@inproceedings{michail-etal-2025-domain,
title = "Domain Adapted Text Summarization with Self-Generated Guidelines",
author = "Michail, Andrianos and
Rudnikowicz, Bartosz and
Fragkogiannis, Pavlos and
Kadar, Cristina",
editor = "Aletras, Nikolaos and
Chalkidis, Ilias and
Barrett, Leslie and
Goanț{\u{a}}, C{\u{a}}t{\u{a}}lina and
Preoțiuc-Pietro, Daniel and
Spanakis, Gerasimos",
booktitle = "Proceedings of the Natural Legal Language Processing Workshop 2025",
month = nov,
year = "2025",
address = "Suzhou, China",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.nllp-1.16/",
pages = "226--239",
ISBN = "979-8-89176-338-8",
abstract = "Text summarization systems face significant adaptation costs when deployed across diverse domains, requiring expensive few-shot learning or manual prompt engineering. We propose a cost-effective domain adaptation framework that generates reusable summarization guidelines using only two reference summaries and three LLM inferences. Our approach works by having the model compare its own generated summaries against domain specific reference summaries in a one time preparation step that derives concise natural language guidelines that capture the summarization patterns of the target domain. These guidelines are then appended to the summarization prompt to adapt the LLM to the target domain at a minimal cost. We evaluate our method across diverse model sizes on three distinct summarization domains: Lawsuits, ArXiv papers, and Patents. Automatic metrics show that guideline-based adaptation achieves comparable or superior performance compared to in-context learning and zero-shot baselines. An LLM preference evaluation using the latest models shows that summaries generated using such guidelines are superior to the zero-shot or in-context learning summarization prompts. Our method enables efficient domain adaptation of text summarizer LLMs with a minimal resource overhead, making specialized summarization particularly accessible for agentic systems that require to process heterogeneous texts in enterprise environments."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="michail-etal-2025-domain">
<titleInfo>
<title>Domain Adapted Text Summarization with Self-Generated Guidelines</title>
</titleInfo>
<name type="personal">
<namePart type="given">Andrianos</namePart>
<namePart type="family">Michail</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Bartosz</namePart>
<namePart type="family">Rudnikowicz</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Pavlos</namePart>
<namePart type="family">Fragkogiannis</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Cristina</namePart>
<namePart type="family">Kadar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Natural Legal Language Processing Workshop 2025</title>
</titleInfo>
<name type="personal">
<namePart type="given">Nikolaos</namePart>
<namePart type="family">Aletras</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ilias</namePart>
<namePart type="family">Chalkidis</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Leslie</namePart>
<namePart type="family">Barrett</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Cătălina</namePart>
<namePart type="family">Goanță</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Daniel</namePart>
<namePart type="family">Preoțiuc-Pietro</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Gerasimos</namePart>
<namePart type="family">Spanakis</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Suzhou, China</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-338-8</identifier>
</relatedItem>
<abstract>Text summarization systems face significant adaptation costs when deployed across diverse domains, requiring expensive few-shot learning or manual prompt engineering. We propose a cost-effective domain adaptation framework that generates reusable summarization guidelines using only two reference summaries and three LLM inferences. Our approach works by having the model compare its own generated summaries against domain specific reference summaries in a one time preparation step that derives concise natural language guidelines that capture the summarization patterns of the target domain. These guidelines are then appended to the summarization prompt to adapt the LLM to the target domain at a minimal cost. We evaluate our method across diverse model sizes on three distinct summarization domains: Lawsuits, ArXiv papers, and Patents. Automatic metrics show that guideline-based adaptation achieves comparable or superior performance compared to in-context learning and zero-shot baselines. An LLM preference evaluation using the latest models shows that summaries generated using such guidelines are superior to the zero-shot or in-context learning summarization prompts. Our method enables efficient domain adaptation of text summarizer LLMs with a minimal resource overhead, making specialized summarization particularly accessible for agentic systems that require to process heterogeneous texts in enterprise environments.</abstract>
<identifier type="citekey">michail-etal-2025-domain</identifier>
<location>
<url>https://aclanthology.org/2025.nllp-1.16/</url>
</location>
<part>
<date>2025-11</date>
<extent unit="page">
<start>226</start>
<end>239</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Domain Adapted Text Summarization with Self-Generated Guidelines
%A Michail, Andrianos
%A Rudnikowicz, Bartosz
%A Fragkogiannis, Pavlos
%A Kadar, Cristina
%Y Aletras, Nikolaos
%Y Chalkidis, Ilias
%Y Barrett, Leslie
%Y Goanță, Cătălina
%Y Preoțiuc-Pietro, Daniel
%Y Spanakis, Gerasimos
%S Proceedings of the Natural Legal Language Processing Workshop 2025
%D 2025
%8 November
%I Association for Computational Linguistics
%C Suzhou, China
%@ 979-8-89176-338-8
%F michail-etal-2025-domain
%X Text summarization systems face significant adaptation costs when deployed across diverse domains, requiring expensive few-shot learning or manual prompt engineering. We propose a cost-effective domain adaptation framework that generates reusable summarization guidelines using only two reference summaries and three LLM inferences. Our approach works by having the model compare its own generated summaries against domain specific reference summaries in a one time preparation step that derives concise natural language guidelines that capture the summarization patterns of the target domain. These guidelines are then appended to the summarization prompt to adapt the LLM to the target domain at a minimal cost. We evaluate our method across diverse model sizes on three distinct summarization domains: Lawsuits, ArXiv papers, and Patents. Automatic metrics show that guideline-based adaptation achieves comparable or superior performance compared to in-context learning and zero-shot baselines. An LLM preference evaluation using the latest models shows that summaries generated using such guidelines are superior to the zero-shot or in-context learning summarization prompts. Our method enables efficient domain adaptation of text summarizer LLMs with a minimal resource overhead, making specialized summarization particularly accessible for agentic systems that require to process heterogeneous texts in enterprise environments.
%U https://aclanthology.org/2025.nllp-1.16/
%P 226-239
Markdown (Informal)
[Domain Adapted Text Summarization with Self-Generated Guidelines](https://aclanthology.org/2025.nllp-1.16/) (Michail et al., NLLP 2025)
ACL