@inproceedings{shinde-etal-2025-patient,
title = "Patient-Centric Multilingual Question Answering and Summary Generation for Head and Neck Cancer and Blood Donation",
author = "Shinde, Amol and
Chitte, Saloni and
Pimpale, Prakash B.",
editor = "Krishnamurthy, Parameswari and
Mujadia, Vandan and
Misra Sharma, Dipti and
Mary Thomas, Hannah",
booktitle = "NLP-AI4Health",
month = dec,
year = "2025",
address = "Mumbai, India",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.nlpai4health-main.7/",
pages = "75--79",
ISBN = "979-8-89176-315-9",
abstract = "This paper describes a production minded multilingual system built for the NLP-AI4Health shared task, designed to produce concise, medically accurate summaries and patient friendly answers for Head and Neck Cancer (HNC) and Blood Donation. We finetune Gemma2-2B under a strict model size constraint ({\ensuremath{<}}3B parameters) using parameter efficient adaptation (LoRA) and practical engineering to handle long dialogues, code mixing, and multilingual scripts. The pipeline couples careful preprocessing, token aware chunking, and constrained decoding with lightweight retrieval and verification steps. We report per language quantitative metrics and provide an analysis of design choices and operational considerations for real world deployment."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="shinde-etal-2025-patient">
<titleInfo>
<title>Patient-Centric Multilingual Question Answering and Summary Generation for Head and Neck Cancer and Blood Donation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Amol</namePart>
<namePart type="family">Shinde</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Saloni</namePart>
<namePart type="family">Chitte</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Prakash</namePart>
<namePart type="given">B</namePart>
<namePart type="family">Pimpale</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-12</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>NLP-AI4Health</title>
</titleInfo>
<name type="personal">
<namePart type="given">Parameswari</namePart>
<namePart type="family">Krishnamurthy</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Vandan</namePart>
<namePart type="family">Mujadia</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Dipti</namePart>
<namePart type="family">Misra Sharma</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hannah</namePart>
<namePart type="family">Mary Thomas</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Mumbai, India</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-315-9</identifier>
</relatedItem>
<abstract>This paper describes a production minded multilingual system built for the NLP-AI4Health shared task, designed to produce concise, medically accurate summaries and patient friendly answers for Head and Neck Cancer (HNC) and Blood Donation. We finetune Gemma2-2B under a strict model size constraint (\ensuremath<3B parameters) using parameter efficient adaptation (LoRA) and practical engineering to handle long dialogues, code mixing, and multilingual scripts. The pipeline couples careful preprocessing, token aware chunking, and constrained decoding with lightweight retrieval and verification steps. We report per language quantitative metrics and provide an analysis of design choices and operational considerations for real world deployment.</abstract>
<identifier type="citekey">shinde-etal-2025-patient</identifier>
<location>
<url>https://aclanthology.org/2025.nlpai4health-main.7/</url>
</location>
<part>
<date>2025-12</date>
<extent unit="page">
<start>75</start>
<end>79</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Patient-Centric Multilingual Question Answering and Summary Generation for Head and Neck Cancer and Blood Donation
%A Shinde, Amol
%A Chitte, Saloni
%A Pimpale, Prakash B.
%Y Krishnamurthy, Parameswari
%Y Mujadia, Vandan
%Y Misra Sharma, Dipti
%Y Mary Thomas, Hannah
%S NLP-AI4Health
%D 2025
%8 December
%I Association for Computational Linguistics
%C Mumbai, India
%@ 979-8-89176-315-9
%F shinde-etal-2025-patient
%X This paper describes a production minded multilingual system built for the NLP-AI4Health shared task, designed to produce concise, medically accurate summaries and patient friendly answers for Head and Neck Cancer (HNC) and Blood Donation. We finetune Gemma2-2B under a strict model size constraint (\ensuremath<3B parameters) using parameter efficient adaptation (LoRA) and practical engineering to handle long dialogues, code mixing, and multilingual scripts. The pipeline couples careful preprocessing, token aware chunking, and constrained decoding with lightweight retrieval and verification steps. We report per language quantitative metrics and provide an analysis of design choices and operational considerations for real world deployment.
%U https://aclanthology.org/2025.nlpai4health-main.7/
%P 75-79
Markdown (Informal)
[Patient-Centric Multilingual Question Answering and Summary Generation for Head and Neck Cancer and Blood Donation](https://aclanthology.org/2025.nlpai4health-main.7/) (Shinde et al., NLP-AI4Health 2025)
ACL