@inproceedings{ignatev-etal-2025-hypernetworks,
title = "Hypernetworks for Perspectivist Adaptation",
author = "Ignatev, Daniil and
Paperno, Denis and
Poesio, Massimo",
editor = "Abercrombie, Gavin and
Basile, Valerio and
Frenda, Simona and
Tonelli, Sara and
Dudy, Shiran",
booktitle = "Proceedings of the The 4th Workshop on Perspectivist Approaches to NLP",
month = nov,
year = "2025",
address = "Suzhou, China",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.nlperspectives-1.10/",
pages = "111--122",
ISBN = "979-8-89176-350-0",
abstract = "The task of perspective-aware classification introduces a bottleneck in terms of parametric efficiency that did not get enough recognition in existing studies. In this article, we aim to address this issue by applying an existing architecture, the hypernetwork+adapters combination, to perspectivist classification. Ultimately, we arrive at a solution that can compete with specialized models in adopting user perspectives on hate speech and toxicity detection, while also making use of considerably fewer parameters. Our solution is architecture-agnostic and can be applied to a wide range of base models out of the box."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="ignatev-etal-2025-hypernetworks">
<titleInfo>
<title>Hypernetworks for Perspectivist Adaptation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Daniil</namePart>
<namePart type="family">Ignatev</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Denis</namePart>
<namePart type="family">Paperno</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Massimo</namePart>
<namePart type="family">Poesio</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the The 4th Workshop on Perspectivist Approaches to NLP</title>
</titleInfo>
<name type="personal">
<namePart type="given">Gavin</namePart>
<namePart type="family">Abercrombie</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Valerio</namePart>
<namePart type="family">Basile</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Simona</namePart>
<namePart type="family">Frenda</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sara</namePart>
<namePart type="family">Tonelli</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Shiran</namePart>
<namePart type="family">Dudy</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Suzhou, China</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-350-0</identifier>
</relatedItem>
<abstract>The task of perspective-aware classification introduces a bottleneck in terms of parametric efficiency that did not get enough recognition in existing studies. In this article, we aim to address this issue by applying an existing architecture, the hypernetwork+adapters combination, to perspectivist classification. Ultimately, we arrive at a solution that can compete with specialized models in adopting user perspectives on hate speech and toxicity detection, while also making use of considerably fewer parameters. Our solution is architecture-agnostic and can be applied to a wide range of base models out of the box.</abstract>
<identifier type="citekey">ignatev-etal-2025-hypernetworks</identifier>
<location>
<url>https://aclanthology.org/2025.nlperspectives-1.10/</url>
</location>
<part>
<date>2025-11</date>
<extent unit="page">
<start>111</start>
<end>122</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Hypernetworks for Perspectivist Adaptation
%A Ignatev, Daniil
%A Paperno, Denis
%A Poesio, Massimo
%Y Abercrombie, Gavin
%Y Basile, Valerio
%Y Frenda, Simona
%Y Tonelli, Sara
%Y Dudy, Shiran
%S Proceedings of the The 4th Workshop on Perspectivist Approaches to NLP
%D 2025
%8 November
%I Association for Computational Linguistics
%C Suzhou, China
%@ 979-8-89176-350-0
%F ignatev-etal-2025-hypernetworks
%X The task of perspective-aware classification introduces a bottleneck in terms of parametric efficiency that did not get enough recognition in existing studies. In this article, we aim to address this issue by applying an existing architecture, the hypernetwork+adapters combination, to perspectivist classification. Ultimately, we arrive at a solution that can compete with specialized models in adopting user perspectives on hate speech and toxicity detection, while also making use of considerably fewer parameters. Our solution is architecture-agnostic and can be applied to a wide range of base models out of the box.
%U https://aclanthology.org/2025.nlperspectives-1.10/
%P 111-122
Markdown (Informal)
[Hypernetworks for Perspectivist Adaptation](https://aclanthology.org/2025.nlperspectives-1.10/) (Ignatev et al., NLPerspectives 2025)
ACL
- Daniil Ignatev, Denis Paperno, and Massimo Poesio. 2025. Hypernetworks for Perspectivist Adaptation. In Proceedings of the The 4th Workshop on Perspectivist Approaches to NLP, pages 111–122, Suzhou, China. Association for Computational Linguistics.