@inproceedings{messner-lippincott-2025-transferring,
title = "Transferring Extreme Subword Style Using Ngram Model-Based Logit Scaling",
author = "Messner, Craig and
Lippincott, Tom",
editor = {H{\"a}m{\"a}l{\"a}inen, Mika and
{\"O}hman, Emily and
Bizzoni, Yuri and
Miyagawa, So and
Alnajjar, Khalid},
booktitle = "Proceedings of the 5th International Conference on Natural Language Processing for Digital Humanities",
month = may,
year = "2025",
address = "Albuquerque, USA",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.nlp4dh-1.24/",
doi = "10.18653/v1/2025.nlp4dh-1.24",
pages = "272--280",
ISBN = "979-8-89176-234-3",
abstract = "We present an ngram model-based logit scaling technique that effectively transfers extreme subword stylistic variation to large language models at inference time. We demonstrate its efficacy by tracking the perplexity of generated text with respect to the ngram interpolated and original versions of an evaluation model. Minimizing the former measure while the latter approaches the perplexity of a text produced by a target author or character lets us select a sufficient degree of adaptation while retaining fluency."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="messner-lippincott-2025-transferring">
<titleInfo>
<title>Transferring Extreme Subword Style Using Ngram Model-Based Logit Scaling</title>
</titleInfo>
<name type="personal">
<namePart type="given">Craig</namePart>
<namePart type="family">Messner</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tom</namePart>
<namePart type="family">Lippincott</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-05</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 5th International Conference on Natural Language Processing for Digital Humanities</title>
</titleInfo>
<name type="personal">
<namePart type="given">Mika</namePart>
<namePart type="family">Hämäläinen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Emily</namePart>
<namePart type="family">Öhman</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yuri</namePart>
<namePart type="family">Bizzoni</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">So</namePart>
<namePart type="family">Miyagawa</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Khalid</namePart>
<namePart type="family">Alnajjar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Albuquerque, USA</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-234-3</identifier>
</relatedItem>
<abstract>We present an ngram model-based logit scaling technique that effectively transfers extreme subword stylistic variation to large language models at inference time. We demonstrate its efficacy by tracking the perplexity of generated text with respect to the ngram interpolated and original versions of an evaluation model. Minimizing the former measure while the latter approaches the perplexity of a text produced by a target author or character lets us select a sufficient degree of adaptation while retaining fluency.</abstract>
<identifier type="citekey">messner-lippincott-2025-transferring</identifier>
<identifier type="doi">10.18653/v1/2025.nlp4dh-1.24</identifier>
<location>
<url>https://aclanthology.org/2025.nlp4dh-1.24/</url>
</location>
<part>
<date>2025-05</date>
<extent unit="page">
<start>272</start>
<end>280</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Transferring Extreme Subword Style Using Ngram Model-Based Logit Scaling
%A Messner, Craig
%A Lippincott, Tom
%Y Hämäläinen, Mika
%Y Öhman, Emily
%Y Bizzoni, Yuri
%Y Miyagawa, So
%Y Alnajjar, Khalid
%S Proceedings of the 5th International Conference on Natural Language Processing for Digital Humanities
%D 2025
%8 May
%I Association for Computational Linguistics
%C Albuquerque, USA
%@ 979-8-89176-234-3
%F messner-lippincott-2025-transferring
%X We present an ngram model-based logit scaling technique that effectively transfers extreme subword stylistic variation to large language models at inference time. We demonstrate its efficacy by tracking the perplexity of generated text with respect to the ngram interpolated and original versions of an evaluation model. Minimizing the former measure while the latter approaches the perplexity of a text produced by a target author or character lets us select a sufficient degree of adaptation while retaining fluency.
%R 10.18653/v1/2025.nlp4dh-1.24
%U https://aclanthology.org/2025.nlp4dh-1.24/
%U https://doi.org/10.18653/v1/2025.nlp4dh-1.24
%P 272-280
Markdown (Informal)
[Transferring Extreme Subword Style Using Ngram Model-Based Logit Scaling](https://aclanthology.org/2025.nlp4dh-1.24/) (Messner & Lippincott, NLP4DH 2025)
ACL