@inproceedings{sun-etal-2025-chain,
title = "From Chain to Tree: Refining Chain-like Rules into Tree-like Rules on Knowledge Graphs",
author = "Sun, Wangtao and
He, Shizhu and
Zhao, Jun and
Liu, Kang",
editor = "Liu, Kang and
Song, Yangqiu and
Han, Zhen and
Sifa, Rafet and
He, Shizhu and
Long, Yunfei",
booktitle = "Proceedings of Bridging Neurons and Symbols for Natural Language Processing and Knowledge Graphs Reasoning @ COLING 2025",
month = jan,
year = "2025",
address = "Abu Dhabi, UAE",
publisher = "ELRA and ICCL",
url = "https://aclanthology.org/2025.neusymbridge-1.4/",
pages = "31--39",
abstract = "With good explainability and controllability, rule-based methods play an important role in the task of Knowledge Graph Completion (KGC). However, existing studies primarily focused on learning chain-like rules, whose chain-like structure limits their expressive power. Consequently, chain-like rules often exhibit lower Standard Confidence, and are prone to the incorrect grounding values during reasoning, thus producing erroneous reasoning results. In this paper, we propose the concept of tree-like rules on knowledge graphs to expand the scope of the application and improve the reasoning ability of rule-based methods. To achieve this, we formalize the problem of tree-like rule refinement and propose an effective framework for refining chain-like rules into tree-like rules. Experimental evaluations on four public datasets demonstrate that the proposed framework can seamlessly adapt to various chain-like rule induction methods and the refined tree-like rules consistently exhibit higher Standard Confidence and achieve better performances than the original chain-like rules on link prediction tasks. Furthermore, we illustrate that the improvements brought by tree-like rules are positively correlated with the density of the knowledge graphs. The data and code of this paper can be available at https://github.com/forangel2014/tree-rule."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="sun-etal-2025-chain">
<titleInfo>
<title>From Chain to Tree: Refining Chain-like Rules into Tree-like Rules on Knowledge Graphs</title>
</titleInfo>
<name type="personal">
<namePart type="given">Wangtao</namePart>
<namePart type="family">Sun</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Shizhu</namePart>
<namePart type="family">He</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jun</namePart>
<namePart type="family">Zhao</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kang</namePart>
<namePart type="family">Liu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-01</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of Bridging Neurons and Symbols for Natural Language Processing and Knowledge Graphs Reasoning @ COLING 2025</title>
</titleInfo>
<name type="personal">
<namePart type="given">Kang</namePart>
<namePart type="family">Liu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yangqiu</namePart>
<namePart type="family">Song</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zhen</namePart>
<namePart type="family">Han</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Rafet</namePart>
<namePart type="family">Sifa</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Shizhu</namePart>
<namePart type="family">He</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yunfei</namePart>
<namePart type="family">Long</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>ELRA and ICCL</publisher>
<place>
<placeTerm type="text">Abu Dhabi, UAE</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>With good explainability and controllability, rule-based methods play an important role in the task of Knowledge Graph Completion (KGC). However, existing studies primarily focused on learning chain-like rules, whose chain-like structure limits their expressive power. Consequently, chain-like rules often exhibit lower Standard Confidence, and are prone to the incorrect grounding values during reasoning, thus producing erroneous reasoning results. In this paper, we propose the concept of tree-like rules on knowledge graphs to expand the scope of the application and improve the reasoning ability of rule-based methods. To achieve this, we formalize the problem of tree-like rule refinement and propose an effective framework for refining chain-like rules into tree-like rules. Experimental evaluations on four public datasets demonstrate that the proposed framework can seamlessly adapt to various chain-like rule induction methods and the refined tree-like rules consistently exhibit higher Standard Confidence and achieve better performances than the original chain-like rules on link prediction tasks. Furthermore, we illustrate that the improvements brought by tree-like rules are positively correlated with the density of the knowledge graphs. The data and code of this paper can be available at https://github.com/forangel2014/tree-rule.</abstract>
<identifier type="citekey">sun-etal-2025-chain</identifier>
<location>
<url>https://aclanthology.org/2025.neusymbridge-1.4/</url>
</location>
<part>
<date>2025-01</date>
<extent unit="page">
<start>31</start>
<end>39</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T From Chain to Tree: Refining Chain-like Rules into Tree-like Rules on Knowledge Graphs
%A Sun, Wangtao
%A He, Shizhu
%A Zhao, Jun
%A Liu, Kang
%Y Liu, Kang
%Y Song, Yangqiu
%Y Han, Zhen
%Y Sifa, Rafet
%Y He, Shizhu
%Y Long, Yunfei
%S Proceedings of Bridging Neurons and Symbols for Natural Language Processing and Knowledge Graphs Reasoning @ COLING 2025
%D 2025
%8 January
%I ELRA and ICCL
%C Abu Dhabi, UAE
%F sun-etal-2025-chain
%X With good explainability and controllability, rule-based methods play an important role in the task of Knowledge Graph Completion (KGC). However, existing studies primarily focused on learning chain-like rules, whose chain-like structure limits their expressive power. Consequently, chain-like rules often exhibit lower Standard Confidence, and are prone to the incorrect grounding values during reasoning, thus producing erroneous reasoning results. In this paper, we propose the concept of tree-like rules on knowledge graphs to expand the scope of the application and improve the reasoning ability of rule-based methods. To achieve this, we formalize the problem of tree-like rule refinement and propose an effective framework for refining chain-like rules into tree-like rules. Experimental evaluations on four public datasets demonstrate that the proposed framework can seamlessly adapt to various chain-like rule induction methods and the refined tree-like rules consistently exhibit higher Standard Confidence and achieve better performances than the original chain-like rules on link prediction tasks. Furthermore, we illustrate that the improvements brought by tree-like rules are positively correlated with the density of the knowledge graphs. The data and code of this paper can be available at https://github.com/forangel2014/tree-rule.
%U https://aclanthology.org/2025.neusymbridge-1.4/
%P 31-39
Markdown (Informal)
[From Chain to Tree: Refining Chain-like Rules into Tree-like Rules on Knowledge Graphs](https://aclanthology.org/2025.neusymbridge-1.4/) (Sun et al., NeusymBridge 2025)
ACL