@inproceedings{retkowski-etal-2025-ai,
title = "The {AI} Co-Ethnographer: How Far Can Automation Take Qualitative Research?",
author = "Retkowski, Fabian and
Sudmann, Andreas and
Waibel, Alexander",
editor = {H{\"a}m{\"a}l{\"a}inen, Mika and
{\"O}hman, Emily and
Bizzoni, Yuri and
Miyagawa, So and
Alnajjar, Khalid},
booktitle = "Proceedings of the 5th International Conference on Natural Language Processing for Digital Humanities",
month = may,
year = "2025",
address = "Albuquerque, USA",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.nlp4dh-1.8/",
doi = "10.18653/v1/2025.nlp4dh-1.8",
pages = "73--90",
ISBN = "979-8-89176-234-3",
abstract = "Qualitative research often involves labor-intensive processes that are difficult to scale while preserving analytical depth. This paper introduces The AI Co-Ethnographer (AICoE), a novel end-to-end pipeline developed for qualitative research and designed to move beyond the limitations of simply automating code assignments, offering a more integrated approach. AICoE organizes the entire process, encompassing open coding, code consolidation, code application, and even pattern discovery, leading to a comprehensive analysis of qualitative data."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="retkowski-etal-2025-ai">
<titleInfo>
<title>The AI Co-Ethnographer: How Far Can Automation Take Qualitative Research?</title>
</titleInfo>
<name type="personal">
<namePart type="given">Fabian</namePart>
<namePart type="family">Retkowski</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Andreas</namePart>
<namePart type="family">Sudmann</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alexander</namePart>
<namePart type="family">Waibel</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-05</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 5th International Conference on Natural Language Processing for Digital Humanities</title>
</titleInfo>
<name type="personal">
<namePart type="given">Mika</namePart>
<namePart type="family">Hämäläinen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Emily</namePart>
<namePart type="family">Öhman</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yuri</namePart>
<namePart type="family">Bizzoni</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">So</namePart>
<namePart type="family">Miyagawa</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Khalid</namePart>
<namePart type="family">Alnajjar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Albuquerque, USA</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-234-3</identifier>
</relatedItem>
<abstract>Qualitative research often involves labor-intensive processes that are difficult to scale while preserving analytical depth. This paper introduces The AI Co-Ethnographer (AICoE), a novel end-to-end pipeline developed for qualitative research and designed to move beyond the limitations of simply automating code assignments, offering a more integrated approach. AICoE organizes the entire process, encompassing open coding, code consolidation, code application, and even pattern discovery, leading to a comprehensive analysis of qualitative data.</abstract>
<identifier type="citekey">retkowski-etal-2025-ai</identifier>
<identifier type="doi">10.18653/v1/2025.nlp4dh-1.8</identifier>
<location>
<url>https://aclanthology.org/2025.nlp4dh-1.8/</url>
</location>
<part>
<date>2025-05</date>
<extent unit="page">
<start>73</start>
<end>90</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T The AI Co-Ethnographer: How Far Can Automation Take Qualitative Research?
%A Retkowski, Fabian
%A Sudmann, Andreas
%A Waibel, Alexander
%Y Hämäläinen, Mika
%Y Öhman, Emily
%Y Bizzoni, Yuri
%Y Miyagawa, So
%Y Alnajjar, Khalid
%S Proceedings of the 5th International Conference on Natural Language Processing for Digital Humanities
%D 2025
%8 May
%I Association for Computational Linguistics
%C Albuquerque, USA
%@ 979-8-89176-234-3
%F retkowski-etal-2025-ai
%X Qualitative research often involves labor-intensive processes that are difficult to scale while preserving analytical depth. This paper introduces The AI Co-Ethnographer (AICoE), a novel end-to-end pipeline developed for qualitative research and designed to move beyond the limitations of simply automating code assignments, offering a more integrated approach. AICoE organizes the entire process, encompassing open coding, code consolidation, code application, and even pattern discovery, leading to a comprehensive analysis of qualitative data.
%R 10.18653/v1/2025.nlp4dh-1.8
%U https://aclanthology.org/2025.nlp4dh-1.8/
%U https://doi.org/10.18653/v1/2025.nlp4dh-1.8
%P 73-90
Markdown (Informal)
[The AI Co-Ethnographer: How Far Can Automation Take Qualitative Research?](https://aclanthology.org/2025.nlp4dh-1.8/) (Retkowski et al., NLP4DH 2025)
ACL