@inproceedings{peura-etal-2025-perspectives,
title = "Perspectives on Forests and Forestry in {Finnish} Online Discussions - A Topic Modeling Approach to Suomi24",
author = "Peura, Telma and
Krizs{\'a}n, Attila and
Kuusalu, Salla-Riikka and
Laippala, Veronika",
editor = "Basile, Valerio and
Bosco, Cristina and
Grasso, Francesca and
Ibrohim, Muhammad Okky and
Skeppstedt, Maria and
Stede, Manfred",
booktitle = "Proceedings of the 1st Workshop on Ecology, Environment, and Natural Language Processing (NLP4Ecology2025)",
month = mar,
year = "2025",
address = "Tallinn, Estonia",
publisher = "University of Tartu Library",
url = "https://aclanthology.org/2025.nlp4ecology-1.5/",
pages = "10--15",
ISBN = "978-9908-53-114-4",
abstract = "This paper explores how forests and forest industry are perceived on the largest online discussion forum in Finland, Suomi24 ({`}Finland24'). Using 30,636 posts published in 2014{--}2020, we investigate what kind of topics and perspectives towards forest management can be found. We use BERTopic as our topic modeling approach and evaluate the results of its different modular combinations. As the dataset is not labeled, we demonstrate the validity of our best model through illustrating some of the topics about forest use. The results show that a combination of UMAP and K-means leads to the best topic quality. Our exploratory qualitative analysis indicates that the posts reflect polarized discourses between the forest industry and forest conservation adherents."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="peura-etal-2025-perspectives">
<titleInfo>
<title>Perspectives on Forests and Forestry in Finnish Online Discussions - A Topic Modeling Approach to Suomi24</title>
</titleInfo>
<name type="personal">
<namePart type="given">Telma</namePart>
<namePart type="family">Peura</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Attila</namePart>
<namePart type="family">Krizsán</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Salla-Riikka</namePart>
<namePart type="family">Kuusalu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Veronika</namePart>
<namePart type="family">Laippala</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-03</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 1st Workshop on Ecology, Environment, and Natural Language Processing (NLP4Ecology2025)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Valerio</namePart>
<namePart type="family">Basile</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Cristina</namePart>
<namePart type="family">Bosco</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Francesca</namePart>
<namePart type="family">Grasso</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Muhammad</namePart>
<namePart type="given">Okky</namePart>
<namePart type="family">Ibrohim</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Maria</namePart>
<namePart type="family">Skeppstedt</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Manfred</namePart>
<namePart type="family">Stede</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>University of Tartu Library</publisher>
<place>
<placeTerm type="text">Tallinn, Estonia</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">978-9908-53-114-4</identifier>
</relatedItem>
<abstract>This paper explores how forests and forest industry are perceived on the largest online discussion forum in Finland, Suomi24 (‘Finland24’). Using 30,636 posts published in 2014–2020, we investigate what kind of topics and perspectives towards forest management can be found. We use BERTopic as our topic modeling approach and evaluate the results of its different modular combinations. As the dataset is not labeled, we demonstrate the validity of our best model through illustrating some of the topics about forest use. The results show that a combination of UMAP and K-means leads to the best topic quality. Our exploratory qualitative analysis indicates that the posts reflect polarized discourses between the forest industry and forest conservation adherents.</abstract>
<identifier type="citekey">peura-etal-2025-perspectives</identifier>
<location>
<url>https://aclanthology.org/2025.nlp4ecology-1.5/</url>
</location>
<part>
<date>2025-03</date>
<extent unit="page">
<start>10</start>
<end>15</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Perspectives on Forests and Forestry in Finnish Online Discussions - A Topic Modeling Approach to Suomi24
%A Peura, Telma
%A Krizsán, Attila
%A Kuusalu, Salla-Riikka
%A Laippala, Veronika
%Y Basile, Valerio
%Y Bosco, Cristina
%Y Grasso, Francesca
%Y Ibrohim, Muhammad Okky
%Y Skeppstedt, Maria
%Y Stede, Manfred
%S Proceedings of the 1st Workshop on Ecology, Environment, and Natural Language Processing (NLP4Ecology2025)
%D 2025
%8 March
%I University of Tartu Library
%C Tallinn, Estonia
%@ 978-9908-53-114-4
%F peura-etal-2025-perspectives
%X This paper explores how forests and forest industry are perceived on the largest online discussion forum in Finland, Suomi24 (‘Finland24’). Using 30,636 posts published in 2014–2020, we investigate what kind of topics and perspectives towards forest management can be found. We use BERTopic as our topic modeling approach and evaluate the results of its different modular combinations. As the dataset is not labeled, we demonstrate the validity of our best model through illustrating some of the topics about forest use. The results show that a combination of UMAP and K-means leads to the best topic quality. Our exploratory qualitative analysis indicates that the posts reflect polarized discourses between the forest industry and forest conservation adherents.
%U https://aclanthology.org/2025.nlp4ecology-1.5/
%P 10-15
Markdown (Informal)
[Perspectives on Forests and Forestry in Finnish Online Discussions - A Topic Modeling Approach to Suomi24](https://aclanthology.org/2025.nlp4ecology-1.5/) (Peura et al., NLP4Ecology 2025)
ACL