@inproceedings{shukla-etal-2025-nyaygraph,
title = "{N}yay{G}raph: A Knowledge Graph Enhanced Approach for Legal Statute Identification in {I}ndian Law using Large Language Models",
author = "Shukla, Siddharth and
Tyagi, Tanuj and
Bisht, Abhay Singh and
Sharma, Ashish and
Agarwal, Basant",
editor = "Aletras, Nikolaos and
Chalkidis, Ilias and
Barrett, Leslie and
Goanț{\u{a}}, C{\u{a}}t{\u{a}}lina and
Preoțiuc-Pietro, Daniel and
Spanakis, Gerasimos",
booktitle = "Proceedings of the Natural Legal Language Processing Workshop 2025",
month = nov,
year = "2025",
address = "Suzhou, China",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.nllp-1.11/",
pages = "147--156",
ISBN = "979-8-89176-338-8",
abstract = "One of the first steps in the judicial processis finding the applicable statutes/laws basedon the facts of the current situation. Manu-ally searching through multiple legislation andlaws to find the relevant statutes can be time-consuming, making the Legal Statute Identi-fication (LSI) task important for reducing theworkload, helping improve the efficiency ofthe judicial system. To address this gap, wepresent a novel knowledge graph-enhanced ap-proach for Legal Statute Identification (LSI) inIndian legal documents using Large LanguageModels, incorporating structural relationshipsfrom the Indian Penal Code (IPC) the main leg-islation codifying criminal laws in India. Onthe IL-TUR benchmark, explicit KG inferencesignificantly enhances recall without sacrific-ing competitive precision. Augmenting LLMprompts with KG context, though, merely en-hances coverage at the expense of precision,underscoring the importance of good rerank-ing techniques. This research provides the firstcomplete IPC knowledge graph and shows thatorganized legal relations richly augment statuteretrieval, subject to being integrated into lan-guage models in a judicious way. Our code anddata are publicly available at Github. (https://github.com/SiddharthShukla48/NyayGraph)"
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="shukla-etal-2025-nyaygraph">
<titleInfo>
<title>NyayGraph: A Knowledge Graph Enhanced Approach for Legal Statute Identification in Indian Law using Large Language Models</title>
</titleInfo>
<name type="personal">
<namePart type="given">Siddharth</namePart>
<namePart type="family">Shukla</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tanuj</namePart>
<namePart type="family">Tyagi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Abhay</namePart>
<namePart type="given">Singh</namePart>
<namePart type="family">Bisht</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ashish</namePart>
<namePart type="family">Sharma</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Basant</namePart>
<namePart type="family">Agarwal</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Natural Legal Language Processing Workshop 2025</title>
</titleInfo>
<name type="personal">
<namePart type="given">Nikolaos</namePart>
<namePart type="family">Aletras</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ilias</namePart>
<namePart type="family">Chalkidis</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Leslie</namePart>
<namePart type="family">Barrett</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Cătălina</namePart>
<namePart type="family">Goanță</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Daniel</namePart>
<namePart type="family">Preoțiuc-Pietro</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Gerasimos</namePart>
<namePart type="family">Spanakis</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Suzhou, China</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-338-8</identifier>
</relatedItem>
<abstract>One of the first steps in the judicial processis finding the applicable statutes/laws basedon the facts of the current situation. Manu-ally searching through multiple legislation andlaws to find the relevant statutes can be time-consuming, making the Legal Statute Identi-fication (LSI) task important for reducing theworkload, helping improve the efficiency ofthe judicial system. To address this gap, wepresent a novel knowledge graph-enhanced ap-proach for Legal Statute Identification (LSI) inIndian legal documents using Large LanguageModels, incorporating structural relationshipsfrom the Indian Penal Code (IPC) the main leg-islation codifying criminal laws in India. Onthe IL-TUR benchmark, explicit KG inferencesignificantly enhances recall without sacrific-ing competitive precision. Augmenting LLMprompts with KG context, though, merely en-hances coverage at the expense of precision,underscoring the importance of good rerank-ing techniques. This research provides the firstcomplete IPC knowledge graph and shows thatorganized legal relations richly augment statuteretrieval, subject to being integrated into lan-guage models in a judicious way. Our code anddata are publicly available at Github. (https://github.com/SiddharthShukla48/NyayGraph)</abstract>
<identifier type="citekey">shukla-etal-2025-nyaygraph</identifier>
<location>
<url>https://aclanthology.org/2025.nllp-1.11/</url>
</location>
<part>
<date>2025-11</date>
<extent unit="page">
<start>147</start>
<end>156</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T NyayGraph: A Knowledge Graph Enhanced Approach for Legal Statute Identification in Indian Law using Large Language Models
%A Shukla, Siddharth
%A Tyagi, Tanuj
%A Bisht, Abhay Singh
%A Sharma, Ashish
%A Agarwal, Basant
%Y Aletras, Nikolaos
%Y Chalkidis, Ilias
%Y Barrett, Leslie
%Y Goanță, Cătălina
%Y Preoțiuc-Pietro, Daniel
%Y Spanakis, Gerasimos
%S Proceedings of the Natural Legal Language Processing Workshop 2025
%D 2025
%8 November
%I Association for Computational Linguistics
%C Suzhou, China
%@ 979-8-89176-338-8
%F shukla-etal-2025-nyaygraph
%X One of the first steps in the judicial processis finding the applicable statutes/laws basedon the facts of the current situation. Manu-ally searching through multiple legislation andlaws to find the relevant statutes can be time-consuming, making the Legal Statute Identi-fication (LSI) task important for reducing theworkload, helping improve the efficiency ofthe judicial system. To address this gap, wepresent a novel knowledge graph-enhanced ap-proach for Legal Statute Identification (LSI) inIndian legal documents using Large LanguageModels, incorporating structural relationshipsfrom the Indian Penal Code (IPC) the main leg-islation codifying criminal laws in India. Onthe IL-TUR benchmark, explicit KG inferencesignificantly enhances recall without sacrific-ing competitive precision. Augmenting LLMprompts with KG context, though, merely en-hances coverage at the expense of precision,underscoring the importance of good rerank-ing techniques. This research provides the firstcomplete IPC knowledge graph and shows thatorganized legal relations richly augment statuteretrieval, subject to being integrated into lan-guage models in a judicious way. Our code anddata are publicly available at Github. (https://github.com/SiddharthShukla48/NyayGraph)
%U https://aclanthology.org/2025.nllp-1.11/
%P 147-156
Markdown (Informal)
[NyayGraph: A Knowledge Graph Enhanced Approach for Legal Statute Identification in Indian Law using Large Language Models](https://aclanthology.org/2025.nllp-1.11/) (Shukla et al., NLLP 2025)
ACL