Neuro-Conceptual Artificial Intelligence: Integrating OPM with Deep Learning to Enhance Question Answering Quality

Xin Kang, Veronika Shteyngardt, Yuhan Wang, Dov Dori


Abstract
Knowledge representation and reasoning are critical challenges in Artificial Intelligence (AI), particularly in integrating neural and symbolic approaches to achieve explainable and transparent AI systems. Traditional knowledge representation methods often fall short of capturing complex processes and state changes. We introduce Neuro-Conceptual Artificial Intelligence (NCAI), a specialization of the neuro-symbolic AI approach that integrates conceptual modeling using Object-Process Methodology (OPM) ISO 19450:2024 with deep learning to enhance question-answering (QA) quality. By converting natural language text into OPM models using in-context learning, NCAI leverages the expressive power of OPM to represent complex OPM elements—processes, objects, and states—beyond what traditional triplet-based knowledge graphs can easily capture. This rich structured knowledge representation improves reasoning transparency and answer accuracy in an OPM-QA system. We further propose transparency evaluation metrics to quantitatively measure how faithfully the predicted reasoning aligns with OPM-based conceptual logic. Our experiments demonstrate that NCAI outperforms traditional methods, highlighting its potential for advancing neuro-symbolic AI by providing rich knowledge representations, measurable transparency, and improved reasoning.
Anthology ID:
2025.neusymbridge-1.8
Volume:
Proceedings of Bridging Neurons and Symbols for Natural Language Processing and Knowledge Graphs Reasoning @ COLING 2025
Month:
January
Year:
2025
Address:
Abu Dhabi, UAE
Editors:
Kang Liu, Yangqiu Song, Zhen Han, Rafet Sifa, Shizhu He, Yunfei Long
Venues:
NeusymBridge | WS
SIG:
Publisher:
ELRA and ICCL
Note:
Pages:
71–85
Language:
URL:
https://aclanthology.org/2025.neusymbridge-1.8/
DOI:
Bibkey:
Cite (ACL):
Xin Kang, Veronika Shteyngardt, Yuhan Wang, and Dov Dori. 2025. Neuro-Conceptual Artificial Intelligence: Integrating OPM with Deep Learning to Enhance Question Answering Quality. In Proceedings of Bridging Neurons and Symbols for Natural Language Processing and Knowledge Graphs Reasoning @ COLING 2025, pages 71–85, Abu Dhabi, UAE. ELRA and ICCL.
Cite (Informal):
Neuro-Conceptual Artificial Intelligence: Integrating OPM with Deep Learning to Enhance Question Answering Quality (Kang et al., NeusymBridge 2025)
Copy Citation:
PDF:
https://aclanthology.org/2025.neusymbridge-1.8.pdf