce between A and B is invalid

(missing witness signatures) Civil Code §1050

B is the lawful spouse

—Has inheritance rights Civil Code §1138

E entered into a bigamous marriage
without good faith

Marriage is invalid
— No inheritance rights

Civil Code §§985, 988

Fis a non-marital child
—> Deemed acknowledged
— Has inheritance rights

Civil Code §§1065-1, 1069

E’s registration can be

revoked; F’s cannot Civil Code §767

Figure 3: Correct legal reasoning flowchart

(LLMs) reason through legal essay questions in Tai-
wan’s Status Law. By decomposing real exam ques-
tions into 68 sub-tasks and comparing full-length
responses under baseline and Chain-of-Thought
(CoT) prompting, we assess both micro-level rea-
soning and holistic legal understanding. Results
show that CoT significantly improves accuracy
in issue spotting, statutory application, and in-
heritance calculation, particularly for Gemini and
Grok3.

Human evaluation further reveals enhanced clar-
ity and structure in CoT-generated answers, though
alignment gaps with expert persist. While our
focus is not on prompt universalization, but ex-
plore CoT-on-CoT designs using models already
trained with internal reasoning strategies, to ex-
amine whether reasoning stability or redundancy
effects emerge. The CoT prompting can effectively
improve the logical structure and issue coverage in
model-generated responses.

Rather than fully opening the black box of LLM
reasoning, our approach traces the model’s inter-
nal chains of thought by eliciting and examining
intermediate steps, thereby making its legal deci-
sion path more interpretable. We release a legally
grounded benchmark and propose a generalizable
evaluation methodology for open-ended, multi-step
reasoning tasks.



5.2 Limitations and Future Work

This study has several limitations that open avenues
for future work. First, while our results demon-
strate that LLMs often produce incorrect reason-
ing even when their final answers are right, we do
not yet offer a systematic typology of such reason-
ing failures. Future research could develop finer-
grained error categories and explore how these mis-
steps relate to different legal domains or prompt
structures.

Second, although our methodology involves de-
composing legal questions into sub-tasks, we have
not formalized a reusable guideline for annota-
tors or model developers to construct reasoning
flowcharts. Creating such a protocol—potentially
in the form of annotation templates or instructional
schemas—could support replicability and improve
human-LLM alignment in legal diagnostics.

Third, while we propose three evaluation di-
mensions (issue coverage, statutory application,
reasoning clarity), we have not validated their
generalizability across legal domains beyond Tai-
wanese Status Law. We believe these dimensions
are transferable, but further experiments on multi-
lingual or cross-jurisdictional datasets (e.g., U.S.
torts, Japanese family law) are needed to assess the
framework’s robustness and scalability.

Finally, our current evaluation focuses on a lim-
ited set of essay-style questions, and has not been
tested at scale. Integration with existing legal
benchmarks (e.g., LegalBench, COLIEE) could
allow broader adoption, while future work may au-
tomate sub-question generation or integrate CoT
supervision into fine-tuning pipelines.
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Appendix: Test Set and Sub-question
Decomposition

Design Rationale. The test set includes six le-
gal essay questions adapted from Taiwan's Judicial
Officer Examinations, National Taiwan University
Law Graduate Admissions Exams, and final assess-
ments in Identity Law. Each question targets core
legal topics and is decomposed into sub-questions
assessing factual comprehension, legal classifica-
tion, statutory application, and logical reasoning.



Question: Bigamy and Inheritance Disputes

Question A and B registered a consensual di-
vorce based on forged witness signatures. A later
married E and had a daughter F. A died in a car
crash, and E registered inheritance jointly with F.
B later claims as the legal heir. Is her claim valid?

Sub-questions
1. How many individuals are involved?
2. Were A and B legally married? (Yes/No)
3. How many times did A marry?

4. Ts divorce valid without witness verification?
(Yes/No)

5. Was A and B’s divorce legally valid? (Yes/No)

6. If A never divorced B, is marriage to E valid?
(Yes/No)

7. If E was unaware, does good faith validate
marriage? (Yes/No)

8. Is B alegal heir? (Yes/No)
9. Is E a legal heir? (Yes/No)

10. Are C and D (A’s parents) legal heirs?
(Yes/No)

11. Is F excluded due to being non-marital?
(Yes/No)

12. Does E’s co-ownership registration remain
valid? (Yes/No)

13. If E is not a legal heir, is her registration in-
valid? (Yes/No)

14. If E’s registration is invalid, does it affect F’s
inheritance? (Yes/No)
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Abstract

In this paper we present and validate a new
synthetic dataset for training visual entailment
models. Existing datasets for visual entailment
are small and sparse compared to datasets for
textual entailment. Manually creating datasets
is labor-intensive. We base our synthetic
dataset on the SNLI dataset for textual entail-
ment. We take the premise text from SNLI
as input prompts in a generative image model,
Stable Diffusion, creating an image to replace
each textual premise. We evaluate our dataset
both intrinsically and extrinsically. For extrin-
sic evaluation, we evaluate the validity of the
generated images by using them as training data
for a visual entailment classifier based on CLIP
feature vectors. We find that synthetic train-
ing data only leads to a slight drop in quality
on SNLI-VE, with an F-score 0.686 compared
to 0.703 when trained on real data. We also
compare the quality of our generated training
data to original training data on another dataset:
SICK-VTE. Again, there is only a slight drop
in F-score: from 0.400 to 0.384. These re-
sults indicate that in settings with data sparsity,
synthetic data can be a promising solution for
training visual entailment models.

1 Introduction

Natural language inference (NLI) is a classification
problem for pairs of two texts, a premise and a
hypothesis. The pair is labeled as entailment (the
premise entails the hypothesis), neutral or contra-
diction (the hypothesis contradicts the premise).
In visual entailment (VE) tasks (Xie et al., 2019),
the premise is substituted by an image, while the
hypothesis is still in text form.

In order to create and train effective models for
VE, large datasets are needed. While datasets of
images combined with hypotheses and labels do
exist, they are relatively small and sparse com-
pared to datasets for textual entailment. Existing
datasets are SNLI-VE (Xie et al., 2019) and SICK-
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VTE (Iokawa et al., 2024) which are both based on
NLI datasets and which were created by manual la-
bor leveraging Amazon Mechanical Turk workers.
In this paper we evaluate the use of generative Al
for VE dataset creation which would allow cheaper
and easier dataset creation. This is done by first
generating a synthetic dataset, of which we then
verify the validity. We introduce a synthetic version
of the SNLI-VE dataset called Synthetic-NLI-VE
and show how models trained on this dataset have
similar performance when tested on real data com-
pared to models trained on real data.

In summary, the contributions of this paper are
threefold: (1) we present the new dataset Synthetic-
NLI-VE!; (2) we find that the performance of mod-
els trained on the generated dataset have similar
performance compared to models trained on real
data; (3) A cross-data evaluation shows that gener-
alizability of visual entailment models to a different
dataset is poor, whether or not the training set was
generated or original.

2 Related work

Visual entailment and dataset creation The
idea of visual entailment was first proposed by Xie
et al. (2019). For this task they introduce the Ex-
plainable Visual Entailment (EVE) model, based
on Attention Visualization. In the same paper the
authors introduce the SNLI-VE dataset (Section 3).
Antol et al. (2015) introduced a dataset for visual
question answering (QA). They used the Microsoft
Common Objects in Context (MS COCO) dataset
(Lin et al., 2014) as a starting point: ~200k im-
ages of real-world scenes with 5 captions per im-
age. They added 50k images of abstract scenes for
which they also collected 5 captions per image.
Marelli et al. (2014) created the SICK dataset.
SICK (sentences involving compositional knowl-

1https: //huggingface.co/datasets/
robreijtenbach/Synthetic-NLI-VE
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edge) contains sentence pairs with both relatedness
scores and entailment labels. This dataset was cre-
ated by pairing the Flickr8K dataset (Hodosh et al.,
2013) and the SemEval-2012 STS data (Agirre
et al., 2012) and having Amazon Mechanical Turk
workers annotate them with both similarity scores
and entailment labels. Wijnholds and Moortgat
(2021) created the Dutch version of SICK using a
semi-automatic translation. Bowman et al. (2015)
introduced the SNLI dataset on which the afore-
mentioned SNLI-VE was based, with as motivation
that the SICK dataset is too small and not balanced
enough. For SNLI they created a balanced dataset
of around ~500k sentence pairs compared to the
~10k in the SICK dataset.

There are also efforts made to improve existing
datasets. This was already the case with Goyal
et al. (2017), who improved and extended the
VQA dataset resulting in the VQA-v2 dataset. The
dataset was improved by, among other things, re-
ducing bias and extended it by adding more images.
This has also been done for the SNLI-VE dataset by
Do et al. (2021) who created the e-SNLI-VE-2.0.

Synthetic data Unlike the largely human made
datasets that were previously discussed, the
CLEVR dataset (Johnson et al., 2016) is automat-
ically generated. This dataset contains images of
abstract shapes combined with automatically gen-
erated questions. The images were created by ran-
domly sampling a scene graph and rendering it us-
ing the open-source 3D rendering software Blender.

Yuan et al. (2024) proposed an evaluation frame-
work for assessing synthetic data generated by
large language models (LLMs). This framework in-
cludes measures for fidelity, utility and privacy. In
this work, we only focus on the fidelity and utility
of the generated data.

Some research suggests that using synthetic
datasets for model training could have a negative
effect on performance in the future, if generated
datasets are used for training computer vision mod-
els (Hataya et al., 2023). As opposed to synthetic
datasets used to train generative models, the im-
ages that we generate are used to train classification
models. Furthermore, these classification models
are evaluated on original data, ensuring good real
world generalizability.

3 Data

In this work we use two datasets which we briefly
describe in this section.

SNLI-VE This was introduced by (Xie et al.,
2019), by combining the SNLI dataset (Bowman
et al., 2015) with the Flickr30k dataset (Young
et al., 2014). The Flickr30k dataset was created by
taking 31,783 photos of everyday activities which
were harvested from Flickr. Each image receives 5
different captions resulting in 158,915 captions in
total. Figure 3 in the appendix shows an example
of an image and its captions.

The SNLI dataset (Bowman et al., 2015) is a
well known dataset specifically created for natural
language inference. In short, it was constructed by
having Amazon Mechanical Turk workers gener-
ate 3 hypotheses per caption, where captions came
from the Flickr30k dataset. From this, Xie et al.
(2019) could therefore create the SNLI-VE dataset
by replacing each premise by the original corre-
sponding image. The dataset contains a total of
31,783 images, 157,567 premises and 565,286 hy-
potheses.

SICK-VTE Along the lines of the creation of
SNLI-VE, Iokawa et al. (2024) introduces SICK-
VTE, a visual entailment version of (a subset of)
the SICK dataset (Marelli et al., 2014), but with
an additional multilingual component, including
also the Dutch (Wijnholds and Moortgat, 2021)
and Japanese (Yanaka and Mineshima, 2022) trans-
lations of the SICK dataset. The construction of
the original SICK dataset was based on sentence
transformation rules over image captions instead of
human-generated hypothesis. By construction the
dataset contains only cases of Entailment and Con-
tradiction: for 488 unique images there are 2,899
sentence pairs, with 1,930 examples of Entailment
and 969 examples of Contradiction.

4 Methods

We generate a synthetic dataset as described in §4.1.
We then report on the intrinsic evaluation of image
quality by comparing the generated images directly
with the original images based on a similarity analy-
sis in §4.2. Finally, we perform extrinsic evaluation
of synthetic data, comparing it to original data for
visual entailment model training in §4.3.

4.1 Image Generation

Our approach for creating the generated dataset is
to use the premise text from SNLI as input prompts
in a generative model, creating an image for every
premise caption. This results in a dataset similar to
SNLI-VE, however, instead of multiple premises



referencing the same image, here the resulting
dataset has a unique image for every premise. We
refer to the generated images as child images to ex-
press the fact that they were indirectly derived from
an original parent image. Examples of generated
child images are shown in Figure 1.

Our choice of generative model is Stability AI’s
Stable Diffusion”. The ability to run the model
locally as opposed to the cloud based solutions
from OpenAl and Midjourney was essential for
generating the large amount of images necessary
for our work.

The chosen resolution was square images of
512x512 pixels as this is the image size Stable
Diffusion was trained on and it is close to the aver-
age image size of the original SNLI-VE dataset.’
The checkpoint chosen for this research is Realistic
Vision v51# which was finetuned for generating
photorealistic images.

4.2 Intrinsic evaluation

To assess intrinsic image quality we rely on two
measures. As an initial verification we compute
pairwise cosine similarity between the CLIP fea-
ture vectors of original and generated images and
assess the distribution of these values, expecting to
see a normal distribution.

Secondly, we use ranked similarity scores over
the full dataset to inspect whether, for a given origi-
nal image, the 5 generated images for it will appear
as highly similar or not. We specifically use re-
call@k and precision @k for evaluation:

In the ranking problem in this work, we take the
query to be an original image, and the ranked list
of documents to be the 100 most similar generated
images as determined by cosine similarity. The
relevance function is now binary, returning 1 for an
image that was indeed generated from one of the
captions of the original image, and O otherwise.

For precision@k, we divide the true positives by
the number of retrieved images.

4.3 Extrinsic evaluation

We test the validity of the generated images by us-
ing them as training data for a classifier to learn
the visual entailment classification problem. The

Zhttps://github.com/Stability-AI/
generative-models

3The mean width and height were 459 and 395 respectively,
and the standard deviations were 67 for width and 74 for height
with both having a maximal value of exactly 500.

4https ://huggingface.co/stablediffusionapi/
realistic-vision-v51
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approach for this experiment is based on Song et al.
(2022) who proposed using CLIP for visual en-
tailment. Their method includes taking the CLIP
feature vector of both the premise image and the hy-
pothesis text, fusing these according to Equation 1
and training an MLP on this fused vector represen-
tation to output the correct entailment label.

fuse(’l)l,’UQ) - [Ul,UQ,Ul—i"UQ,7}1—'[)2,'[)1”02] (1)

The input dimension for this perceptron is 2560
which is a direct result of the output size of the
fuse function. The fuse function concatenates the
feature vector of the image, the feature vector of
the hypothesis, the sum of these two vectors as well
as the difference between these vectors and finally
the product of these vectors. This results in a total
of five vectors that are concatenated and with each
vector having a size of 512 numbers, the result has
alength of 5 * 512 = 2560.

The resulting vector is used as an input for the
MLP which has one hidden layer of size 250. After
experimenting with different layer sizes, the size of
this hidden layer did not seem to affect the accuracy
of the classifier but had an impact on the compu-
tational performance. After this one hidden layer
the network only has one more layer which is the
output layer. This output layer has a size of 3 cor-
responding to the three possible labels: entailment,
neutral, contradiction.

We use this method to train classifiers on both
the the original images and the generated images
of the SNLI-VE dataset. These classifiers are then
tested on the original as well as on the generated
test sets, after which their performance is compared.
Note that absolute performance of the classifier is
not the primary goal. Rather, we are interested in
the relative performance of a classifier trained on
generated images compared to a classifier trained
on real images. We, however, aim for good perfor-
mance of both as this yields the most accurate data
to compare between these two.

S Experiments and Results

In this section we first report on the results for the
intrinsic evaluation (§5.1), after which we discuss
the downstream performance in the Visual Entail-
ment task (§5.2), and finally we discuss the results
of transferring the Visual Entailment model to the
SICK-VTE dataset (§5.3).
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A wedding party walks
out of a building.

The group of people are assembling
for a wedding.

A man and woman dressed for
a wedding function.

Figure 1: Three examples of generated images based on three of the captions in Figure 3.

5.1 Intrinsic evaluation

The starting point of our intrinsic comparison is
the cosine similarity distribution for images in the
development and test set of the SNLI-VE dataset
and its generated child images. Each original im-
age is compared to all the generated images and the
similarity scores are saved. We found that the simi-
larity values follow a normal distribution for both
the development and test set. The mean for both
sets is 0.465 with a standard deviation of ~ 0.085
This is also illustrated in Figure 4 in the appendix.

Ranked similarity After assessing the similarity
distribution between original and generated images,
we report on the recall@k and precision @k curves.
Initially, we computed average recall @k and preci-
sion@k values for k¥ = 100, which reveals that on
average only 1.6 of the 100 most similar synthetic
images to the real images were based actually gen-
erated based on one of the premises accompanying
that real image. These results stem from the fact
that finding the 100 most similar out of ~160k gen-
erated images will likely not result in finding all of
the 5 images that are relevant. This is illustrated
in Figure 2 where an image is shown together with
the most cosine similar generated image which is
not one of its child images. These two images
could be considered rather similar by a human. It
is likely that there are more images in the collec-
tion that are similar than only the child images,
making the recall@k measure an underestimation
of the real quality of the generated images. The
recall@k and precision@k curves for this setting
are in Figures 5a and 5b in the appendix.

To get a fairer picture of the similarity evaluation,
we recalculate recall @k and precision@k curves
for a sampled version of the data which is needed as
the train set is large very large compared to the dev
and test set, which are only 1000 original images
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Train set Original Generated
Original 70.3%/0.703  71.1%/0.710
Generated | 68.9% /0.686 73.2% /0.732

Table 1: Accuracies/F1 scores of both models on both
test sets of SNLI-VE.

each. We randomly sample 1000 examples from
the train set of SNLI-VE, and consequently cal-
culate recall@k and precision @k values for train,
development, and test sets separately, each time
considering 1000 original images and its ~5000
generated child images. The resulting plots for the
recall@k and precision@k of the samples are in
Figure 6b and Figure 6a in the appendix. We find
that the average success rate is between 3.5 and
4 out of the five possible relevant images, indicat-
ing that most of the relevant real images are found
within the first 100 most similar generated images.

For completeness, we include the variance of the
recall and precision curves of the samples in Fig-
ure 7 in the appendix where one standard deviation
above and below each curve is marked.

5.2 Extrinsic Evaluation: Classification

We train both a model on the dataset of original
images, and a model on the dataset of generated
images, using the same train/dev/test split as sug-
gested for the SNLI-VE dataset. We trained the
model for 100 epochs and selecting the epoch for
which the model performs highest on the develop-
ment set, which was saved for evaluating on the
test set. The accuracy and loss on the training set
and dev set are shown in the appendix in Figure 8a
and 8b and Figure 9a and 9b respectively.

We report accuracies and F1 scores in Table 1.
We observe the best overall performance when us-
ing the model trained on generated data evaluated
on the generated data as well. This suggests that



(a) Original

(b) Generated

Figure 2: An example of an image and a generated image which looks similar but is not considered relevant as the
generated image is not a child of the original image in this evaluation. The original image (a) had 5 captions in
the dataset written by 5 different workers. Image (b) was generated for the caption “A group of young men have
finished their drinks while sitting at a table in a restaurant .”

the generated images and their classification has
less variability compared to the original data. We
also see that the model trained on original images
performs better on the generated test set than it
does on the original test set. This could suggest
that the generated test set is “easier” to classify.
Lastly, and most importantly, we do see that the
model trained on generated data and tested on orig-
inal data has a somewhat lower performance in this
experiment, but the difference is small. It suggests
that synthetic training data results in slightly worse
performance in real world tasks.

5.3 Cross-data generalizability

The final part of the experiments evaluate the per-
formance of the trained models when they are
tested on another dataset, in this case the SICK-
VTE dataset. As discussed in Section 3, SICK-
VTE and its synthetic counterpart do not contain
any neutral examples. To train visual entailment
models, having neutral examples would be essen-
tial however for the purpose of testing the general-
izability pretrained models, a dataset with neutral
examples is preferred.

The experimental setup is similar to that of the
classification experiment in Section 5.2, except that
we now reuse the trained models from the prior
experiment as we assess transfer capabilities. Both
of the trained models were tested on the original
SICK-VTE dataset and, for completeness, also on
the generated version of SICK-VTE. Similar to
the previous experiment, we report both accuracy
and F1 scores in Table 2. Note that, in contrast
to the results on the SNLI-VE dataset, accuracy
and F1 scores diverge, due to label imbalance in
SICK-VTE.
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Train set Original Generated
Original 50.7%/0.400 51.4%/0.391
Generated | 47.2%/0.384 47.6% /0.384

Table 2: Accuracies/F1 scores of both models on the
SICK-VTE datasets.

We find that performance is relatively poor,
given a majority baseline of 0.6657 for a model
only predicting Entailment. This result is in line
with the findings of Talman and Chatzikyriakidis
(2019), who found similar issues when transfering
models trained on the SNLI dataset to the SICK
dataset. Secondly, we can conclude that the model
trained on generated data performs slightly worse
compared to the model trained on original data.
This is in line with the findings in the previous
experiment (§5.2).

6 Conclusion

In this paper we introduced a synthetic VE dataset
Synthetic-NLI-VE. The dataset proved to have sim-
ilar utility compared to the dataset it was based
on while being far less costly to create. This also
proves the viability of using generative Al to create
datasets for the VE task, whereby we pave the way
for future research into using synthetic data for VE
dataset creation. As future work we propose chang-
ing the single set of parameters for the generation
model to a variety of different values. Secondly,
generating more than one image per caption could
result in better training data compared to the one
image per caption dataset we generated. Lastly,
evaluating different classification algorithms could
further strengthen the findings.



Limitations

Our experiments are limited evaluation for the
CLIP model, and the findings might be different
for other visual entailment models.

We investigated cross-data generalizability in
synthetic VTE datasets. One limitation of our ex-
periments is that both SNLI-VE and SICK-VTE
are created based on Flickr30K, which makes
them relatively more similar to each other than
datasets based on other sources, such as NLVR and
NLVR2.> We leave this cross-domain evaluation
for future work.
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* A bearded man, and a girl in a red dress are getting married.
* A wedding party walks out of a building.
* The group of people are assembling for a wedding.

* A man and woman dressed for a wedding function.

¢ A woman holds a man’s arm at a formal event.

Figure 3: One of the ~30k photos and its 5 accompanying captions from the SNLI dataset.
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Abstract

Natural Language Inference (NLI) involving
comparatives is challenging because it requires
understanding quantities and comparative re-
lations expressed by sentences. While some
approaches leverage Large Language Models
(LLMs), we focus on logic-based approaches
grounded in compositional semantics, which
are promising for robust handling of numeri-
cal and logical expressions. Previous studies
along these lines have proposed logical infer-
ence systems for English comparatives. How-
ever, it has been pointed out that there are sev-
eral morphological and semantic differences
between Japanese and English comparatives.
These differences make it difficult to apply
such systems directly to Japanese comparatives.
To address this gap, this study proposes ccg-
jcomp, a logical inference system for Japanese
comparatives based on compositional seman-
tics. We evaluate the proposed system on a
Japanese NLI dataset containing comparative
expressions. We demonstrate the effectiveness
of our system by comparing its accuracy with
that of existing LLMs.

1 Introduction

Natural Language Inference (NLI) (Bowman et al.
2015) is the task of determining the entailment rela-
tion between premise and hypothesis sentences. In
particular, this paper focuses on inferences involv-
ing comparative expressions (e.g., heavier, where
the comparative morpheme -er is attached). In (1),
for example, the premise (1a) and (1b) entail the
hypothesis (1c).

(1) a. Johnis heavier than Bob.
b. Bob is heavier than 70 kg.
c. John is heavier than 70 kg.

(entailment)

Inferences involving comparatives like (1) are chal-
lenging to an NLI system because the system needs
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to correctly understand the meaning of the quantity
expression “70 kg” and the comparative relation
between John’s and Bob’s weights.

There are two main approaches to NLI. One
is a deep learning (DL)-based approach. Large
Language Models (LLMs), such as GPT-40,' have
been performing accurately in various tasks, includ-
ing NLI. However, recent works (She et al. 2023,
Liu et al. 2023, Parmar et al. 2024) have pointed
out that even such models have difficulties in han-
dling problems involving logical connectives such
as negation and quantification. This fact indicates
that DL-based models still have room for improve-
ment.

The other approach to NLI is a logic-based ap-
proach (Abzianidze 2015, Mineshima et al. 2015,
Bernardy and Chatzikyriakidis 2017, Hu et al. 2020,
Bernardy and Chatzikyriakidis 2021), in which
mathematical logic is utilized to perform NLI in-
volving various logical expressions robustly. In par-
ticular, inference systems based on compositional
semantics have achieved high performance on NLI
problems composed of lexical, syntactic, and se-
mantic phenomena. As for comparatives, Haruta
et al. (2022) proposed a logical inference system
for English comparatives based on Combinatory
Categorial Grammar (CCG, Steedman 2000) and
degree semantics (Cresswell 1976, Klein 1980).
However, we cannot apply the system directly to
Japanese comparatives because of morphological
and semantic differences between Japanese and
English comparatives, which we will describe in
detail in Section 4.

In this study, we aim to develop a logical infer-
ence system for Japanese comparatives based on
CCG and degree semantics. Inspired by the logi-
cal inference system for English comparatives pro-
posed by Haruta et al. (2022), our system, named
ccg-jcomp, compositionally derives the semantic

"https://openai.com/index/gpt-40-system-card/
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Sentence

Semantic Representation

John is heavy.
John is heavier than 70 kg.
John is heavier than all the student.

heavy(john, 0)
3d. (heavy(john,d) A d > 70kg)
Vz.(student(z) — 3d.(heavy(john,d) A —heavy(z,d)))

Table 1: Basic semantic representations for comparatives

Syntactic Parsing
(depccg)

Sentences
Taro-wa Jiro izyoo-ni omoi.

P

CCG Parsing Trees

Jiro
NP

Tree Conversion
(Tsurgeon)

izyoo-ni

(S/S)\NP

omoi

Py:

S/ S\NP

>B

Transformed
CCG Trees

S\NP

H:

<

0

Logical Formulas

(3d. (heavy(taro, d) A —~heavy(jiro,d)) , heavy(jiro, ))

TPTP format
Logical

Yes/No/Unknown

Formulas

Semantic Parsing
(ccg2lambda)

Theorem Proving
(Vampire)

Figure 1: Overview of the proposed system

representations (i.e., the logical formulas represent-
ing the sentence meanings) of Japanese sentences
through syntactic and semantic parsing and judges
the entailment relation using a theorem prover. Fur-
ther, we implement syntactic and semantic analyses
to systematically handle some phenomena specific
to Japanese comparatives.

We experiment with JSeM (Kawazoe et al. 2017),
a Japanese NLI dataset containing problems involv-
ing comparatives. We compare the performance of
our system with GPT-40 and some Japanese LLM:s.
Our experiment shows that our proposed system
outperforms all of them in accuracy on the dataset.

Our contributions are as follows:

1. We compositionally derive the semantic rep-
resentations of Japanese sentences containing
some comparative expressions based on CCG
and degree semantics.

2. We implement ccg-jcomp, a logical inference
system for Japanese comparatives.’

3. We demonstrate the effectiveness of our

proposed system through experiments on a

Japanese NLI dataset involving comparatives.

Our system is available for research use at https://
github.com/ynklab/ccg-jcomp
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2 Degree Semantics

In our study, we adopt a theoretical framework
called degree semantics, which allows us to analyze
the meanings of gradable adjectives and compara-
tives formally. Its basic idea is to treat a gradable
adjective as a binary predicate that takes an entity
and a degree as arguments. For instance, “John is
d feet tall” can be represented as tall(john, d) (for
simplicity, we omit units such as “feet”).

We handle comparatives following the so-called
A-not-A analysis (Seuren 1973, Klein 1982) in
degree semantics. According to this analysis, (2a)
can be represented as (2b), which means that there
exists a degree d such that John’s weight is more
than or equal to d and Bob’s weight is not.

2

a. John is heavier than Bob.
b. 3d. (heavy(john,d) A —heavy(bob, d))

Table 1 shows some other examples of basic con-
structions involving comparatives and their seman-
tic representations.

3 System Overview

Figure 1 shows the overview of ccg-jcomp, our
proposed system. The overall system flow follows
Haruta et al. (2022): CCG syntactic parsing, tree
conversion, semantic parsing, and theorem proving.
In what follows, we describe the details of each
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Category Word Type Semantic Template

NP COMMON \E N F.3z.(N(E,z) A F(z))
noun
positive

S\NP adiective AEQN. QI \x.N(E,\d.d,\d.d, \t.t,x))
negative B

S\NP adjective AE Q N.QM.I, x.N(E, \d.d, \d.—d, \t.—t, x))

(S/S)\NP yori AE QV.V(AA x.Q(N\.I, \y.3d.(A(x,d) AN —A(y,d))))
yori

(S/S)\NP (measure AEQV.V(AAF z.Q(\.I, \y.3d.(A(z,d) N F(y < d))))
phrase)

Table 2: Examples of basic semantic templates

step, deferring the explanation of the specifics of
Japanese comparatives until section 4.

3.1 Syntactic Parsing

First, a tokenizer tokenizes the input sentences, and
a CCG parser converts them into CCG trees. CCG
is a grammar formalism that assigns a syntactic
category to each grammatical expression. The set
of syntactic categories is defined recursively as
follows: (i) atomic categories: /N P (noun phrase),
S (sentence), etc., (ii) functional categories: X/Y,
X\Y (where X and Y are syntactic categories).
Both X/Y and X\Y take the category Y as an
argument and return the category X. “/” and “\”
indicate that the argument is taken from the right
and left, respectively.

CCG parsers generally use CCGbank (Hocken-
maier and Steedman 2007) or its modified versions
for training, which are not necessarily compatible
with comparatives. Thus, the output CCG trees are
not always the ones we expect at this point. To
deal with this issue, we modify the CCG trees if
necessary. Another possible way to modify CCG
trees is to revise the CCG parser itself. However,
this method is costly because it requires re-training
or fine-tuning the CCG parser. Thus, we leave this
approach for future work.

3.2 Semantic Parsing

In this step, we assign a semantic representation
to each lexical item of the CCG tree based on the
semantic templates. Then, the semantic represen-
tation of the whole sentence is composed accord-
ing to the CCG rules. To illustrate, we show two
rules below. Some other rules are provided in Ap-
pendix A.
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» Forward functional application rule
X/)Y:f Y:a
X:fa

» Backward functional application rule
Y:a X\Y:f
X:fa

We set up the semantic templates in order to
give semantic representations to the lexical items.
Table 2 shows the semantic templates for basic
comparative expressions.’

Let us proceed to some details of the templates
in Table 2, focusing on the function NV that appears
in the templates for positive/negative adjectives,
which we have newly added to handle compara-
tives.* IV has five arguments, the first one F being
the base form of the adjective, and the fifth one x
being the subject of the adjective. Turning to the
second argument \d.d, it is introduced for the dif-
ferential comparatives. Consider (3a) for example.
In the semantic composition process, this argument
becomes Ad.(d + 5) as a result of the combination
of “5 kg” and the adjective “omoi” (heavy), which
leads to the intended semantic representation (3b).

(3) a. Taro-wa Jiro yori 5 kg omoi. (Taro is

5 kg heavier than Jiro.)

Vd.(heavy(jiro,d) — heavy(taro,d +
5))

The third argument, Ad.d (or Ad.—d), indicates
whether the adjective is positive or negative. This
allows us to distinguish between (3a) and (4a),

3For expository purposes, the semantic templates listed
here are simplified from the original ones, which are more
complicated in order to handle various expressions.

*F (resp. Q) represents the surface form of the word (resp.
the generalized quantifier (Barwise and Cooper 1981)).



which contain adjectives of the opposite polarity.
For instance, by assuming that “karui” (light) is
a negative adjective, we can derive the semantic
representation (4b) for (4a), where the argument
Ad.—d corresponds to —5.

“

a. Taro-wa Jiro yori 5 kg karui. (Taro is
5 kg lighter than Jiro.)

b. Vd. (light(jiro,d) — light(taro, d — 5))

Similarly, the fourth argument, At.t (or At.—t),
makes a distinction about the polarity of the adjec-
tives in comparatives with measure phrases. Taking
(5) and (6) for example, the arguments At.t and
At.—t correspond to d > 70 and —(d > 70) in the
semantic representations, respectively.

(5) a. Taro-wa70kg yori omoi. (Taro is heav-

ier than 70 kg.)
b. 3d. (heavy(taro,d) A d > 70)
(6) a. Taro-wa 70 kg yori karui.
lighter than 70 kg.)

b. 3d. (light(taro, d) A =(d > 70))

(Taro is

3.3 Theorem Proving

In this step, we input the logical formulas of the
premises and hypothesis obtained in the previous
step into an automated theorem prover and judge
their entailment relation.

Axioms In order to prove entailment relations,
we introduce some axioms. To illustrate, we de-
scribe one of the axioms, (CP), which is shown
below (here, A is an adjective). It corresponds to a
basic axiom in degree semantics called Consistency
Postulate (Klein 1980).

(CP) Vx y. ((3d. (A(x,d) A —A(y,d)))
— Vd. (A(y,d) — A(z,d)))

Intuitively, this axiom requires that A be a predi-
cate such that if the degree of x is greater than the
degree of y, then the degree of x is greater than or
equal to the degree of y. Using this axiom, we can
make inferences such as (1). We give the details
of the proof in Appendix B, where we also explain
other axioms.

Implementation First, we choose some axioms
based on the adjectives in the input sentences and
add them as premises. Then, we input the logical
formulas of the premises and hypothesis into the
automated theorem prover. Given the premises
and axioms P, ... P, and the hypothesis H, the
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system output is yes (entailment) when P} A ... A
P,, — H is proven, no (contradiction) when P; A
...\ P, = —H is proven, and unknown (neutral)
when neither is proven.

4 Challenges in Handling Japanese
Comparatives

In this section, we explain some linguistic phenom-
ena specific to Japanese comparatives and how we
treat them in this study.

4.1 Absence of Overt Comparative
Morphemes

English has overt comparative morphemes, such
as more and -er. On the other hand, Japanese has
no such morphemes. The examples (7a) and (7b)
illustrate that the adjective “omoi” has the same
surface form whether it is used for comparison or
not.

(N

a. Taro-wa lJiro yori omoi.
Taro-TOP Jiro than heavy

“Taro is heavier than Jiro.”
b. Taro-wa omoi.

Taro-TOP heavy

“Taro is heavy.”

Although it is possible to give different semantic
representations to “omoi” in both sentences, we
assign the same semantic representation to sim-
plify the semantic parsing process. Accordingly,
we introduce an unpronounced symbol (empty cat-
egory) to distinguish the semantic representations
of the two sentences. Specifically, when there is
no comparative expression such as “...yori” and
“...izyoo-ni,” we insert an empty category cmp
of category S/S instead. We introduce the afore-
mentioned comparison criterion ¢ by assigning the
following semantic representation (8) to this empty
category.

(8) AS.S(A\A z.A(x,0))

This inserted operator also plays a role of matching
the types of the semantic representations of “Jiro
yori omoi” and “cmp omoi” (Figures 2 and 3).

4.2 Equatives

English equative sentences such as (9a) are inter-
preted as indicating ... is at least as heavy as ... .”
Thus, Haruta et al. (2022) represented (9a) as (9b).

©)

a. John is as heavy as Bob.
b. Vd. (heavy(bob,d) — heavy(john,d))



Jiro yori (than)
NP (S/S)\NP
: AP.P(jiro) :AQ S.S(AAz.Q(Ay.3d.(A(z, d) AN —A(y, d))))

omoi (heav
< (heavy)

S/S
: AS.S(ANA z.3d.(A(z, d)

A =A(jiro, d)))

S\NP
: AQ N.Q(Az.N (heavy, x))
>By

S\NP
: AQ.Q(Az.3d.(heavy(z, d) A —heavy(jiro, d)))

Figure 2: A part of semantic composition of (7a)

cmp

omoi (heavy)

S/S
tAS.S(ANAx.A(x,0))

: AQ N.Q(Az.N (heavy, x)) -

S\NP

S\NP
: AQ.Q(A\x.heavy(z, 0))

Figure 3: A part of semantic composition of (7b)

On the other hand, Japanese equatives merely ex-
press that the degrees are close to each other. For
instance, (10a) can be true even when Taro’s weight
is slightly less than Jiro’s.

(10) a. Taro-wa Jiro to onaji kurai-no

Taro-TOP Jiro  same as-GEN
omosa-da.
weight-COP

“Taro is as heavy as Jiro.”

Jiro-wa omoi.
Jiro-TOP heavy

“Jiro is heavy.”

Taro-wa omoi. (entailment)
Taro-TOP heavy

“Taro is heavy.”
To handle the meaning of equatives, we propose
the following representation (11) for (10a). This
intuitively indicates that the difference in weight
between Taro and Jiro is less than the constant 4.

(11) Vdids. ((— (heavy(taro, d;)

< heavy(jiro, d1))

A = (heavy(taro, d2) <> heavy(jiro, d2)))
— d2|< 5)
We also introduce the following axiom (12), which
prescribes the relation between 6 and 4. Intuitively,
this axiom indicates that J is so small that the truth
value of the predicate heavy does not change within
the range of § from 6.

(12) Va.(heavy(x,0 — 0) <> heavy(z,0 +9))

We can make inferences such as (10) using this
axiom together with (UP) and (DOWN) (see Ap-
pendix B for details).

— ‘dl
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4.3 Clausal Comparatives

Clausal comparatives are comparatives with sub-
ordinate clauses. (13a) is an example of a clausal
comparative. We also deal with related sentences
such as (13b) and (13c).

13)

a. Taro-wa Hanako-ga katta yori
Taro-TOP Hanako-NOM bought than
takai hon-o katta.
expensive book-ACC bought

“Taro bought a more expensive book
than Hanako bought.”

Taro-wa Hanako-ga katta no yori
Taro-TOP Hanako-NOM bought NO than
takai hon-o katta.

expensive book-ACC bought

“Taro bought a more expensive book
than what Hanako bought.”

Taro-wa Hanako yori takai
Taro-TOP Hanako than expensive
hon-o katta.

book-AcCC bought

“Taro bought a more expensive book
than Hanako.”

We assign the same semantic representation (14) to
the three sentences in (13).

(14) 3d. (Jz. (book(z) A expensive(z, d)
A Je. (bought(e) A (Nom(e) = taro)
A (Acc(e) = 1))
A —3z. (book(x)
A Fe. (bought(e
A (Acc(e) = 2))))

expensive(z, d)

A\
A (Nom(e) = hanako)



Category

Word

Semantic Template

yori ~ AEV M.V(AG.3d.(M(AAz.A(z,d))
((NPINP)[(NPINPYNS\NE) 300 A M(AAz.(A(z, d) A G(2))))
yori  AEQM.3d.(M(ANx.A(x,d))
((NPINE)INPINPDANP— (13) A -M(Aa.(Alw,d) A QO-(r = )
~ AEQM Fz.Q(\y.
(NP/NP) /(NP/NP))\NP 2’103“@ (3d.M(NA z.(A(z,d) A F(z, 2)))

A=M(AAz.(A(z,d) A F(y,2)))))

Table 3: Semantic templates for clausal comparatives

In order to obtain this semantic representation,
we assign different semantic representations to
“yori” in each sentence, which are listed in Table 3.
Note that the template in the second row includes
Ay.(z = y), which is necessary to consider the fact
that the pronominal “no” is identified with “hon”
(book) in (13b).

4.4 Presupposition

Some Japanese comparative expressions have a spe-
cial semantic content called a presupposition (Kub-
ota 2012, Hayashishita 2007). A presupposition
is a type of meaning not affected by entailment-
canceling operators such as negation and modals
(cf. Potts (2015)). The predicate “know” is an
example of a presupposition trigger (i.e., an expres-
sion or a construction causing presuppositions). In
(15a), the presupposition is that Bob ran. This can
be confirmed by the fact that the negated sentence
(15b) also implies that Bob ran.

a. John knows that Bob ran.

15)

b. John does not know that Bob ran.

We list some Japanese comparative sentences with
a presupposition in (16), where the trigger is un-
derlined. Here, the presupposition is that the com-
parative standard has the property expressed by the
predicate. That is, the three sentences in (16) all
presuppose that Jiro is heavy.

(16)

a. Taro-wa Jiro izyoo-ni omoi.
Taro-TOP Jiro than heavy

“Taro is heavier than Jiro.”

b. Taro-wa Jiro to onaji kurai omoi.
Taro-TOP Jiro as same as  heavy

“Taro is as heavy as Jiro.”

¢. Taro-wa Jiro hodo omoku nai.
Taro-TOP Jiro hodo heavy not

“Taro is not as heavy as Jiro.”
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In formally analyzing presuppositions, it is not
adequate to simply conjoin the presupposition with
other parts of the sentence. For example, suppose
we represent the meaning of (15a) as a conjunction
of the semantic representations of “John knows that
Bob ran” and “Bob ran,” as shown below.

(17)  know(john, ran(bob)) A ran(bob)

The negation of this formula, which is shown in
(18), does not entail ran(bob), failing to capture
the fact that the presupposition is not subject to the
negation (cf. (15b)).

(18) = (know(john, ran(bob)) A ran(bob))

< —know(john, ran(bob)) V —ran(bob)

In order to correctly handle presuppositions, we
use a framework called multidimensional semantics
(Karttunen and Peters 1979). In this framework,
the semantic representation of an entire sentence is
represented by a pair of semantic representations.
The first element is for the central content conveyed
by the sentence (the at-issue content), and the sec-
ond one is for the presupposition. For example,
the semantic representation of the sentence (16a) is
shown in (19).

(19)  (3d. (heavy(taro,d) A —heavy(jiro,d)),

heavy(jiro, 6))

When the sentence is negated, we only negate the
semantic representation of the at-issue content in
the semantic composition, and the semantic repre-
sentation of the entire sentence is (20).

(20) (—3d. (heavy(taro,d) A —heavy(jiro,d)),

heavy(jiro, 0))
In the theorem proving step, we conjoin the seman-

tic representations for the at-issue content and for
the presupposition with A.



5 Experiment

5.1 Settings

In this section, we describe the implementation
settings of the proposed system.

Syntactic Parsing We use a Japanese tok-
enizer Janome.> As a CCG parser, we use de-
pccg (Yoshikawa et al. 2017), the best-performing
model provided for Japanese. We use Tsur-
geon (Levy and Andrew 2006) to modify CCG
parsing trees and insert empty categories. Our mod-
ification processes are as follows:

* We add rules to merge some multiword expres-
sions. For instance, “izyoo ni” is converted
to “izyoo-ni,” “yori mo” to “yori-mo,” and “to
onaji kurai no” to “to-onaji-kurai-no.”

* We insert the empty category cmp (cf. Sec-
tion 4.1).

* We add a new syntactic feature to “yori” in
phrasal comparatives related to clausal com-
paratives® in order to distinguish it from “yori”
in ordinary phrasal comparatives.

* We add a new syntactic feature to “yori” in
comparatives with a measure phrase in or-
der to distinguish it from “yori” in ordinary
phrasal comparatives.

In total, we make 60 entries in the Tsurgeon script
for these processes.

Semantic Parsing For semantic composition, we
use ccg2lambda (Martinez-Gémez et al. 2016),
which supports Japanese as well as English. It
uses A-calculus to derive semantic representations.
We extend the semantic templates to introduce the
semantic representations based on degree seman-
tics. We create two templates, one with multidi-
mensional semantics and one without. The total
number of lexical entries in each semantic template
file is 222. We newly add 58 entries for words
related to comparatives.

Theorem Proving We use Vampire 4.9 (Kovécs
and Voronkov 2013), a resolution-based automated
theorem prover, for theorem proving. Vampire uses
the Thousand of Problems for Theorem Provers
(TPTP, Sutcliffe 2017) format to describe logical

5https ://github.com/mocobeta/janome
®For example, “Taro-wa Hanako yori takai hon-o katta.
(Taro bought a more expensive book than Hanako.)”
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formulas. For this reason, we convert the output
of ccg2lambda into first-order predicate logic for-
mulas in the TPTP format. At this point, we add
the axioms described in Section 3.3. In this step,
we use the CASC mode, the fastest mode in Vam-
pire. We try to prove Py A Py A... AP, — H and
PiANP, AN...N\ P, — —H for up to 20 seconds
each to determine the system output.

5.2 Dataset

We use the comparatives section of the JSeM
dataset (Kawazoe et al. 2017) for evaluation of
our inference system. This NLI dataset con-
tains Japanese counterparts of the FraCaS test
suite (Cooper et al. 1996). It also contains newly
added problems that involve phenomena FraCaS
does not address or phenomena unique to Japanese.

In this study, we do not address tense and aspect,
so we eliminated problems involving them. We do
not address modality as well. With regard to modal-
ity, JSeM only has problems involving the property
that modals do not affect the presupposition. Thus,
we replaced modals with negation on these prob-
lems. As a result, the number of problems in the
dataset is 71. The distribution of the gold answer
labels is (ves/nolunknown) = (42/8/21). Table 4
shows some problems in the dataset.

jsem-569, Gold answer: yes
PC-6082-wa ITEL-XZ yori hayai.

Pl (PC-6082 is faster than ITEL-XZ.)
P ITEL-XZ-wa hayai.

(ITEI-XZ is fast.)
u PC-6082-wa hayai.

(PC-6082 is fast.)
jsem-576, Gold answer: no

PC-6082-wa ITEL-XZ to onaji kurai-no

P1  hayasa-da.

(PC-6082 is as fast as ITEL-XZ.)
P PC-6082-wa osoi.

(PC-6082 is slow.)
o ITEL-XZ-wa hayai.

(ITEL-XZ is fast.)

Table 4: Examples of the problems in JSeM. P and H
stand for “premise” and “hypothesis,” respectively.

5.3 Evaluation Method

We use accuracy as an evaluation metric. When
an error occurs in the proposed system, we treat
it as an incorrect answer. As a baseline, we adopt


https://github.com/mocobeta/janome

GPT-40 and Swallow 8B’/70B® (S-8B/S-70B), the
latter being competitive open Japanese LLMs. We
conduct experiments using six different prompts
for these models and calculate the accuracy as the
average across these prompts.® The details of the
prompts are shown in Appendix D.

6 Results and Discussion

6.1 Results

Table 5 shows the accuracy on the JSeM dataset.
The table shows that our system outperformed all
baseline models in terms of accuracy. The detailed
results are shown in Appendix E.

GPT-40
774

S-8B S-70B Ours
.549 712 .845

Majority
592

Table 5: Accuracy on the JSeM dataset. “Majority”
indicates the accuracy achieved when “yes,” the most
common label in the dataset, is answered for all the
problems.

jsem-570, Gold answer: unknown
GPT-40: yes, Ours: unknown
PC-6082-wa ITEL-XZ yori hayai.
(PC-6082 is faster than ITEL-XZ.)
PC-6082-wa hayai.

(PC-6082 is fast.)

jsem-620, Gold answer: yes

GPT-40: unknown, Ours: yes

P

Taro-wa Hanako izyoo-ni hayaoki-da.
(Taro is an earlier riser than Hanako.)
Hanako-wa hayaoki-da.

H . .
(Hanako is an early riser.)

Table 6: Examples of problems that GPT-40 did not
answer correctly but ours did

Table 6 shows some examples of problems that
our system could predict correct answers while
GPT-40 could not. GPT-40 incorrectly answered
some of the relatively simple problems, such as
jsem-570. The possible reason is that GPT-40 in-
ferred “X is fast” from “X is faster.”

Notably, GPT-4o failed to answer correctly some
problems with presupposition triggers, such as
jsem-620. In order to perform this inference, it is
necessary to infer the presupposition that Hanako is

"tokyotech-1lm/Llama-3.1-Swallow-8B-v0.1
8tokyotech-1lm/Llama-3.1-Swallow-70B-v0.1
The model inferences were conducted in May 2025.
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an early riser from the premise. GPT-40 was rarely
able to solve such problems. On the other hand, our
proposed system correctly predicted the entailment
relation, thanks to multidimensional semantics.

6.2 Error Analysis

Table 7 shows two cases where our system failed to
obtain correct semantic representations, but GPT-
40 gave correct answers. In jsem-589, we can inter-
pret “APCOM-no keiyaku” either as the contracts
that APCOM won or as the contracts that ITEL won
from APCOM. To handle this kind of ambiguity,
we need to (i) add a new semantic representation
of “yori,” and (ii) implement a system for distin-
guishing between the two interpretations based on
syntactic information.

Jsem-606 is another case where our system
failed to make a correct prediction. The verb “ma-
garu” (bend) behaves like an adjective when com-
bined with “te-i-ru.” However, our system treats
the resultant predicate “magatte-i-ru” as a verb, so
its semantic type does not match the one required
for the argument of “yori,” causing an error in se-
mantic parsing. To handle this error, we need to
give an exceptional semantic representation to “te-
i-ru” when it forms an adjective-like predicate with
certain verbs like “magaru.”

jsem-589, Gold answer: yes
GPT-40: yes, Ours: error

ITEL-wa APCOM-no keiyaku yori ooku-
no chuumon-o kakutoku-sita.

P (ITEL won more orders than the APCOM
contract.)
ITEL-wa APCOM-no chuumon-o
H  kakutoku-shita.

(ITEL won the APCOM contract.)
jsem-606, Gold answer: yes
GPT-40: yes, Ours: error

Kono boo-wa ano boo yori magatte-i-ru.
(This stick is more bent than that one.)
Kono boo-wa magatte-i-ru.

(This stick is bent.)

P

H

Table 7: Examples of problems our system answered
incorrectly

7 Conclusion

In this study, we have proposed ccg-jcomp, a log-
ical inference system for Japanese comparatives



based on CCG, degree semantics, and some analy-
ses of phenomena unique to Japanese comparatives.
In our experiments with the Japanese NLI dataset
that involves comparatives, we demonstrated that
our proposed system achieved higher accuracy than
several LLMs.

In future work, we are considering handling the
ambiguity of certain sentences and the behavior of
the adjective-like verbs discussed in Section 6.2.
Additionally, it would be desirable to address adver-
bial comparatives, which are not covered in JSeM.

Limitations

Few-shot Learning In this study, we did not
compare methods using few-shot learning as a base-
line. It may improve the performance of the base-
line models. For example, the LLMs may correctly
answer jsem-620 in Section 6.1 by looking at some
example inferences with a presupposition and learn-
ing the inference patterns. However, we do not
have a sufficient number of problems involving
Japanese comparatives to carry out and evaluate
few-shot learning. Therefore, we conducted all
experiments in a zero-shot setting for all models.

Scalability In addition to comparatives, JSeM
has sections on other linguistic phenomena, such
as anaphora. However, since our proposed system
focuses only on Japanese comparatives, it cannot
be used as is to handle these phenomena. To ad-
dress them, we need to introduce the mechanism
employed by some specific frameworks (e.g., dy-
namic semantics (Groenendijk and Stokhof 1991)
for anaphora) in a manner consistent with degree
semantics, which is not trivial. Hence, we leave
for future work the development of a unified sys-
tem that can handle these phenomena together with
comparatives.
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A Combinatory Rules of CCG

We show some combinatory rules of CCG below
(see Steedman (2000) for details).

» Forward functional application rule
XY . f Y:a
X:fa

Backward functional application rule
Y:a X\Y:f
X:fa

Forward functional composition rule
XY :f Y/Z g
X/Z: Xx.f(gx)

>B

Backward functional composition rule
Y\Z:g X\Y:f
X\Z : \x.f(gx)

Forward functional crossed composition rule
X/)Y:f Y\Z:g

X\Z : Mx.f(gx) >Bx

Backward functional crossed composition rule
Y/Z g X\Y:f

X/Z: Xx.f(gx) >Bx

B Details of Axioms

Table 8 shows the axioms employed in our system.
(CP) is the axiom we already introduced in Sec-
tion 3.3. We can make the following inferences
using this axiom. (21a) and (21b) are the premises,
and (21c) is the hypothesis.
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Name Logical Formula
CP Vry. ((3d. (A(z,d) N —-A(y,d))) — Vd. (A(y,d) = A(z,d)))
ANT Vo d. (P(z,d) <> -N(z,d))
UP Vzd. (P(z,d) = vd.(d <d— P(z,d)))
DOWN Ve d. (N(z,d) — ¥d'. (d > d — N(z,d')))
DELTA Va. (A(x,0 —§) < A(x,0 +9))

Table 8: Axioms for Japanese comparatives. A denotes adjectives, P denotes positive adjectives such as long, and

N denotes negative adjectives such as short.

2D

a. Taro-wa Jiro yori omoi.
Taro-TOP Jiro than heavy

“Taro is heavier than Jiro.”

Jiro-wa 70 kg yori omoi.
Jiro-TOP 70 kg than heavy

“Jiro is heavier than 70 kg.”

. Taro-wa 70 kg yori omoi.
Taro-TOP 70 kg than heavy

“Taro is heavier than 70 kg.”

(entailment)

Concretely, from (CP) and (21a), we obtain
heavy(jiro,70) —  heavy(taro,70).  Then,
from this formula and (21b), we can derive
heavy(taro, 70).

(ANT) indicates the antonymy relation between
positive and negative adjectives. The following is
an example of an inference using this axiom. (22a)
is the premise and (22b) is the hypothesis.

(22)

a. Taro-wa Jiro yori omoi.
Taro-TOP Jiro than heavy

“Taro is heavier than Jiro.”

b. Taro-wa Jiro yori karui.
Taro-TOP Jiro than light

“Taro is lighter than Jiro.”
(contradiction)

(UP) and (DOWN) are axioms that indicate the
monotonicity of positive and negative adjectives,

respectively. (DELTA) is an axiom about equatives.

Using these axioms, we can prove the entailment
relation in (10) as follows. (23a), (23b), and (23¢)
are the semantic representations of (10a), (10b),
and (10c), respectively.
(23) a. Vdj da. ((— (heavy(taro,d;)

+> heavy(jiro, d;))

A = (heavy(taro, d2)

> heavy(jiro, ds)))

— ‘dl — d2‘< (5)

b. heavy(jiro, 6)
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c. heavy(taro,0)

First, from (23b), (UP), and (DELTA), we can de-
rive heavy(jiro,8) and heavy(jiro, 6 + ). Then,
by replacing d; (resp. dg) in (27a) with 6 + §
(resp. §), and by contraposition, we obtain ei-
ther heavy(taro, 0 + ) <> heavy(jiro,0 + 0) or
heavy(taro,f) <> heavy(jiro,d). In both cases,
heavy(taro, 6) is true since we have heavy(jiro, 6 +
0) and heavy(jiro, 0).

In the implementation, (CP) and (DELTA) are
added for all gradable adjectives. (ANT) is added
for adjectives that have an antonym. (UP) and
(DOWN) are added for positive adjectives and neg-
ative adjectives, respectively.

C Problem Replacement

Table 9 shows an example of the problems in JSeM
to which we applied the replacement we discussed
in section 5.2. The original problem uses the prop-
erty that the presupposition “Hanako is an early
riser” is not affected by the modal “kamo-sire-nai.”
We did not implement the semantic representation
of modals, so we replaced them with a negation
“to-iu-wake-de-wa-nai.” Since presuppositions are
unaffected by negation (as well as by modals),
this replacement does not alter the purpose of the
problem—namely, to test whether the model under-
stands that presuppositions are not influenced by
entailment-canceling operators.

D Prompts for the Baseline Models

Table 10 and Table 11 show examples of prompts
for GPT-40 and Swallow, respectively.



jsem-621 (original), Gold answer: yes

Taro-wa Hanako izyoo-ni hayaoki kamo-sire-nai.
(Taro may be an earlier riser than Hanako.)
Hanako-wa Hayaoki-da.

(Hanako is an early riser.)

jsem-621 (replaced), Gold answer: yes

Premise

Hypothesis

Taro-wa Hanako izyoo-ni hayaoki toiu-wake-de-wa-nai.
(Taro is not an earlier riser than Hanako.)

Hanako-wa Hayaoki-da.

(Hanako is an early riser.)

Premise

Hypothesis

Table 9: An example of the problems in which we replaced a modal with a negation

Hife X XA GZ o N E T,

AR X DMREH L Z ER LU TV ADEZTL I,
(&R TFEL TR OWTFNrTERATIEIN,

(You are given premises and a hypothesis.

Answer whether the premises entail the hypothesis.

9

Answer with “entailment”, “contradiction”, or “neutral.”)

system

AiFE 1 : PC-6082IZITEL-XZ & V) >,
HiE 2 ¢ ITEL-XZIZE W,

i : PC-608213E L,

(Premise 1: PC-6082 is faster than ITEL-XZ.
Premise 2: ITEL-XZ is fast.

Hypothesis: PC-6082 is fast.)

user

Table 10: Example of the prompt for GPT-40

AR X E IR X5 Z 5N F T,

BRI X2 ERE L TWVWENEZTL X,
(&El, [FEl T3] OVWTFRATEZTLEX W,

Hi$2 1 : PC-6082IXITEL-XZ & ¥ #\,

B2 2 : ITEL-XZIEZHE W,

K3 © PC-60821353H \,

[\

Table 11: Example of the prompt for Swallow
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E Detailed Results

Table 12, Table 13, and Table 14 show the detailed
evaluation results of each baseline model. E, C, and
N represent entailment, contradiction, and neutral,
respectively. “Prompt Type” indicates the order of
the words & 7 (entailment), & (contradiction),
and H137 (neutral) as they appear in each prompt.
For example, Table 10 and Table 11 show prompts
of the E-C-N (& 7&-F J& -HH3L) type.

Swallow 8B tended to output yes when 7 = or
rH 37 appeared first in the prompt, resulting in sub-
stantially lower F1 scores for contradiction and neu-
tral compared to entailment. Conversely, when ¥
J& was presented first, the number of no responses
increased.

In contrast, Swallow 70B and GPT-40 produced
more balanced outputs, achieving higher F1 scores
than Swallow §B.
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Prompt Type Accuracy Gold Label Precision Recall F1 Score

E 0.62 1.00 0.76
E-C-N 0.619 C 0.00 0.00 0.00
N 0.67 0.10 0.17
E 0.61 1.00 0.76
E-N-C 0.605 C 0.50 0.12 0.20
N 0.00 0.00 0.00
E 0.80 0.19 0.31
C-E-N 0.225 C 0.13 1.00 0.23
N 0.00 0.00 0.00
E 0.77 0.81 0.79
C-N-E 0.591 C 0.30 1.00 0.46
N 0.00 0.00 0.00
E 0.60 1.00 0.75
N-E-C 0.605 C 1.00 0.12 0.22
N 0.00 0.00 0.00
E 0.64 1.00 0.78
N-C-E 0.647 C 0.75 0.38 0.50
N 1.00 0.05 0.09

Table 12: Evaluation results of Swallow 8B on each prompt

Prompt Type Accuracy Gold Label Precision Recall F1 Score

E 0.80 0.86 0.83
E-C-N 0.647 C 0.36 1.00 0.53
N 0.50 0.10 0.16
E 0.81 0.83 0.82
E-N-C 0.690 C 0.55 0.75 0.63
N 0.47 0.38 0.42
E 0.80 0.86 0.83
C-E-N 0.676 C 0.40 1.00 0.57
N 0.67 0.19 0.30
E 0.80 0.86 0.83
C-N-E 0.661 C 0.42 1.00 0.59
N 0.43 0.14 0.21
E 0.88 0.83 0.85
N-E-C 0.760 C 0.62 1.00 0.76
N 0.61 0.52 0.56
E 0.88 0.86 0.87
N-C-E 0.788 C 0.62 1.00 0.76
N 0.71 0.57 0.63

Table 13: Evaluation results of Swallow 70B on each prompt
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Prompt Type Accuracy Gold Label Precision Recall F1 Score
E 0.83 0.81 0.82
E-C-N 0.746 C 0.75 0.75 0.75
N 0.59 0.62 0.60
E 0.84 0.86 0.85
E-N-C 0.774 C 0.75 0.75 0.75
N 0.65 0.62 0.63
E 0.85 0.83 0.84
C-E-N 0.774 C 0.78 0.88 0.82
N 0.62 0.62 0.62
E 0.85 0.81 0.83
C-N-E 0.760 C 0.78 0.88 0.82
N 0.59 0.62 0.60
E 0.86 0.86 0.86
N-E-C 0.788 C 0.75 0.75 0.75
N 0.67 0.67 0.67
E 0.86 0.86 0.86
N-C-E 0.788 C 0.78 0.88 0.82
N 0.65 0.62 0.63

Table 14: Evaluation results of GPT-40 on each prompt
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Abstract

In this paper we explore a hybrid approach
to challenging Natural Language Inference
datasets that combines Large Language Models
(LLMs) and logical theorem proving. We re-
port on an experiment which combines an LLM
meta-prompting strategy, eliciting logical repre-
sentations, and Prover9, a first-order logic theo-
rem prover. In addition, we experiment with the
inclusion of (logical) world knowledge. Our
findings suggest that (i) requesting first-order
logic formalizations of sentences usually im-
proves model performance, even when those
formulas are not explicitly used, (ii) determin-
ing the inference relation from the generated
formulas nevertheless performs worse, and (iii)
priming the model to generate relative world
knowledge is sometimes effective. We argue
that these results explicate the weaknesses of
both approaches. As such, we consider this
study a source of inspiration for future work in
the field of neuro-symbolic reasoning.

1 Introduction

Natural Language Inference (NLI) is a core task
in Natural Language Processing (NLP) and is of-
ten presented as a proxy measure of the reasoning
capabilities of NLP models. Briefly, a model is
presented with a premise sentence and a hypothesis
sentence and must decide whether the hypothesis
is entailed by the premise (E), contradicts it (C), or
is neutral with respect to it (N).

Although many NLI datasets have been devel-
oped, starting with the SICK dataset of Marelli
et al. (2014) and the SNLI dataset of Bowman et al.
(2015), more attention has recently been put on us-
ing NLI to measure specific linguistic phenomena.
The MED dataset, for example, tests for monotonic
reasoning (Yanaka et al., 2019a; Richardson et al.,
2020). The CURRICULUM benchmark (Chen and
Gao, 2022) is a notable aggregation of NLU tasks
(including things like question answering) that have
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been uniformly formulated as NLI tasks.!

One often heard criticism of NLI as a task is
that datasets often contain biases and annotation
artifacts, and that models trained on them exhibit
poor generalization capabilities. It is shown by
Yanaka et al. (2019a) for English, and corroborated
by Wijnholds (2023) for Dutch, that models have
a tendency to overtune, and that they fail to prop-
erly address negation. That models seem to exploit
relatively shallow heuristics such as lexical over-
lap and sentence length, is confirmed in prior work
(Naik et al., 2018; McCoy et al., 2019), and an ef-
fort to repair an existing dataset is done by Kalouli
et al. (2023). Finally, NLI models don’t necessarily
transfer gracefully to other NLI datasets (Talman
and Chatzikyriakidis, 2019; Bhargava et al., 2021).

Many of the mentioned datasets and results were
achieved with encoder-only models like BERT,
which can narrowly generalize through finetuning;
gradually, this has been replaced by decoder-only
Large Language Models (GPT-3 onward), allow-
ing for the NLI task to be stated as a text-to-text
problem. Though this avoids some of the above-
mentioned pitfalls, the results of McKenna et al.
(2023) show that generative language models still
suffer from bias and additionally are a source of
hallucinations, an issue that is persistent for models
that are effectively next-word predictors.

In order to control the output of model prompt-
ing, one method is to specifically constrain model
output as a part of the decoding scheme; addition-
ally this has the benefit of guaranteeing syntactic
correctness over prompting results, leading to more

'A historical note: Prior to the advent of neural (language)
models, Recognizing Textual Entailment (RTE) was the more
common terminology for inference datasets. These datasets,
such as the FraCaS suite (Cooper et al., 1996), typically
framed the task as a two-way classification (entailment vs.
non-entailment) with canonical examples for different linguis-
tic phenomena, but there is no hard distinction between NLI
and RTE. In the continuation, we use the NLI/RTE termi-

nology primarily to distinguish between three- and two-label
datasets.
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effective prompting strategies. Constrained decod-
ing approaches can work either through vocabu-
lary filters (e.g. only ‘E’, ‘N’ and ‘C’ are valid
prompt continuations), or through more sophisti-
cated strategies like generating vocabulary filters
determined by finite state automata (aka regular
expressions) (Willard and Louf, 2023) or context-
free grammars (Beurer-Kellner et al., 2024). While
these approaches provide some control over model
output, they are nevertheless limited to syntactic
correctness, meaning they will not fully avoid hal-
lucinations. In this work we use vocabulary filters.

Mixing LLM prompting with logic-based ap-
proaches is an emerging field with a number of
precedents in NLP. A recent example is the study of
Pan et al. (2023), which combines LLM prompting
with theorem proving for logical reasoning, with
the downside of returning incorrect representations
back to the LLM to repeat the prompting procedure.
Another work suggests constrained decoding for
a variety of (structured) NLP tasks (Geng et al.,
2023), but unfortunately doesn’t provide a concrete
implementation for most examples.

While there is some recent work attempting to
bring logical representations in the loop in order
to formalize the (chain-of-thought) prompting pro-
cess (Ranaldi et al., 2025), logic-based approaches
to NLI are rare, and were mostly performed in
the era before LLMs, typically in a multimodal
setting or following a pipeline where sentences
are first encoded using a syntactic and semantic
parser, after which a classification is made (Abzian-
idze, 2020; Abzianidze and Kogkalidis, 2021; Chen
et al., 2021; Suzuki et al., 2019; Tomihari and
Yanaka, 2023).

In this work we set out to provide a pilot study
mixing the above approaches to tackle complex
NLI test sets with a variety of strategies, including
prompting LL.Ms for first-order logical representa-
tions. 2

2 Logic-Based NLI with an LLM

Concretely, our pipeline works as follows: We
prompt a model to generate logical representations
for a given premise—hypothesis pair, after which we
re-prompt the model to generate a (constrained) an-
swer on the (non-)entailment between the premise
and hypothesis. Whenever relevant, we feed the

2The code is available online: https://github.com/
GU-CLASP/logic-based-NLI-with-LLMs/
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generated formulas to a theorem prover> to assess
which path is more performant. As a baseline we
consider a label only strategy where the model is
not prompted for any logical representations but
must directly generate the NLI label.

Datasets We evaluate our approach on six dif-
ferent sections of the CURRICULUM benchmark
(Chen and Gao, 2022). The comparative, con-
ditional, negation, and quantifiers datasets are
drawn from Richardson et al. (2020) and follow
the NLI format. The lexical entailment section
has test set items drawn from Schmitt and Schiitze
(2021) and Glockner et al. (2018), and the mono-
tonicity section has test set items drawn from
Yanaka et al. (2019b) and Richardson et al. (2020).
These later two sections use the RTE format.

Prompt setup Our prompting approach is an ex-
ample of meta-prompting, i.e., the outcome of the
first prompt is included in a second prompt. We
distinguish three alternatives: Firstly, the label only
prompt asks the model to directly generate an NLI
label, constrained to the three possibilities (E, N, C).
Second, the formula prompt asks the model to first
generate formulas in first-order logic (in a model-
friendly format) for the premise and hypothesis and
then is asked to generate a label, hence incorporat-
ing both textual and logical representations of the
NLI instance. Finally, there is the formulas and
world knowledge setting where the intermediate
generation prompt provides formulas and relevant
world knowledge in logical form.

Model choice Given that we strive for full trans-
parency in our experiments, we set four desiderata
(in order of importance) and choose such that the
model (1) has freely available architecture code; (2)
has fully specified training data; (3) has a reason-
able performance baseline; and (4) is as small as
possible modulo the preceding points. Given these
constraints, we work with Zephyr*, which strikes a
balance between performance and model size, and
is fully transparent in terms of architecture code
and training data.

3 Results

Table 1 displays the overall results for several NLI
datasets. Additionally, results on the two RTE tasks
are given in Table 2.

3Prover9, (McCune, 2005-2010)
4https://huggingface.co/HuggingFaceH4/
zephyr-7b-beta
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Label E C N
DA P9 DA P9 DA P9
Dataset Prompt
label-only 77.6 - 73.7 - 6.8 -
comparative forms 71.4 8.2 949 0.0 17.5  99.0
forms+wk 98.0 100.0 56.6 0.0 9.7 0.0
label-only 48.4 - 0.0 - 50.9 -
conditional  forms 74.7  59.8 54.7 50.0 43.6 100.0
forms+wk 50.5 370 51.6 484 0.9 100.0
label-only 0.0 - 15.6 - 36.5 -
negation forms 0.0 0.0 60.0 98.9 90.4 100.0
forms+wk 2.2 0.0 62.2 98.8 9.6 98.2
label-only 70.0 - 3.5 - 96.9 -
quantifier forms 722 59.8 825 272 29.2  100.0
forms+wk 989 64.0 1.8 235 5.2 100.0

Table 1: Mean accuracy (recall) by label for Zephyr on NLI datasets, using different prompt schemes. Where
relevant, accuracy is shown for both the LLM’s direct answer (DA) and the label inferred from the generated
formulas and the Prover9 theorem prover (P9). For each dataset and label, the best DA result is bolded and the P9
result in underlined when it exceeds the DA result. The P9 column excludes items that resulted in a Prover9 error

(see Table 3 for the unfiltered results).

Label E N/C

DA P9 DA P9
Dataset Prompt

label-only 6.7 - 94.6 -
lexical forms 250 1.5 97.3 100.0
forms+wk 25.0 65.3 96.6 34.8
label-only 58.3 - 34.8 -
monotonicity forms 46.8 16.7 47.8 909
forms+wk 47.5 50.0 472 54.6

Table 2: As Table 1 but for the RTE datasets. See Table 4 for the unfiltered Prover9 results.
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In the mood for logic We firstly note that the
direct answer performance is generally higher in
the setup in which the model is asked to gener-
ate a logic formula (formulas) and subsequentially
generate the NLI label. In other words: When the
model is self-primed to think in terms of logic, it
appears to label in terms of logic, generally improv-
ing performance. A notable exception to this rule
is the case of neutral-labeled items in the quanti-
fier dataset, where the label-only setup performed
significantly better (96.9%) than either of the two
prompt schemes involving formulas (29.9% for for-
mulas and 5.2 for formulas + world knowledge).
For this dataset, it seems that generating formulas
causes the model to predict a logical relationship
between sentences where in fact none exists.

Priming the model to generate formulas for rel-
evant world knowledge helps in some cases, but
the effect is much more mixed. For example, it is
beneficial for entailments in the comparative and
quantifier datasets, but detrimental for the other
two labels in the same datasets. It is possible that
in these cases, asking the model to generate world
knowledge biases it more towards finding an entail-
ment in general.

Theorem proving We secondly note that the la-
bels inferred from the generated formulas are not
always an improvement over the model’s direct an-
swer. For the neutral (or non-entailment) columns,
we see that the Prover9-inferred label accuracy
is typically higher than the direct answer (often
much higher), but recall that we infer a neutral la-
bel whenever Prover9 cannot find a proof of the
hypothesis (or its negation) from the premise and
any relevant world-knowledge formulas, so these
apparently good results for neutral items may just
be evidence that the generated formulas don’t fully
capture the logical relationships that would be re-
quired to draw an inference if there were one. This
can happen when the model produces formulas that
are unrelated to each other for the wrong reasons
(e.g., inconsistently translated predicates).

There are, however, several other cases where
the inferred label accuracy shows a notable
performance improvement over the direct an-
swer. Prover9 accuracy is significantly better for
contradiction-labeled items in the negation dataset,
and it is somewhat better for entailments of the
lexical dataset in the prompt scheme that includes
world-knowledge formulas.

Overall, while there are some cases in which the
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label inferred from the generated formulas outper-
forms the direct-answer label, there are even more
cases where generating the formulas improves the
direct answer but the formulas themselves cannot
be used to infer the correct label. This suggests that
the utility of prompting the model for formulas is
mostly in priming it to attend to the logical rela-
tionships between the natural language sentences.
Upon closer inspection, we suspect that the logi-
cal representations for the premise and hypothesis
are often not linked together logically, pushing the
theorem prover towards Neutral.

4 Conclusion

This work investigates the use of constrained de-
coding and LLM prompting for Natural Language
Inference. We specifically test three setups: (1) An
LLM is prompted to solve the task directly; (2) the
LLM first is prompted to generate logic formulas
and subsequently re-prompted to use those formu-
las to provide an answer; and (3) the model is also
prompted to generate formulas capturing any rele-
vant lexical knowledge before answering. Gener-
ated formulas are also fed to a theorem prover. We
observe that while the theorem prover may help in
cases of entailment and non-entailment, the overall
performance is highest for the two-step prompting
approach of letting the model decide based on its
own generated formulas.

Limitations We consider this work a pilot study
investigating the applicability of constrained decod-
ing to support NLI systems based on LLM prompt-
ing. This leads to a number of lessons of this work:
(1) Priming an LLM by asking for logical repre-
sentations increases performance on challenging
NLI test sets; (2) Generating logical representa-
tions with only prompt examples as gold standard
is too primitive to use in combination with theorem
proving; (3) Adding world knowledge can mitigate
the gold standard issue; (4) With the adequate com-
bination of representation format, language model,
and prompt setup one may push the limits of NLI;
(5) Constrained decoding can play a role in control-
ling LLM output and overall performance.

Future Work The findings in this paper warrant
a lot of future work; for example, the lack of gold
standard data in the test sets we used makes it dif-
ficult for the model to tune its generated logical
representations, so ideally a gold standard is re-
quired.



Another underrepresented concept is a change in
representation format, where predicate logic formu-
las could be encoded in formats more represented
in LLM training data, such as Python code, or Z3
statements. Natural logic may also be a promis-
ing output format for LLMs due to its closeness to
natural language (Lakoff, 1970).
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A LLM prompts

Figures 1, 2, and 3 show the three different
prompt templates used to elicit NLI classifica-
tions from the LLM. Only the ITEM_PREMISE
and ITEM_HYPOTHESIS vary by item, whereas the
DATASET_LABELS and EXAMPLE_* fields vary by
dataset. The LM_* fields are filled in by the LLM.

The specific few-shot examples used for each
dataset can be found in Figures 4-9.
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Given a pair of sentences, the task is to determine whether Sentence A entails Sentence B by labeling
<~ the pair with <DATASET_LABELS>.

Sentence A: <EXAMPLE_1_PREMISE>

Sentence B: <EXAMPLE_1_HYPOTHESIS>

H#iH

The relation between Sentence A and Sentence B is: <EXAMPLE_1_LABEL>
~ REPEATED FOR EXAMPLES 2 and 3 ~

Sentence A: <ITEM_PREMISE>

Sentence B: <ITEM_HYPOTHESIS>

H#iH

The relation between Sentence A and Sentence B is: <LM_DIRECT_ANSWER>

Figure 1: The prompt asking the model for a direct answer. <DATASET_LABELS> is adaptable, depending on whether
the task at hand uses binary (RTE) or ternary (NLI) classification; <LM_DIRECT_ANSWER> is constrained by the
relevant label set; the three few-shot examples are specific to the dataset the item comes from (see Figures 4-9).

Given a pair of sentences, the task is to parse each sentence into first-order logic formulas and
< then determine whether Sentence A entails Sentence B by labeling the pair with
<— <DATASET_LABELS>.

The grammar of first-order logic formulas is defined as follows:
1) logical conjunction of exprl and expr2: exprl & expr2

2) logical disjunction of exprl and expr2: exprl | expr2

3) logical negation of expril: -expri

5) expr1 implies expr2: exprl -> expr2

6) expr1 if and only if expr2: exprl <-> expr2

7) logical universal quantification over exprl: forall x. exprl
8) logical existential quantification over exprl: exists x. exprl

Sentence A: <EXAMPLE_1_PREMISE>
Sentence B: <EXAMPLE_1_HYPOTHESIS>

#it#

Formula A: <EXAMPLE_1_PREMISE> ::: <EXAMPLE_1_PREMISE_FORMULA>
Formula B: <EXAMPLE_1_PREMISE> ::: <EXAMPLE_1_HYPOTHESIS_FORMULA>
#iH#

The relation between Sentence A and Sentence B is: <EXAMPLE_1_LABEL>
~ REPEATED FOR EXAMPLES 2 and 3 ~

Sentence A: <ITEM_PREMISE>
Sentence B: <ITEM_HYPOTHESIS>

#iH#

Formula A: <ITEM_PREMISE> ::: <LM_PREMISE_FORMULA>
Formula B: <ITEM_HYPOTHESIS> ::: <LM_HYPOTHESIS_FORMULA>
#it#

The relation between Sentence A and Sentence B is: <LM_DIRECT_ANSWER>

Figure 2: The prompt asking the model for first-order logic formulas for the premise and hypothesis, as well as a
direct answer. <DATASET_LABELS> is adaptable, depending on whether the task at hand uses binary (RTE) or ternary
(NLI) classification; <LM_DIRECT_ANSWER> is constrained by the relevant label set; the three few-shot examples are
specific to the dataset the item comes from (see Figures 4-9).
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Given a pair of sentences, the task is to parse each sentence into first-order logic formulas, then
< write first-order logic formulas that capture any relevant lexical knowledge, and finally
< determine whether Sentence A entails Sentence B by labeling the pair with <DATASET_LABELS>.

1) logical conjunction of exprl and expr2: exprl & expr2

2) logical disjunction of exprl1 and expr2: exprl | expr2

3) logical negation of exprl: -exprl

5) expr1 implies expr2: exprl -> expr2

6) expr1 if and only if expr2: exprl <-> expr2

7) logical universal quantification over exprl: forall x. exprl

8) logical existential quantification over exprl: exists x. exprl

Sentence A: <EXAMPLE_T1_PREMISE>
Sentence B: <EXAMPLE_1_HYPOTHESIS>

#it#

Formula A: <EXAMPLE_1_PREMISE> ::: <EXAMPLE_1_PREMISE_FORMULA>
Formula B: <EXAMPLE_1_PREMISE> ::: <EXAMPLE_1_HYPOTHESIS_FORMULA>
#iH#

Lexical knowledge:
<EXAMPLE_1_WORLD_KNOWLEDGE_FORMULA_1>

<EXAMPLE_1_WORLD_KNOWLEDGE _FORMULA_N>

#iH#

The relation between Sentence A and Sentence B is: <EXAMPLE_1_LABEL>
~ REPEATED FOR EXAMPLES 2 and 3 ~

Sentence A: <ITEM_PREMISE>
Sentence B: <ITEM_HYPOTHESIS>

#it#

Formula A: <ITEM_PREMISE> ::: <LM_PREMISE_FORMULA>
Formula B: <ITEM_HYPOTHESIS> ::: <LM_HYPOTHESIS_FORMULA>
#iH#

Lexical knowledge:

<LM_WORLD_KNOWLEDGE_FORMULAS>

#iH#

The relation between Sentence A and Sentence B is: <LM_DIRECT_ANSWER>

Figure 3: The prompt asking the model for first-order logic formulas for the premise and hypothesis, as
well as a direct answer. <DATASET_LABELS> is adaptable, depending on whether the task at hand uses bi-
nary (RTE) or ternary (NLI) classification; <LM_DIRECT_ANSWER> is constrained by the relevant label set;
<LM_WORLD_KNOWLEDGE _FORMULAS> is constrained to be a newline-separated list of strings; the three few-shot

examples are specific to the dataset the item comes from (see Figures 4-9).
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EXAMPLE_1 = { # example id 4598
'PREMISE' = "The purple alien drank soda."
'"HYPOTHESIS' = "The purple alien drank coke."

'"PREMISE_FORMULA' = "exists x. exists y. Purple(x) & Alien(x) & Soda(y) & Drank(x, y)"
"HYPOTHESIS_FORMULA' = "exists x. exists y. Purple(x) & Alien(x) & Coke(y) & Drank(x, y)"

'"WORLD_KNOWLEDGE_FORMULAS' = [
forall x. (Coke(x) -> Soda(x)),

]

}

EXAMPLE_2 = { # example id 5075
'"PREMISE' = "Nobody danced.”
"HYPOTHESIS' = "Nobody moved."

'"PREMISE_FORMULA' = "forall x. -Dance(x)"”
'"HYPOTHESIS_FORMULA' = "forall x. -Move(x)"
'"WORLD_KNOWLEDGE_FORMULAS' = [
forall x. (Dance(x) -> Move(x)),
]
}

EXAMPLE_3 = { # example id 54
'"PREMISE' = "All animals like to scratch their ears.”
"HYPOTHESIS' = "All dogs like to scratch their ears.”

'"PREMISE_FORMULA' = "forall x. (Animal(x) -> LikesToScratchEars(x, x))"
"HYPOTHESIS_FORMULA' = "forall x. (Dog(x) -> LikesToScratchEars(x, x))"

'"WORLD_KNOWLEDGE _FORMULAS' = [
forall x. (Dog(x) -> Animal(x)),
]

Figure 4: Few-shot examples for items from the monotonicity dataset. CURRICULUM item ids
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EXAMPLE_1 = { # example id 2675

'PREMISE' = "Ruben is as tall as Jack , Jack is as tall as Francis , Francis is as tall as Gordon
— , Gordon is as tall as Bruce , Bruce is as tall as Alan , Alan is as tall as Danny ,
< Danny is taller than Allen”

'"HYPOTHESIS' = "Keith is taller than Alan”

'PREMISE_FORMULA' = "AsTallAs(ruben, jack) & AsTallAs(jack, francis) & AsTallAs(francis, gordon)
— & AsTallAs(gordon, bruce) & AsTallAs(bruce, alan) & AsTallAs(alan, danny) & TallerThan(
— Danny, alan)”

"HYPOTHESIS_FORMULA' = "TallerThan(keith, alan)"”

'WORLD_KNOWLEDGE_FORMULAS' = [
forall x. forall y. TallerThan(x, y) -> -AsTallAs(y, x),
forall x. forall y. forall z. (TallerThan(x, y) & TallerThan(y, z)) -> TallerThan(x, z),

]
}
EXAMPLE_2 = { # example id 648
'PREMISE' = "Russell is taller than Oscar, Terrance, Lawrence, Dan, Felix, Todd, Alex, Jose and
< Harry , Russell is as tall as Clifton”
'"HYPOTHESIS' = "Felix is taller than Clifton”
'PREMISE_FORMULA' = "TallerThan(russell, oscar) & TallerThan(russell, terrance) & TallerThan(

< russell, dan) & TallerThan(russell, felix) & TallerThan(russell, todd) & TallerThan(
< russell, alex) & TallerThan(russell, jose) & TallerThan(russell, harry) & AsTallAs(
— russell, clifton)”

"HYPOTHESIS_FORMULA' = "TallerThan(felix, clifton)”

'"WORLD_KNOWLEDGE_FORMULAS' = [
forall x. forall y. forall z. (AsTallAs(x, y) & TallerThan(x, z) -> TallerThan(y, z)),
forall x. forall y. (TallerThan(x, y) -> -TallerThan(y, x)),

b

EXAMPLE_3 = { # example id 1421

'PREMISE' = "Jesse is as tall as Paul , Paul is as tall as Terry , Terry is as tall as Sidney ,
— Sidney is as tall as Luis , Luis is as tall as Andy , Andy is as tall as Freddie ,
— Freddie is as tall as Adrian , Adrian is taller than James”

'"HYPOTHESIS' = "Luis is taller than James”

'"PREMISE_FORMULA' = "AsTallAs(jesse, paul) & AsTallAs(paul, terry) & AsTallAs(terry, sidney) &
—» AsTallAs(sidney, luis) & AsTallAs(luis, andy) & AsTallAs(andy, freddie) & AsTallAs(
— freddie, adrian) & TallerThan(adrian, james)"

"HYPOTHESIS_FORMULA' = "TallerThan(luis, james)"

'"WORLD_KNOWLEDGE_FORMULAS' = [
forall x. forall y. forall z. (AsTallAs(x, y) & TallerThan(y, z) -> TallerThan(x, z)),
forall x. forall y. forall z. (AsTallAs(x, y) & AsTallAs(y, z) -> AsTallAs(x, z)),

Figure 5: Few-shot examples for items from the comparative dataset. CURRICULUM item ids: 2675 648 1421
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EXAMPLE_1 = { # example id 2200

'PREMISE' = "Tony has not visited Beaverton, Johnny has not visited Long Beach, Ken has visited
— Kingston and if Tony has not visited Beaverton then Fred has not visited Danville”
"HYPOTHESIS' = "Fred has not visited Danville”
'PREMISE_FORMULA' = "-Visited(tony, beaverton) & -Visited(johnny, long_beach) & Visited(ken,
— kingston) & (-Visited(tony, beaverton) -> -Visited(fred, danville))"
'"HYPOTHESIS_FORMULA' = "-Visited(fred, danville)"
'WORLD_KNOWLEDGE_FORMULAS' = [
]
}
EXAMPLE_2 = { # example id 2699
'PREMISE' = "Felix has not visited Pampa, William has not visited Bessemer, Eddie has visited
< Grants Pass and if Felix has visited Pampa then Danny has visited Belmont”
'"HYPOTHESIS' = "Danny has visited Belmont”
'PREMISE_FORMULA' = "-Visited(felix, pampa) & -Visited(william, bessemer) & Visited(eddie,
— grants_pass) & (Visited(felix, pampa) -> Visited(danny, belmont))"
'"HYPOTHESIS_FORMULA' = "Visited(danny, belmont)"
'WORLD_KNOWLEDGE_FORMULAS' = [
]
}
EXAMPLE_3 = { # example id 1384
'"PREMISE' = "Don has not visited Norwich, Alberto has visited Nevada, Wallace has visited Wyoming
< and if Alberto has visited Nevada then Sam has visited Arcadia”
'"HYPOTHESIS' = "Sam has not visited Arcadia”
'PREMISE_FORMULA' = "-Visited(don, norwhich) & Visited(alberto, nevada) & Visited(wallace,
— wyoming) & (Visited(alberto, nevada) -> Visited(sam, arcadia))"”
"HYPOTHESIS_FORMULA' = "-Visited(sam, arcadia)”
'"WORLD_KNOWLEDGE_FORMULAS' = [
]

Figure 6: Few-shot examples for items from the conditional dataset. CURRICULUM item ids: 2200 2699 1384

EXAMPLE_1 = { # example id 1933

'PREMISE' = "A stricken butterfly has Wings."

'"HYPOTHESIS' = "A stricken butterfly wavers on Wings.”

'"PREMISE_FORMULA' = "exists x. exists y.(Stricken(x) & Butterfly(x) & Wings(y) & Has(x, y))"

'"HYPOTHESIS_FORMULA' = "exists x. exists y.(Stricken(x) & Butterfly(x) & Wings(y) & WaversOn(x, y
= )"

'"WORLD_KNOWLEDGE_FORMULAS' = [
forall x. forall y. (Has(x, y) -> WaversOn(x, y)),

]

}

EXAMPLE_2 = { # example id 3662
'"PREMISE' = "Sadat beat Jimmy Carter.”
"HYPOTHESIS' = "Jimmy Carter secluded Sadat.”
'PREMISE_FORMULA' = "Beat(sadat, jimmy_carter)”

"HYPOTHESIS_FORMULA' = "Secluded(jimmy_carter, sadat)”
'WORLD_KNOWLEDGE_FORMULAS' = [

-(forall x. forall y. (Beat(x, y) -> Secluded(y, x))),
]

Figure 7: Few-shot examples for items from the lexical dataset. CURRICULUM item ids: 1933 3662
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EXAMPLE_1 = { # example id 1874
'PREMISE' = "Harry has only visited Bhutan, Curtis has only visited Ecuador, Roland has only
< visited Philippines, Tom has only visited Uganda, Darren has only visited Jordan, Byron
< has only visited Cameroon, Willie has only visited Vanuatu, Brett has only visited North

—» Korea"
"HYPOTHESIS' = "Curtis didn't visit Belize”
'"PREMISE_FORMULA' = "Visit(harry, bhutan) & forall x. (Visit(harry, x) -> x = bhutan) & Visit(

< curtis, ecuador) & forall x. (Visit(curtis, x) -> x = ecuador) & Visit(roland,

< philippines) & forall x. (Visit(roland, x) -> x = philippines) & Visit(tom, uganda) &

— forall x. (Visit(tom, x) -> x = uganda) & Visit(darren, jordan) & forall x. (Visit(darren,
— x) -> x = jordan) & Visit(byron, cameroon) & forall x. (Visit(byron, x) -> x = cameroon)
— & Visit(willie, vanuatu) & forall x. (Visit(willie, x) -> x = vanuatu) & Visit(brett,

< north_korea) & forall x. (Visit(brett, x) -> x = north_korea)"

"HYPOTHESIS_FORMULA' = "-Visit(curtis, belize)”
'"WORLD_KNOWLEDGE_FORMULAS' = [
belize != ecuador,
]
}
EXAMPLE_2 = { # example id 2526
'"PREMISE' = "Howard has only visited Croatia, Karl has only visited Kosovo”
'"HYPOTHESIS' = "Ross didn't visit Croatia”
'PREMISE_FORMULA' = "Visit(howard, croatia) & forall x. (Visit(howard, x) -> x = croatia) & Visit
— (karl, kosovo) & forall x. (Visit(karl, x) -> x = kosovo)"”
'"HYPOTHESIS_FORMULA' = "-Visit(ross, croatia)"”
'WORLD_KNOWLEDGE_FORMULAS' = [
howard != ross,
]

}

EXAMPLE_3 = { # example id 581

'PREMISE' = "Thomas has only visited Romania, Adrian has only visited Tuvalu, Everett has only
— visited Djibouti, Marc has only visited Dominica, Don has only visited China, Nicholas
< has only visited Turkmenistan, Lonnie has only visited Iraq, Theodore has only visited
< North Korea, Andrew has only visited Nepal, Ken has only visited Saint Lucia, Terrence
< has only visited Liberia”

'"HYPOTHESIS' = "Ken didn't visit Saint Lucia”

'"PREMISE_FORMULA' = "Visit(thomas, romania) & forall x. (Visit(thomas, x) -> x = romania) & Visit
< (adrian, tuvalu) & forall x. (Visit(adrian, x) -> x = tuvalu) & Visit(everett, djibouti)
—» & forall x. (Visit(everett, x) -> x = djibouti) & Visit(marc, dominica) & forall x. (
< Visit(marc, x) -> x = dominica) & Visit(don, china) & forall x. (Visit(don, x) -> x =
< china) & Visit(nicholas, turkmenistan) & forall x. (Visit(nicholas, x) -> x =
— turkmenistan) & Visit(lonnie, iraq) & forall x. (Visit(lonnie, x) -> x = iraq) & Visit(
< theodore, korea) & forall x. (Visit(theodore, x) -> x = korea) & Visit(andrew, nepal) &
— forall x. (Visit(andrew, x) -> x = nepal) & Visit(ken, saint_lucia) & forall x. (Visit(
<~ ken, x) -> x = saint_lucia) & Visit(terrence, liberia) & forall x. (Visit(terrence, x) ->
— x = liberia)”

"HYPOTHESIS_FORMULA' = "-Visit(ken, saint_lucia)”

'WORLD_KNOWLEDGE_FORMULAS' = [

]

Figure 8: Few-shot examples for items from the negation dataset. CURRICULUM item ids: 1874 2526 581
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EXAMPLE_1 = { # example id 2857

'"PREMISE' = "Everyone has visited Lesotho, Botswana, Cambodia, Kyrgyzstan, Lithuania, Tonga,
< Suriname, Costa Rica, Thailand, Bangladesh, New Zealand, Nigeria, Pakistan, Palau, Libya,
<> Bosnia & Herzegovinia, United Arab Emirates, Chad, Solomon Islands and Ireland”

'"HYPOTHESIS' = "That person there did visit Libya”

'"PREMISE_FORMULA' = "forall x. Visit(x,lesotho) & Visit(x, botswana) & Visit(x, cambodia) & Visit
— (x, kyrgyzstan) & Visit(x, lithuania) & Visit(x, tonga) & Visit(x, suriname) & Visit(x,
< costa_rica) & Visit(x, thailand) & Visit(x, bangladesh) & Visit(x, new_zealand) & Visit(x,
— nigeria) & Visit(x, pakistan) & Visit(x, palau) & Visit(x, libya) & Visit(x,
<> bosnia_herzegovinia) & Visit(x, united_arab_emirates) & Visit(x, chad) & Visit(x,
< solomon_islands) & Visit(x, ireland)”

'"HYPOTHESIS_FORMULA' = "exists x. Visit(x, libya)"

'WORLD_KNOWLEDGE_FORMULAS' = [

]
}
EXAMPLE_2 = { # example id 1121
'PREMISE' = "Everyone has visited Togo, Saudi Arabia, Malta, Bosnia & Herzegovinia, Gabon, Sierra
<~ Leone, El Salvador, The Bahamas, Mongolia, Mali and Djibouti”
'"HYPOTHESIS' = "Roland didn't visit Gabon"
'PREMISE_FORMULA' = "forall x. Visit(x, togo) & Visit(x, saudi_arabia) & Visit(x, malta) & Visit(

< X, bosnia_herzegovinia) & Visit(x, gabon) & Visit(x, sierra_leone) & Visit(x, el_salvador)
— & Visit(x, bahamas) & Visit(x, mongolia) & Visit(x, mali) & Visit(x, djibouti)”

'"HYPOTHESIS_FORMULA' = "-Visit(roland, gabon)"
'"WORLD_KNOWLEDGE_FORMULAS' = [
]

}

EXAMPLE_3 = { # example id 2850
'PREMISE' = "Someone has visited every person and every place”
'"HYPOTHESIS' = "That person there didn't visit United States”
'"PREMISE_FORMULA' = "exists x. forall y. (Person(y) | Place(y)) -> Visit(x, y)"
"HYPOTHESIS_FORMULA' = "exists x. Person(x) & -Visit(x, united_states)"”
'WORLD_KNOWLEDGE_FORMULAS' = [
]

Figure 9: Few-shot examples for items from the quantifier dataset. CURRICULUM item ids: 2857 1121 2850
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B Prover9 Errors

The LLM generated largely syntactically correct
formulas of first-order logic, especially when pro-
vided with few-shot examples. However, there
were cases where the generated formulas resulted
in an error when fed into Prover9. In Tables 1 and
2 the P9 columns present label-wise accuracy re-
sults that have been filtered to exclude items where
Prover9 generated an error (i.e., the denominator of
the accuracy metric does not include those items).
In most cases, the difference is small—note that
considering the filtered or un-filtered version never
changes whether the Prover9 result is higher than
the direct answer). For completeness, this section
shows a comparison of the filtered and un-filtered
results.

A total of 310 errors were encountered over
3600 generated formula sets (300 for each of 6
datasets and 2 prompt schemes). The breakdown
of errors encountered can be found in Table 5.
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Label E C N
¥ Y ¥ VY ¥ Y

Dataset Prompt

comparative forms 8.2 8.2 0.0 0.0 99.0 99.0
p forms+wk 1000 100.0 00 00 00 00

conditiona] O™ 579 598 484 500  100.0 100.0
1 forms+wk 358 37.0 474 484 1000 100.0

eeation forms 00 00 978 989 96.5 100.0
g forms+wk 00 00 933 988 957 982
Ldfier  forms 578 598 246 272 97.9  100.0

quantihe forms+wk 61.1 640 211 235 96.9 100.0

Table 3: Unfiltered (?) and filtered (V) mean label-wise accuracy for NLI classification when using the LLM-
generated formulas to infer the label with Prover9.

Label E N/C
¥ Y 5 Y
Dataset Prompt
lexical forms 1.3 1.5 89.9 100.0
forms+wk 520 653 272 348
forms 13.7 16.7 74.5 90.9

monotonicity forms+wk 36.0 50.0 36.6 54.6

Table 4: Unfiltered (?) and filtered (V) mean label-wise accuracy for RTE classification when using the LLM-
generated formulas to infer the label with Prover9.

Prover9 Error forms forms+wk
parsing error (unexpected symbol) 79 92
symbol used with multiple arities 25 65
symbol used as both relation and function 14 35

Table 5: Counts of error types encountered by Prover9 when given the LLM-generated formulas. A total of 1 800
sets of formulas were generated for each prompt scheme (forms and forms+wk).
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Abstract

This paper introduces the Compact Math Cor-
pus (CMC), a preliminary resource for natural
language processing in the mathematics do-
main. We process three open-access under-
graduate textbooks from distinct mathematical
areas and annotate them in the CoNLL-U for-
mat using a lightweight pipeline based on the
spaCy Small model. The structured output
enables the extraction of syntactic bigrams and
TF-IDF scores, supporting a syntactic-semantic
analysis of mathematical sentences.

From the annotated data, we construct a classi-
fication dataset comprising bigrams potentially
representing mathematical concepts, along
with representative example sentences. We
combine CMC with the conversational corpus
UD English EWT and train a logistic regression
model with K-fold cross-validation, achieving
a minimum macro-F1 score of 0.989. These
results indicate the feasibility of automatic con-
cept identification in mathematical texts.

The study is designed for easy replication in
low-resource settings and to promote sustain-
able research practices. Our approach offers
a viable path to tasks such as parser adap-
tation, terminology extraction, multiword ex-
pression modeling, and improved analysis of
mathematical language structures.

1 Introduction

Mathematical textbooks, though precise and struc-
tured, present unique challenges to standard Nat-
ural Language Processing (NLP) tools. Their lan-
guage differs significantly from general-domain
English, incorporating symbolic notation, dia-
grams, and domain-specific terminology. Conse-
quently, models trained primarily on non-technical
corpora often underperform on this type of texts.
Recent benchmarks such as MATHVISTA (Lu
et al., 2024) illustrate these challenges. Even
advanced vision-language models, for example:
GPT-4V, achieve accuracy in the range 50%
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when tasked with understanding mathematical
content (see Figure 3, Appendix A). Meanwhile,
datasets including GSM8K (Cobbe et al., 2021)
and MATH (Hendrycks et al., 2021) focus on
mathematical problem solving, providing ques-
tion—answer pairs, but lack the linguistic annota-
tions necessary for syntactic or semantic analysis.

Other resources have been introduced for the pro-
cessing of the mathematical language. An exam-
ple is NaturalProofs (Welleck et al., 2021), which
focuses on theorem proving and alignment of for-
mal and informal proofs, but does not address the
broader expository writing found in instructional
or pedagogical texts. This scarcity limits the de-
velopment and evaluation of NLP tools tailored
for mathematical language. The Compact Math
Corpus (CMC) aims to help bridge this gap by
offering a preliminary, automatically annotated re-
source, not a gold standard, but a practical starting
point for linguistic processing in this domain.

The CMC is built from three open-access under-
graduate textbooks: Abstract Algebra: Theory and
Applications (Judson, 2022), Linear Algebra (Hef-
feron, 2022), and Discrete Mathematics: An Open
Introduction (Levin, 2024), all sourced from the
Open Math Textbook Initiative'. Using a compu-
tationally lean NLP pipeline based on the spaCy
Small model (Honnibal et al., 2020), we auto-
matically annotate these texts in the CoNLL-U for-
mat”, capturing both morphological and syntactic
features.

Designed for low-resource and sustainable set-
tings (Luccioni et al., 2023), our pipeline prioritizes
accessibility and replicability. To assess its utility,
we extract syntactic bigrams from CMC, combine
them with the conversational UD English EWT
corpus (Silveira et al., 2014), and pair each bigram
with a representative sentence from its source cor-

"https://textbooks.aimath.org/
https://universaldependencies.org/
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pus. We then train a logistic regression model us-
ing scikit-learn’s LogisticRegression with
K-fold cross-validation. The model achieves a min-
imum macro-F1 score of 0.989, indicating that
cost-effective methods can effectively support the
detection of mathematical concepts.

We release the annotated corpus and supporting
materials on GitHub?.

2  Corpus Preprocessing and Annotation

The Compact Math Corpus (CMC) was constructed
from the three undergraduate-level textbooks in-
troduced in the previous section, each covering a
distinct area of mathematics. All texts are openly
licensed and available in PDF format.

Although I&TEX is generally a more suitable for-
mat for mathematical texts due to its richer struc-
tural markup (Collard et al., 2024; de Paiva et al.,
2023), most educational materials are distributed
in PDF format, which aligns better with our goal
of scalability.

To better understand the trade-offs involved, we
processed a matched section from the Linear Al-
gebra textbook in both IKIEX and PDF formats.
The source IKIEX was converted to JSON using
pylatexenc?, and the PDF using PyMuPDF”.
Both outputs were then passed through the same
annotation pipeline, and we extracted compounds®
from the resulting CoNLL-U files.

23

TEX
PDF

Figure 1: Overlap of Compounds Between IKTEX and
PDF.

Of the total compounds detected, 23 appeared
in both formats, 6 were exclusive to I&IEX, and 15
were exclusive to PDF (see Figure 1). These results

*https://github.com/andreafer-uni/
Compact—-Math-Corpus

*https://pylatexenc.readthedocs.io/

5https ://pymupdf.readthedocs.io/

°In UD, a compound refers to a noun—noun construction
where one noun modifies another.
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indicate that, despite some discrepancies, PDF-
based processing yields comparable compound ex-
traction quality, an encouraging outcome given the
prevalence and accessibility of PDF materials in
educational settings.

2.1 Preprocessing

Following best practices in corpus develop-
ment (Collard et al., 2024), PDF textbooks were
converted to structured JSON to support consistent
downstream analysis.

Linguistic content was extracted using the
PyMuPDF library, which provides raw text and
layout information. Since PDFs prioritize visual
formatting over semantic structure, extraction in-
troduced common issues, including token merging,
incorrect sentence segmentation, hyphenation arti-
facts, and irregular or misplaced line breaks.

To address these concerns, we applied a prepro-
cessing pipeline with anomaly detection and clean-
ing steps, including sentence filtering, non-ASCII
character removal, and format normalization. The
cleaned text was stored in JSON and parsed using
spaCy Small to generate part-of-speech and de-
pendency annotations in CoNLL~-U format’.

This setup enables us to evaluate the perfor-
mance of general-purpose NLP tools on math-
heavy texts and points to challenges such as sym-
bolic content, domain-specific terminology, and
structural noise, areas where parser adaptation or
multimodal integration may improve outcomes.

2.2 Linguistic Annotation

To assess the performance—efficiency balance of
our method, we compared spaCy’s small model
(en_core_web_sm) with its transformer-based
counterpart (en_core_web_trf) on a section of
the Linear Algebra textbook.

As shown in Figure 2, both models produced
nearly identical counts of tokens, lemmas, and
unique words. The main difference was in sen-
tence segmentation, where the transformer model
generated more sentence boundaries. However,
this did not affect the performance of our down-
stream classification task, supporting the adequacy
of the compact model given its streamlined compu-
tational requirements.

"See (Nivre et al., 2016) for a complete overview of the
UD framework and CoNLL-U structure.
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Model Comparison
Unique Words —e— spaCy TRF

spaCy Small

Sentences

Figure 2: Sentence segmentation differences between
transformer-based and small models.

To enhance the linguistic value of the annotation
process, the use of the CONLL—-U format provides
substantial linguistic benefits. In contrast to un-
structured text, syntactically annotated corpora en-
able the systematic recognition of domain-specific
constructions such as compounds and multiword
expressions (MWEs), which act as indicators of
domain-specific language (Collard et al., 2022).

As highlighted in Table 1, the integration of syn-
tactic information, specifically the dependency re-
lations captured by Universal Dependencies (UD),
increased the prominence of mathematically rele-
vant bigrams in the Compact Math Corpus (CMC).
For example, the terms vector space, linear combi-
nation, and closed formula not only received high
TF-IDF scores after annotation, but also aligned
well with the core mathematical concepts.

Before CoNLL-U After CoNLL-U
Bigram TF-IDF | Bigram TF-IDF
vector space 1328.53 | vector space 1957.41
closed formula 834.34 closed formula 1105.03
linear combination 726.46 linear combination  1008.42
recurrence relation  668.48 recurrence relation 831.47
bit string 585.78 | bit string 804.58

Table 1: Top 5 TF-IDF bigrams in the Compact Math
Corpus before and after CONLL-U annotation.

The syntactic layer, though often optional in
modern NLP pipelines, remains crucial for appli-
cations that prioritize interpretability and robust-
ness. As noted by Sag et al. (Sag et al., 2002), the
combination of symbolic and statistical methods
produces a more complete view of language, partic-
ularly in detecting MWE:s that define mathematical
vocabulary.

Although the CMC is not manually annotated,
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its syntactic enrichment via spaCy and CoNLL-
U enables a hybrid pipeline in which frequency-
based methods such as TF-IDF are grounded in
structural patterns. This becomes evident when
we compare the results before and after annotation.
After syntactic parsing, high-ranking terms became
more semantically coherent, whereas noisy entries
(e.g. many way) were relatively de-emphasized.

Together, the CoNLL-U annotation process en-
hances the linguistic utility of the CMC by facili-
tating the extraction of interpretable, conceptually
grounded MWEs, despite being derived from non-
pretrained model. This makes the resource not only
computationally efficient but also linguistically rich
enough to support downstream tasks including clas-
sification and terminology extraction.

3 Dataset Construction

To investigate whether syntactic bigrams can help
distinguish mathematical language from general
English, we constructed a binary classification
dataset combining the Compact Math Corpus
(CMC) with the UD English Web Treebank (EWT),
leveraging their shared CoNLL-U format.

3.1 The UD-EWT

The UD English Web Treebank (EWT) is a gold-
standard corpus that provides syntactic and mor-
phological annotations for English as part of the
Universal Dependencies (UD) project. It contains
informal web-based texts from blogs, emails, fo-
rums, product reviews, and Q&A websites such as
Yahoo! Answers.

Due to its conversational and general-domain
nature, EWT serves as a useful baseline for com-
parison with domain-specific corpora such as CMC.
Since both CMC and UD-EWT follow the same
annotation format, we used this compatibility to
extract and compare syntactic features between cor-
pora.

3.2 Bigrams and Labeling

To assess the potential of syntactic bigrams for
the recognition of mathematical concepts, we first
extracted bigrams from UD-EWT using the same
TF-IDF methodology applied to CMC. We then
compared the resulting lists and removed all over-
lapping bigrams, retaining only the unique ones
from each corpus.

This comparison produced two distinct sets of
bigrams: one containing candidates for mathemat-



ical concepts (unique to CMC) and another re-
flecting general English patterns (unique to EWT).
For each bigram, we retrieved representative sen-
tences from their respective corpora in which the
bigrams occurred. These sentences were labeled
as True (mathematical concept) or False (non-
mathematical), resulting in a dataset of 2,796 sen-
tences evenly balanced between mathematical and
general-domain content.

The resulting dataset forms the basis for the clas-
sification task described in the next section, where
we evaluate the feasibility of concept recognition
using a logistic regression model.

4 Identifying Mathematical Concepts

To evaluate whether syntactic bigrams can effec-
tively signal mathematical content, we framed a
binary classification task: Given a sentence con-
taining a candidate bigram, predict whether it ex-
presses a mathematical concept. The classifier op-
erates solely on text-based features, without access
to labels or metadata from the source corpora.

4.1 Model and Setup

We trained a logistic regression model us-
ing TF-IDF features over unigrams and bi-
grams (max features = 5,000), implemented with
scikit—learn (Pedregosa et al., 2011). We
opted for logistic regression due to its efficiency,
interpretability, and reliable performance in sparse
feature spaces, well-suited to our minimal NLP
setup.

4.2 Performance and Evaluation

When we evaluated the logistic regression model
using 10-fold cross-validation over the dataset, the
classifier achieved a macro F1-score of 0.996 £+
0.003, indicating consistent performance across all
folds. Table 2 reports precision, recall, and F1-
scores per class.

Although performance is reliable within the
labeled dataset, it is important to note that the
model relies on sparse, surface-level features and
may struggle with ambiguous or out-of-distribution
cases. However, it correctly recognized sentences
containing previously unseen bigrams, indicating
that the model generalizes based on sentence con-
text rather than simple memorization.

51

Metric Mean Std

Accuracy 0.9964 0.0034
Precision.0 0.9934 0.0072
Recall 0 0.9993 0.0023
F1.0 0.9963 0.0035
Precision_1 0.9993 0.0022
Recall_1 0.9938 0.0069
F1_1 0.9965 0.0033
F1_Macro  0.9964 0.0034

Table 2: Cross-validation results (mean + std) for logis-
tic regression classifier.

4.3 Error Analysis and Interpretability

The confusion matrix (see Appendix B, Figure 4)
confirms the model’s consistent performance: only
three mathematical examples were misclassified
as non-mathematical, and no false positives were
observed.

Zero-shot evaluations on held-out examples (Ap-
pendix C, Table 3) revealed a similar generalization
capacity. The model correctly labeled unseen con-
cepts such as probability distribution and integral
calculus with high confidence, while remaining un-
certain in borderline cases. An inspection of errors
showed that school-related phrases such as school
project and homework folder introduced ambiguity
due to their lexical proximity to educational and
mathematical contexts.

We further explored the behavior of the models
through feature weight analysis (Appendix D, Fig-
ure 5). Some high-weight features aligned with
intuitive mathematical concepts. However, others
reflected corpus-specific statistical artifacts, terms
email or document identifiers that lacked semantic
relevance. This contrast illustrates how statistical
models often rely on distributional regularities that
may not align with human notions of meaning, un-
derscoring the gap between symbolic interpretabil-
ity and statistical association.

5 Conclusions and Future Directions

Summary of Findings. This paper presented the
Compact Math Corpus (CMC), a syntactically an-
notated resource built from open-access instruc-
tional materials and processed using a lightweight
NLP pipeline based on spaCy Small and the
CoNLL-U format. Our goal was to enable struc-
tured linguistic analysis of mathematical language
in a format that supports downstream applications



such as terminology extraction and concept classi-
fication.

Through a comparison of TF-IDF bigrams be-
fore and after annotation, we confirmed that syn-
tactic information enhances the identification of
multiword expressions aligned with core mathe-
matical concepts. Furthermore, we constructed
a balanced dataset by combining CMC with UD-
EWT and found that a non-neural approach was
able to effectively distinguish mathematical from
general-domain content using only text-based fea-
tures.

These findings indicate that even a non-
pretrained, resource-efficient model can accurately
detect domain-specific content, provided the in-
put is linguistically enriched and well balanced.
The approach is computationally efficient and in-
terpretable, making it a suitable framework for ed-
ucational or resource-constrained NLP scenarios.
Although more powerful models may improve gen-
eralization on ambiguous input, our results pro-
vide evidence that structured features like those in
CoNLL-U can support accurate concept classifica-
tion in controlled settings.

Future Directions in Mathematical NLP Fu-
ture work will explore expanding the CMC with ad-
ditional textbooks across a broader range of math-
ematical topics, as well as refining the annotation
pipeline to improve linguistic coverage.

Furthermore, the classification task can be ex-
tended by incorporating richer context (e.g., sur-
rounding sentences or section-level cues) and test-
ing generalization on unseen technical or scientific
domains. Developing a small-scale gold-standard
evaluation set with human-labeled concept phrases
could further support benchmarking and model cal-
ibration.

An open direction for future research involves
integrating symbolic representations, such as for-
mulas or equation labels, with the current linguistic
layer remaining an open direction. Despite being
outside the scope of this initial study, such integra-
tion would enable a more comprehensive modeling
of mathematical discourse, combining syntactic
structure with symbolic reasoning.

6 Limitations

The main limitations of this study stem from its
resource-constrained setup and reliance on general-
purpose tools not specialized for mathematical lan-
guage. The use of the spaCy Small model,
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while efficient and accessible, introduces trade-
offs in parsing accuracy, particularly for domain-
specific terminology, symbolic expressions, and
non-standard syntactic constructions typical of
mathematical discourse.

Another concern involves the quality of the in-
put data. Although the CoNLL-U format assumes
clean, well-formed text, most of our source mate-
rial originated from PDFs, which are optimized for
visual layout rather than semantic structure. This
introduces common issues such as token merging
and sentence-boundary errors. Despite preprocess-
ing steps mitigated some of these problems, they
did not completely eliminate noise.

A further challenge lies in the lack of a domain-
specific, human-annotated gold standard. Without
a reliable reference for comparison, it is difficult
to measure parsing quality or validate the accuracy
of syntactic analyses. This restricts our ability to
compare tools rigorously or perform fine-grained
error analysis. Creating a gold-standard treebank
for mathematical texts within the CONLL-U frame-
work remains an open direction for future work.

Although compact models promote reproducibil-
ity and sustainability, they may underperform in
complex linguistic contexts where transformer-
based alternatives would offer greater accuracy. In
our case, the simplicity of the classification task
helped offset this topic, but it remains a relevant fac-
tor when considering more advanced downstream
applications.
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Appendix

This appendix provides supplementary material, including detailed linguistic annotations in the CONLL-U
style, as referenced in the main text.

A MathVista Experiment Results

The following graph comes from the MATHVISTA paper website at https://mathvista.github.
io/.

Results on Existing Foundation Models

Accuracy on the testmini set of MathVista (1,000 examples)

Human

GPT-4V (Playground)
Multimodal Bard

PoT GPT-4 (Caption+OCR)
CoT GPT-4 (Caption+OCR)
CoT ChatGPT (Caption+OCR)
CoT Claude-2 (Caption+OCR)

PoT ChatGPT (Caption+OCR) 26.8
LLaVA (LLaMA-2-13B) 26.1
InstructBLIP (Vicuna-7B) 25.3
LLaVAR 25.2
LLaMA-Adapter-V2 (7B) 239
miniGPT4 (LLaMA-2-7B) 231
mPLUG-Ow! (LLaMA-7B) 22.2
IDEFICS (9B-Instruct) 19.8
Random chance 17.9
0% 10% 20% 30% 40% 50% 60%

Accuracy scores of primary baselines on the testmini subset (1,000 examples) of @ MATHVISTA.
Both CoT GPT-4 and PoT GPT-4 are augmented with Bard captions and OCR text.

Figure 3: Foundation model performance on MathVista visual reasoning tasks.

B Confusion Matrix

Confusion Matrix

269

True Label
Non-Math

Math

288

Non-IMath Math
Predicted Label

Figure 4: Confusion matrix for the classification task. The model correctly classifies most instances, with only

a small number of false negatives, indicating effective performance in distinguishing mathematical from non-
mathematical concepts.
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C Zero Shot Predictions

Bigram Sentence Predicted Class | Probability

linear function A linear function represents a straight line on 1 (Math) 92.6%
a Cartesian plane and has a constant rate of
change.

probability distribution | The shape of a probability distribution affects 1 (Math) 81.6%
how likely specific outcomes are.

school project She worked late on her school project about 1 (Math)" 63.1%
environmental science.

integral calculus Integral calculus deals with accumulation and 1 (Math) 76.8%
the calculation of areas under curves.

homework folder He forgot his homework folder on the bus. 0 (Non-Math) 49.3%

Table 3: Zero-shot predictions on bigrams not seen during training. “Incorrect prediction — school project is not a

mathematical concept.

D Model Interpetation

Most Influential Features (Logistic Regression Weights)

we

linear

function -

row -

of q

vector -

number -

is

matrix

doc_id

weblog blogspot -
blogspot 1
sent_id reviews

Feature

sent_id answers
sent_id weblog A
weblog -

reviews -
answers -

sent_id email 4
email q

Non-Math (class 0)
EE Math (class 1)

Weight

Figure 5: Top weighted features from the logistic regression model. Positive weights (blue) indicate strong
association with mathematical concepts, while negative weights (orange) are associated with non-mathematical
content. Some features may reflect structural tokens (e.g., doc_id, email) from the dataset.
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