@inproceedings{chheda-etal-2025-extract,
title = "Extract-Explain-Abstract: A Rhetorical Role-Driven Domain-Specific Summarisation Framework for {I}ndian Legal Documents",
author = "Chheda, Veer and
Ghaisas, Aaditya Uday and
Sankhe, Avantika and
Shekokar, Dr. Narendra",
editor = "Aletras, Nikolaos and
Chalkidis, Ilias and
Barrett, Leslie and
Goanț{\u{a}}, C{\u{a}}t{\u{a}}lina and
Preoțiuc-Pietro, Daniel and
Spanakis, Gerasimos",
booktitle = "Proceedings of the Natural Legal Language Processing Workshop 2025",
month = nov,
year = "2025",
address = "Suzhou, China",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.nllp-1.32/",
pages = "439--455",
ISBN = "979-8-89176-338-8",
abstract = "Legal documents are characterized by theirlength, intricacy, and dense use of jargon, making efficacious summarisation both paramountand challenging. Existing zero-shot methodologies in small language models struggle tosimplify this jargon and are prone to punts andhallucinations with longer prompts. This paperintroduces the Rhetorical Role-based Extract-Explain-Abstract (EEA) Framework, a novelthree-stage methodology for summarisation ofIndian legal documents in low-resource settings. The approach begins by segmenting legaltexts using rhetorical roles, such as facts, issues and arguments, through a domain-specificphrase corpus and extraction based on TF-IDF.In the explanation stage, the segmented output is enriched with logical connections to ensure coherence and legal fidelity. The final abstraction phase condenses these interlinked segments into cogent, high-level summaries thatpreserve critical legal reasoning. Experimentson Indian legal datasets show that the EEAframework typically outperforms in ROUGE,BERTScore, Flesch Reading Ease, Age of Acquisition, SummaC and human evaluations. Wealso employ InLegalBERTScore as a metric tocapture domain specific semantics of Indianlegal documents."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="chheda-etal-2025-extract">
<titleInfo>
<title>Extract-Explain-Abstract: A Rhetorical Role-Driven Domain-Specific Summarisation Framework for Indian Legal Documents</title>
</titleInfo>
<name type="personal">
<namePart type="given">Veer</namePart>
<namePart type="family">Chheda</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Aaditya</namePart>
<namePart type="given">Uday</namePart>
<namePart type="family">Ghaisas</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Avantika</namePart>
<namePart type="family">Sankhe</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Dr.</namePart>
<namePart type="given">Narendra</namePart>
<namePart type="family">Shekokar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Natural Legal Language Processing Workshop 2025</title>
</titleInfo>
<name type="personal">
<namePart type="given">Nikolaos</namePart>
<namePart type="family">Aletras</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ilias</namePart>
<namePart type="family">Chalkidis</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Leslie</namePart>
<namePart type="family">Barrett</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Cătălina</namePart>
<namePart type="family">Goanță</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Daniel</namePart>
<namePart type="family">Preoțiuc-Pietro</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Gerasimos</namePart>
<namePart type="family">Spanakis</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Suzhou, China</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-338-8</identifier>
</relatedItem>
<abstract>Legal documents are characterized by theirlength, intricacy, and dense use of jargon, making efficacious summarisation both paramountand challenging. Existing zero-shot methodologies in small language models struggle tosimplify this jargon and are prone to punts andhallucinations with longer prompts. This paperintroduces the Rhetorical Role-based Extract-Explain-Abstract (EEA) Framework, a novelthree-stage methodology for summarisation ofIndian legal documents in low-resource settings. The approach begins by segmenting legaltexts using rhetorical roles, such as facts, issues and arguments, through a domain-specificphrase corpus and extraction based on TF-IDF.In the explanation stage, the segmented output is enriched with logical connections to ensure coherence and legal fidelity. The final abstraction phase condenses these interlinked segments into cogent, high-level summaries thatpreserve critical legal reasoning. Experimentson Indian legal datasets show that the EEAframework typically outperforms in ROUGE,BERTScore, Flesch Reading Ease, Age of Acquisition, SummaC and human evaluations. Wealso employ InLegalBERTScore as a metric tocapture domain specific semantics of Indianlegal documents.</abstract>
<identifier type="citekey">chheda-etal-2025-extract</identifier>
<location>
<url>https://aclanthology.org/2025.nllp-1.32/</url>
</location>
<part>
<date>2025-11</date>
<extent unit="page">
<start>439</start>
<end>455</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Extract-Explain-Abstract: A Rhetorical Role-Driven Domain-Specific Summarisation Framework for Indian Legal Documents
%A Chheda, Veer
%A Ghaisas, Aaditya Uday
%A Sankhe, Avantika
%A Shekokar, Dr. Narendra
%Y Aletras, Nikolaos
%Y Chalkidis, Ilias
%Y Barrett, Leslie
%Y Goanță, Cătălina
%Y Preoțiuc-Pietro, Daniel
%Y Spanakis, Gerasimos
%S Proceedings of the Natural Legal Language Processing Workshop 2025
%D 2025
%8 November
%I Association for Computational Linguistics
%C Suzhou, China
%@ 979-8-89176-338-8
%F chheda-etal-2025-extract
%X Legal documents are characterized by theirlength, intricacy, and dense use of jargon, making efficacious summarisation both paramountand challenging. Existing zero-shot methodologies in small language models struggle tosimplify this jargon and are prone to punts andhallucinations with longer prompts. This paperintroduces the Rhetorical Role-based Extract-Explain-Abstract (EEA) Framework, a novelthree-stage methodology for summarisation ofIndian legal documents in low-resource settings. The approach begins by segmenting legaltexts using rhetorical roles, such as facts, issues and arguments, through a domain-specificphrase corpus and extraction based on TF-IDF.In the explanation stage, the segmented output is enriched with logical connections to ensure coherence and legal fidelity. The final abstraction phase condenses these interlinked segments into cogent, high-level summaries thatpreserve critical legal reasoning. Experimentson Indian legal datasets show that the EEAframework typically outperforms in ROUGE,BERTScore, Flesch Reading Ease, Age of Acquisition, SummaC and human evaluations. Wealso employ InLegalBERTScore as a metric tocapture domain specific semantics of Indianlegal documents.
%U https://aclanthology.org/2025.nllp-1.32/
%P 439-455
Markdown (Informal)
[Extract-Explain-Abstract: A Rhetorical Role-Driven Domain-Specific Summarisation Framework for Indian Legal Documents](https://aclanthology.org/2025.nllp-1.32/) (Chheda et al., NLLP 2025)
ACL