@inproceedings{banerjee-etal-2025-multi,
title = "Multi-Task Learning approach to identify sentences with impact and affected location in a disaster news report",
author = "Banerjee, Sumanta and
Mukherjee, Shyamapada and
Bandyopadhyay, Sivaji",
editor = "Atwell, Katherine and
Biester, Laura and
Borah, Angana and
Dementieva, Daryna and
Ignat, Oana and
Kotonya, Neema and
Liu, Ziyi and
Wan, Ruyuan and
Wilson, Steven and
Zhao, Jieyu",
booktitle = "Proceedings of the Fourth Workshop on NLP for Positive Impact (NLP4PI)",
month = jul,
year = "2025",
address = "Vienna, Austria",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.nlp4pi-1.19/",
doi = "10.18653/v1/2025.nlp4pi-1.19",
pages = "229--238",
ISBN = "978-1-959429-19-7",
abstract = "The first priority of action in the Sendai Framework for Disaster Risk Reduction 2015-2030 advocates the understanding of disaster risk by collecting and processing practical information related to disasters. A smart collection may be the compilation of relevant and summarized news articles focused on some key pieces of information such as disaster event type, geographic location(s), and impacts. In this article, a Multi-Task Learning (MTL) based end-to-end model has been developed to perform three related tasks: sentence classification depending on the presence of (1) relevant locations and (2) impact information to generate a summary,and (3) identification of the causes or event types in disaster news. Each of the three tasks is formulated as a multilabel binary classification problem. The results of the proposed MTL model have been compared with three popular transformer models: BERT, RoBERTa, and ALBERT. It is observed that the proposed model showed better performance scores than the other models in most cases."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="banerjee-etal-2025-multi">
<titleInfo>
<title>Multi-Task Learning approach to identify sentences with impact and affected location in a disaster news report</title>
</titleInfo>
<name type="personal">
<namePart type="given">Sumanta</namePart>
<namePart type="family">Banerjee</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Shyamapada</namePart>
<namePart type="family">Mukherjee</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sivaji</namePart>
<namePart type="family">Bandyopadhyay</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Fourth Workshop on NLP for Positive Impact (NLP4PI)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Katherine</namePart>
<namePart type="family">Atwell</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Laura</namePart>
<namePart type="family">Biester</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Angana</namePart>
<namePart type="family">Borah</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Daryna</namePart>
<namePart type="family">Dementieva</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Oana</namePart>
<namePart type="family">Ignat</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Neema</namePart>
<namePart type="family">Kotonya</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ziyi</namePart>
<namePart type="family">Liu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ruyuan</namePart>
<namePart type="family">Wan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Steven</namePart>
<namePart type="family">Wilson</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jieyu</namePart>
<namePart type="family">Zhao</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Vienna, Austria</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">978-1-959429-19-7</identifier>
</relatedItem>
<abstract>The first priority of action in the Sendai Framework for Disaster Risk Reduction 2015-2030 advocates the understanding of disaster risk by collecting and processing practical information related to disasters. A smart collection may be the compilation of relevant and summarized news articles focused on some key pieces of information such as disaster event type, geographic location(s), and impacts. In this article, a Multi-Task Learning (MTL) based end-to-end model has been developed to perform three related tasks: sentence classification depending on the presence of (1) relevant locations and (2) impact information to generate a summary,and (3) identification of the causes or event types in disaster news. Each of the three tasks is formulated as a multilabel binary classification problem. The results of the proposed MTL model have been compared with three popular transformer models: BERT, RoBERTa, and ALBERT. It is observed that the proposed model showed better performance scores than the other models in most cases.</abstract>
<identifier type="citekey">banerjee-etal-2025-multi</identifier>
<identifier type="doi">10.18653/v1/2025.nlp4pi-1.19</identifier>
<location>
<url>https://aclanthology.org/2025.nlp4pi-1.19/</url>
</location>
<part>
<date>2025-07</date>
<extent unit="page">
<start>229</start>
<end>238</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Multi-Task Learning approach to identify sentences with impact and affected location in a disaster news report
%A Banerjee, Sumanta
%A Mukherjee, Shyamapada
%A Bandyopadhyay, Sivaji
%Y Atwell, Katherine
%Y Biester, Laura
%Y Borah, Angana
%Y Dementieva, Daryna
%Y Ignat, Oana
%Y Kotonya, Neema
%Y Liu, Ziyi
%Y Wan, Ruyuan
%Y Wilson, Steven
%Y Zhao, Jieyu
%S Proceedings of the Fourth Workshop on NLP for Positive Impact (NLP4PI)
%D 2025
%8 July
%I Association for Computational Linguistics
%C Vienna, Austria
%@ 978-1-959429-19-7
%F banerjee-etal-2025-multi
%X The first priority of action in the Sendai Framework for Disaster Risk Reduction 2015-2030 advocates the understanding of disaster risk by collecting and processing practical information related to disasters. A smart collection may be the compilation of relevant and summarized news articles focused on some key pieces of information such as disaster event type, geographic location(s), and impacts. In this article, a Multi-Task Learning (MTL) based end-to-end model has been developed to perform three related tasks: sentence classification depending on the presence of (1) relevant locations and (2) impact information to generate a summary,and (3) identification of the causes or event types in disaster news. Each of the three tasks is formulated as a multilabel binary classification problem. The results of the proposed MTL model have been compared with three popular transformer models: BERT, RoBERTa, and ALBERT. It is observed that the proposed model showed better performance scores than the other models in most cases.
%R 10.18653/v1/2025.nlp4pi-1.19
%U https://aclanthology.org/2025.nlp4pi-1.19/
%U https://doi.org/10.18653/v1/2025.nlp4pi-1.19
%P 229-238
Markdown (Informal)
[Multi-Task Learning approach to identify sentences with impact and affected location in a disaster news report](https://aclanthology.org/2025.nlp4pi-1.19/) (Banerjee et al., NLP4PI 2025)
ACL