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Introduction

The NLPerspectives workshop brings together researchers and practitioners to explore how Natural Lan-
guage Processing (NLP) systems can better capture, represent, and engage with diverse perspectives.
Building on the prior workshops of NLPerspectives, this year’s 4th edition workshop centered on the
challenges and opportunities of representing multiple, and sometimes conflicting, viewpoints in anno-
tation, modeling, and evaluation. Contributions spanned theoretical frameworks, empirical studies, and
methodological innovations, highlighting both crowd-truth approaches to data annotation and novel te-
chniques for integrating plurality into NLP models. The program featured research papers, a position
paper, and hosted a shared task called Learning with Disagreement. This proceedings volume docu-
ments the range of ideas and findings presented at NLPerspectives, including the shared task, offering
insight into the state of the field and charting directions for future work at the intersection of language
technology, social values, and human-centered Al

Until recently, language resources supporting many tasks in Natural Language Processing (NLP) and
other areas of Artificial Intelligence (AI) have been based on the assumption of a single ‘ground truth’
label sought via aggregation, adjudication, or statistical means. However, the field is increasingly focused
on subjective and controversial tasks, such as quality estimation or abuse detection, in which multiple
points of view may be equally valid; subjectivity, indeed, is considered one of the main causes of Human
Variation.

The fourth edition of the workshop builds upon these ideas to explore interdisciplinary synergies throu-
ghout the programme, starting with the keynote speaker Dr. Jose Camacho-Collados. In particular, this
event is aimed at widening the discussed methodology to include not only current and ongoing work on
collecting and labelling non-aggregated datasets, but also approaches to mining, modelling and inclu-
sion of diverse perspectives in data, evaluation, and applications of multi-perspective Machine Learning
models. In addition, it involved techniques from social science and Human-Computer Interaction, such
as participatory approaches and how they can be implemented at all stages of the supervised learning
pipeline.

Working with language as data poses unique challenges. Words and their definitions evolve over time,
and even within the same time period, interpretation of language is contextual, influenced by the cultural,
geographic and linguistic environment of people. Bringing interdisciplinary approaches from Feminist
theories, Critical Discourse Analysis, and indigenous epistemologies, among others, to Computational
Linguistics can provide valuable methods for working with the subjectivity and uncertainty of language
data.

Besides the community of data perspectivism and human label variation, we expect the workshop to
attract researchers and industry practitioners, as happened in previous editions, interested in learning
from disagreement, personalization, and participatory design. For the first time, the workshop has hosted
a shared task, Learning with Disagreement (Le-Wi-Di), which explores new approaches to modelling and
evaluation of perspectivist data.

The Shared Task on Learning with Disagreement (LeWiDi) aims to raise the visibility of the challenge of
variation in interpretation, and to encourage the community to engage with the problem. The objective of
the shared task is to provide a unified testing framework for learning from disagreements and evaluating
with such datasets. Two editions of the shared task were organized as part of SEMEVAL: in 2021,
focused on ambiguity in language and vision; and in 2023, focused on disagreement in subjective tasks.
These shared tasks created benchmarks that have since been widely downloaded, and started an ongoing
discussion on how to evaluate perspectivist models. This new edition, co-located within the workshop,
differs from the previous ones in: the inclusion of two new classification tasks in which disagreements
are prevalent, one on irony, and one on Natural Language Inference; the addition of two generative tasks,
paraphrasing and summarization; testing new approaches to evaluation, inspired by recent research.

In its fourth edition, the workshop accepted 14 submissions—13 research papers and one stance paper,
with one designated as non-archival. Additionally, 9 teams submitted successful entries to the shared
task.
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One of the primary motivations for the pursuit of perspectivism is expanding the number of voices repre-
sented in NLP datasets, modelling, and evaluation. The workshop therefore has diversity and inclusion
as one of its central tenets.

As at previous events, this edition of NLPerspectives will host presenters, panellists, and keynote spea-
kers representing diverse demographics, research backgrounds, and career stages. Our organizing and
programme committee also includes a balance of geographical locations, genders, and career stages.
For access, the most important contributions and available resources are listed and reported in the ma-
nifesto page of perspectivist data (https://pdai.info/) and proceedings and available slides of previous
editions are online on our website: https://nlperspectives.di.unito.it/.

To encourage people coming from various countries to join the discussion, the workshop is planned to
be in a hybrid format. As in the previous editions, we will provide financial aid to scholars (especially
students) who may not otherwise be able to attend.
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Keynote Talk
Cultural Awareness in Multilingual Language Models - A
Perspectivist Personal Perspective

Jose Camacho Collados
Cardiff University
2020-11-08 12:30:00 — Room: Room 1

Abstract: Language models have become ubiquitous in NLP and beyond. In particular, the new wave
of large language models (LLMs) are increasingly used to communicate and solve practical problems in
many languages and countries, and by an increasingly diverse set of users. However, even though there
is no doubt that these models open up plenty of opportunities, there are important issues and research
questions that arise when it comes to LLLMs and their application in different languages and cultures. For
instance, the language coverage in language models drastically decreases for less-resourced languages
and as such, their performance. And not only the general performance is affected, but general-purpose
LLMs may be implicitly biased to specific cultures and languages depending on their underlying training
data.

In this talk, I will discuss how language models reflect on cultural diversity, including potential short-
comings and how language coverage and cultural awareness may be intrinsically intertwined. I will also
share some lessons learned based on recent research in this area — in particular, I will focus on the deve-
lopment of BLEnD, a large effort to develop a cultural benchmark of everyday knowledge for dozens of
languages and countries.

Bio: Jose Camacho-Collados is a UKRI Future Leaders Fellow and Professor at the School of Computer
Science of Cardiff University, where he co-founded the Cardiff Natural Language Processing group
(Cardiff NLP). Before joining Cardiff University, he completed his PhD in Sapienza University of Rome
and was a Google Al PhD Fellow.

Jose has worked in multiple NLP areas with a particular focus on semantics, multilinguality and com-
putational social science with an interdisciplinary perspective. In this area, he has been developing
specialised and efficient NLP models for social media applications, such as TweetNLP and related effor-
ts. His work has received several recognitions, including awards at top NLP conferences, or the 2023 ALJ
Prominent Paper Award. He is also the co-author of the “Embeddings in Natural Language Processing”
book.
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A Disaggregated Dataset on English Offensiveness Containing Spans

Pia Pachinger!, Janis Goldzycher?, Anna M. Planitzer?, Julia Neidhardt', Allan Hanbury!
'Faculty of Informatics, TU Wien. Correspondence: pia.pachinger @tuwien.ac.at
2Department of Computational Linguistics, University of Zurich
3Political Commmunication Research Group, University of Vienna

Abstract

Toxicity labels at sub-document granularity and
disaggregated labels lead to more nuanced and
personalized toxicity classification and facili-
tate analysis. We re-annotate a subset of 1983
posts of the Jigsaw Toxic Comment Classifica-
tion Challenge and provide disaggregated toxi-
city labels and spans that identify inappropriate
language and targets of toxic statements.

Manual analysis shows that five annotations
per instance effectively capture meaningful dis-
agreement patterns and allow for finer distinc-
tions between genuine disagreement and that
arising from annotation error or inconsistency.
Our main findings are: (1) Disagreement often
stems from divergent interpretations of edge-
case toxicity (2) Disagreement is especially
high in cases of toxic statements involving non-
human targets (3) Disagreement on whether a
passage consists of inappropriate language oc-
curs not only on inherently questionable terms,
but also on words that may be inappropriate in
specific contexts while remaining acceptable
in others (4) Transformer-based models effec-
tively learn from aggregated data that reduces
false negative classifications by being more sen-
sitive towards minority opinions for posts to be
toxic. We publish the new annotations under
the CC BY 4.0 license.

Content warning: This paper contains examples of offensive

language to describe the data.

1 Introduction

The amount of toxic content on the internet is in-
creasing and causes harm. Especially implicit of-
fensiveness still often goes undetected (Zhang et al.,
2022). Given the absence of widely accepted defini-
tional distinctions between the terms offensiveness
and toxicity (Pachinger et al., 2023), we use them
interchangeably. Creating effective automated con-
tent moderation systems requires two key elements:
nuanced understanding of online norm violations

1

and incorporation of diverse opinions on what con-
tent warrants moderation.

The Need for Perspectivist Offensiveness De-
tection Perceptions of what content is harmful
depend on individual, contextual, and geographi-
cal factors (Hershcovich et al. 2022; Sandri et al.
2023; Abercrombie et al. 2023 i.a.). Researchers
report disagreements in the annotation of toxicity
explained by previous annotations by the same an-
notator (Wich et al., 2020), sociodemographics (e.g.
Kocon et al. 2021; Aroyo et al. 2023) beliefs (Sap
et al., 2022), and moral values and geocultural fac-
tors (Davani et al., 2023). The human perception
of what constitutes harmful language is inherently
reflected in the classifiers trained on human-labeled
data to identify toxic speech. If perceptual differ-
ences in what makes a remark toxic are not taken
into account when training these systems, what
is considered toxic may be disproportionately in-
fluenced by the societal majority or, in the worst-
case scenario, by an arbitrary group of annotators.
Therefore, a one-size-fits-all approach to content
moderation is unable to account for the diverse
needs of different users (Cresci et al. 2022; Plank
2022; Jhaver et al. 2023 i.a.).

Perspectivism in machine learning (ML) repre-
sents a paradigm shift from consensus-based la-
beling to embracing annotator diversity. For each
data instance, multiple labels are collected and,
where possible, maintained as disaggregated an-
notations alongside annotator metadata through-
out the ML pipeline (Cabitza et al., 2023). This
paradigm aligns with descriptive annotation ap-
proaches, which embrace annotator subjectivity
as a meaningful signal rather than noise. Descrip-
tive annotation enables the modeling of diverse
beliefs and perspectives, contrasting with prescrip-
tive annotation that enforces uniform interpretation
through strict guidelines (Rottger et al., 2022).

Proceedings of the The 4th Workshop on Perspectivist Approaches to NLP (NLPerspectivists 2025), pages 1-14
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The Need for Offensiveness Annotations Beyond
Classes In (semi-) automated content moderation,
explainability contributes to a greater understand-
ing and trust of users (Molina and Sundar, 2022)
and content moderators (Bunde, 2021). Experi-
enced moderators work more efficiently when pro-
vided with structured explanations that pinpoint
harmful content and articulate why it violates com-
munity standards (Calabrese et al., 2024). In text
annotation, a span refers to a contiguous sequence
of tokens within a document that is marked and
labeled. Rather than annotating entire documents
or sentences, spans allow annotators to identify and
categorize specific portions of text. Annotators can
pinpoint exactly which parts of a text exhibit the
phenomenon of interest. Text classification models
can learn from the specific linguistic features within
marked spans, leading to more accurate predictions
about similar text segments. Different spans within
the same text can receive different labels, captur-
ing the complexity of real-world documents where
multiple phenomena may coexist, facilitating error
analysis, model debugging, and model explainabil-
ity (Lyu et al., 2024).

Main Contributions By re-annotating 1,983
comments from the Jigsaw Toxic Comment Clas-
sification dataset (cjadams et al., 2017), 1,561 of
which received annotations from four or five an-
notators, we classify toxic utterances at the post
level and we identify spans comprising the targets
of toxic utterances, and spans comprising vulgar
expressions while maintaining disaggregated la-
bels from multiple annotators. We find that high
disagreement among five annotators meaningfully
signals cases where subjective elements influence
the perception of toxic statements.

Our analysis demonstrates that disagreements
arise from divergent interpretations of borderline
toxic content. We find substantial disagreement
on toxicity classifications involving non-human
targets. Further, when evaluating whether a span
consists of inappropriate language, disagreement
occurs not only on inherently questionable terms,
but also on words that may be inappropriate in spe-
cific contexts while remaining acceptable in others.
Lastly, while annotators generally recognize tar-
gets of toxic language, repeated target mentions
within comments can pose hurdles for human anno-
tators and for ML approaches to extracting spans
comprising targets.

Despite differences in definitions and annota-

tion approaches, we find broad agreement between
the Jigsaw annotations and our own. Additionally,
experiments show that transformer-based models
effectively learn from aggregated data, which re-
duces false negative classifications by being more
sensitive towards minority opinions for posts to be
toxic. We release the new annotations under CC
BY 4.0 licensing with the underlying comment text
being governed by Wikipedia’s CC-SA-3.0 !

2 Related Work

Recent advances in toxicity annotation include the
development of granular labeling frameworks, pub-
lication of disaggregated annotation datasets, and
diversification of annotator demographics.

Disaggregated Toxicity Annotations In recent
years, researchers have started to publish disaggre-
gated toxicity annotations. For example, Kumar
et al. 2021 release a labeled toxicity dataset that
contains 107,620 texts and annotations by 17,280
annotators. Another example is the dataset pub-
lished by Kennedy et al. 2020, which contains
50,000 texts and annotations by 11,000 Mechani-
cal Turk workers. See Frenda et al. 2024 for more
perspectivist datasets on online toxicity.

Toxicity Annotations Beyond Classes Addition-
ally, there has been a surge in datasets related to
offensive text detection with span and free-text an-
notations. Existing data with annotated spans in-
clude spans of the targets of offensive statements
(Calabrese et al., 2022a; Zampieri et al., 2023;
Pachinger et al., 2024), the spans contributing to the
offensiveness label (Mathew et al., 2021; Pavlopou-
los et al., 2021), spans comprising a violation of
a moderation policy (Calabrese et al., 2022a), and
the spans comprising vulgar language (Pachinger
et al., 2024). More recently, free-text annotations
related to toxicity labels were released (Sap et al.,
2020; Zhang et al., 2022; Zhou et al., 2023). The
spans and free text can be used to create inherently
faithful explain-then-predict methods for offensive
text detection (Kim et al., 2022; Zhang et al., 2022;
Zhou et al., 2023). Furthermore, they can be used
to create post-hoc explanations (Risch et al., 2020).

1https://huggingface.co/datasets/pia—p/
disaggregated_offensiveness
https://github.com/pi-pa/disaggregated_
offensiveness
https://web.ds-ifs.tuwien.ac.at/disaggregated_
offensiveness
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Annotator Populations in Toxicity Datasets
Toxicity annotation studies on English toxic con-
tent typically rely on annotators from English-
speaking countries, particularly the United States.
Zhou et al. 2023 engage native English speakers for
labeling offensive content, while Sap et al. 2020
recruit annotators exclusively from the U.S. and
Canada. Calabrese et al. 2022b similarly restrict
their pool to English-speaking countries. While
Zhang et al. 2022 broaden their criteria to include
anyone with English proficiency, they do not sys-
tematically ensure demographic diversity. This ge-
ographic concentration raises questions about the
generalizability of toxicity judgments, particularly
given that English is the dominant lingua franca
spoken by a wide variety of people and percep-
tions of harmful content vary significantly across
countries.
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Figure 1: The distribution of the comment lengths of
all comments shorter than the 95% percentile of the
comments.

3 Data Source

We source the data from the Toxic Comment Clas-
sification Challenge from Jigsaw. It contains
Wikipedia comments which have been labeled by
human raters for toxic behavior. Annotated la-
bels in the dataset are foxic, severe toxic, obscene,
threat, insult, identity hate. The data is published
under the CCO License, with the underlying com-
ment text being governed by Wikipedia’s CC-SA-
3.0. We source 1700 not toxic comments. Addi-
tionally, since we are interested in nuanced toxicity
cases, we select comments labeled as toxic without
any additional toxic categories and sample 1700 of
these. We further select insults without any addi-
tional toxic categories, excluding comments with
more severe or multiple toxic labels. From this
pool of data, 1983 posts are annotated. Figure 1

shows the distribution of comment lengths in our
dataset, excluding outliers.

‘@L7? Xx.@%@ /5@
vulgarity

‘@L7? x.@%@ /5@
vulgarity

target: group

target: individual

farget: group vulgarity

target: other

Figure 2: The annotation strategy for this dataset

4 Annotation Schema

We adopt the annotation schema used for the Ger-
man AustroTox dataset (Pachinger et al., 2024),
making the two datasets containing different data
sources and cohorts of annotators compatible and
allowing for multilingual analyses. Observe the
annotation strategy in Figure 2. We classify each
comment as insult, incite to hate or violence or not
offensive. Since we do not source for incites to
hate or violence in the Jigsaw dataset, the number
of posts labeled as Incite to hate or violence in our
dataset is limited. Therefore, we create an Offen-
siveness / Toxicity class by merging classes Insult
and Incite to hate or violence. For non-offensive
and offensive comments, we annotate vulgarities
since both offensive and non-offensive posts can
contain vulgarities. For offensive posts, we addi-
tionally annotate the targets of the offensive state-
ment and the type of target. If the target is only
mentioned via a pronoun, we annotate the pronoun
as the target. Adopting a definition of vulgarity
similar to that employed by Risch et al. (2021), We
use the following definitions for classes and spans:

Insult An insult pursues the recognisable goal
of disparaging the addressee or the object of refer-
ence.

Incite to Hate or Violence An incite to hate or
violence against a person or a group of people. It
is often hard to draw the line between insults and
incites to hate, as insults always somewhat incite



hate. For this annotation task, we define insults to
be less severe than incites to hate or violence.

Offensive / Toxic An insult or an incitement to
hate or violence.

Not Offensive / Not Toxic Not an insult nor an
incite to hate or violence.

Vulgarity Rude, obscene, foul or boorish lan-
guage that is inappropriate for civilized discourse.

Target Group The target of an offensive post is
a group of persons or an individual insulted based
on shared group characteristics.

Target Individual The target of an offensive post
is a single person, not insulted based on shared
group characteristics.

Target Other The target of an offensive post is
not a person or a group of people.

We position our work within the descriptive an-
notation paradigm, recognizing that toxicity percep-
tion contains inherent subjective elements (Rottger
et al., 2022). Determining whether someone in-
tends to disparage a target, distinguishing between
hate incitement and mere insults, and identifying
when comments cross into inciting violence all
involve subjective judgment calls. Similarly, the
threshold for what constitutes inappropriate pas-
sages in civilized conversation varies across readers
and contexts. Among our annotation tasks, iden-
tifying the target of offensive statements and cat-
egorizing the target type represents the most ob-
jectively answerable component. Our definition
of vulgar language is deliberately expansive, ex-
tending beyond conventional sexual, scatological,
and religious profanity to include any language in-
appropriate for civilized discourse. We recognize
that determinations of vulgarity are both context-
dependent and inherently subjective, as language
deemed acceptable in casual forums may prove in-
appropriate in structured, goal-oriented discussions
and edge-case acceptability varies by reader.

5 Annotation Campaign

We conduct the annotation with master’s students
in data science. Thirty percent of annotators are
registered as female in this course, though this in-
stitutional designation may not reflect their actual
gender identity. The majority of annotators are be-
tween 19 and 26 years old, with all demonstrating
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Figure 3: The number of annotators per post.

at least B2-level English proficiency. Most annota-
tors originate from Eastern Europe.

We acknowledge the importance of represent-
ing the perspectives of a population by including
diversity in the annotator pool (Clemmensen and
Kjeersgaard, 2022). Our annotator pool’s homo-
geneous sociodemographics, constrained by re-
sources and participants in the course, present a
limitation in our data. On the other hand, the demo-
graphic composition in our dataset contrasts with
typical NLP annotation practices, where annotators
are predominantly recruited from English-speaking
countries. However, English-language online dis-
cussions reach global audiences with diverse cul-
tural backgrounds and perspectives on toxicity. We
therefore argue that our annotator pool provides
valuable demographic diversity to the current land-
scape of toxicity datasets. Furthermore, opinions
on what constitutes toxicity are influenced by a
multitude of factors beyond just sociodemograph-
ics. While we do not explicitly capture annotator
characteristics for individual annotators, these fac-
tors are implicitly reflected in the disaggregated
annotations (Geva et al., 2019; Wich et al., 2020).
Consequently, we view our dataset as a valuable
addition to the broader collection of resources, cap-
turing user perspectives in various ways.

The annotation campaign was reviewed by the
ethics committee of the first author’s institution.
Each annotator annotates about 200 comments,
which takes approximately 1.5 to two hours. The
dataset contains a higher proportion of offensive
comments than the typical distribution in a user
forum, but we only source comments with labels
toxic or insult and exclude more severe labels. The
annotators are explicitly informed that they have
the option to cease annotation if they feel over-
whelmed by the task without facing consequences,
and about the publication of the data, and they re-
ceive comprehensive compensation through course
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Figure 4: The disagreement in the toxicity annotations.
The colors denote the label of the aggregated dataset.

credits for their efforts. Figure 3 shows the number
of annotators per comment. The vast majority of
posts is annotated by five annotators.

6 Disagreements in the Annotations

We calculate inter-annotator agreement using Krip-
pendorff’s Alpha across all annotation categories
and conduct manual analysis to identify factors
correlating with disagreement at both the post and
span levels.

Disagreements in Offensiveness Annotations
Figure 4 visualizes the distribution of annotator
agreement on offensiveness labels on the post-level.
Most posts show complete annotator agreement
on whether they are toxic or non-toxic. We re-
port a Krippendorff’s alpha of 0.57 for binary of-
fensiveness classification. While this falls below
the o > 0.667 threshold typically recommended
for tentative conclusions in prescriptive annotation
paradigms (Krippendorff, 2004), it aligns with val-
ues reported in comparable toxicity detection stud-
ies: Sap et al. (2020) report a Krippendorff’s Alpha
of 0.51, and Wulczyn et al. (2017) report an Alpha
of 0.45.

To understand the origins of disagreements in
posts where annotators highly disagree, we man-
ually analyze 60 posts that are annotated as toxic
by 3 annotators and as non-toxic by 2 annotators.
Table 1 presents all factors related to disagreement
that we identify through this analysis. We identify
subjective elements in 46 of these posts, primarily

involving grey-zone or nuanced toxicity that falls
into borderline categories. Observe an example
where toxicity is subjective and open to interpreta-
tion: "Quiet, you. Whether you are a troll or not is
irrelevant - your edits are trolling, are uncivil, and
are ridiculous."

Additionally, 12 posts contain toxicity directed
at non-human targets. We find that toxicity toward
non-human entities is typically perceived as less
severe and therefore more open to interpretation.
The example from above illustrates such a case. In
this example, the insult has two potential targets:
the person being addressed or their edits, which are
labeled as "ridiculous." Since the criticism targets
the person’s edits rather than the person themselves,
readers may perceive the insult as less severe. De-
spite viewing our annotation guidelines as descrip-
tive, in some cases, it is possible to definitively
say that an utterance is an insult or incitement to
hate or violence. We identify 7 such clear-cut cases
among the 60 posts we analyze. 5 of the 60 high-
disagreement posts we analyze contain quotes with
toxic language, such as: "Vandalism. How’s about
I stick ""W*nkers Haa HAAa"" in your block log?".
We obfuscate vulgarities and specific targets in this

paper.

Subjective whether insult 41
Non-human target 12
Definitely insult 6
Subjective whether incite to h. or v. 5
Toxicity in quote 5
Calls target to leave conversation 5
Definitely not toxic 4
Lack of context 4
Particularly long post 4
Toxic against self 3
Spam (not in our toxicity definition) 2
Definitely incite to hate or violence 1

Table 1: Factors related to disagreements in the offen-
siveness classifications we identified in 60 comments

Disagreements in Vulgarity Annotations Fig-
ure 5 displays disagreement patterns in span anno-
tations comprising vulgarities. We visualize only
spans that at least one annotator marks as vulgar.
Most spans perceived as vulgar receive annotations
from only one or two annotators. Correspondingly,
vulgar span annotations achieve a Krippendorft’s
Alpha of 0.05, indicating substantial disagreement
among annotators.
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Figure 5: The disagreement on the spans comprising
vulgarities. The colors denote the label of the aggregated
dataset.

To understand this low agreement, we manually
evaluate 50 spans that receive 3 votes for vulgarity
while remaining unannotated by the other 2 anno-
tators. Our analysis reveals that contextual factors
critically influence vulgarity perception. Out of
these 50 spans, 10 spans are unambiguously vul-
gar. Take, for example, the post "Hey, I said it
was ""a"" seat, not ""the"" seat, you dumb moth-
erf#3ker!!". We classify the span "motherf#3$ker"
as unambigously vulgar. Further, 17 of the 50 spans
are subjectively vulgar (where the word’s inherent
nature is debatable). Recall that our definition of
vulgar language is expansive, extending beyond
conventional sexual, scatological, and religious
profanity to include any language inappropriate
for civilized discourse. Taking the previous exam-
ple, consider the span "dumb". While this term
carries multiple meanings, within this particular
setting, it functions as a clear synonym for stupid.
The acceptability of such language varies signifi-
cantly among individuals. We hypothesize that the
imagined forum context plays a critical role, where
informal forums may accept different languages
than goal-oriented discussion spaces.

Moreover, 15 spans demonstrate context-
dependent vulgarity (where the same word be-
comes vulgar or benign depending on usage). Take,
for example, the post "He jailed 50 000 murders,
thiefes, rapers, criminals, drug-sellers, prostitutes
and many more in only 9 month what you couldn 't
do in your 6000 years of history. Stupid losers" The

span "Stupid" falls under both categories. Whether
it is appropriate for civilized discourse depends on
the reader. But, additionally, the word is used in
direct speech and against a group that might be
vulnerable, which might make it appear more inap-
propriate to some than in other settings. Lastly, 6
spans are clearly non-vulgar, and one is incompre-
hensible. This distribution demonstrates that vul-
garity annotation involves both lexical ambiguity,
whether words are inherently vulgar, and contex-
tual complexity, whether usage renders otherwise
benign words inappropriate.

Disagreements in Target Annotations Figure 6
displays the distribution of annotator votes for
spans constituting targets of toxic statements. The
visualization includes all target types and only
spans that at least one annotator identifies as a tar-
get. Most target spans receive annotations from
only one annotator. We calculate disagreement
based on annotators who label posts as toxic and
obtain a Krippendorff’s alpha of -0.05 for target
annotations, indicating substantial disagreement
similar to vulgarity span annotations. Identical
spans labeled as different target types are treated
as disagreements.
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Figure 6: The disagreement on the spans comprising
targets

We analyze 30 posts with 5 votes identifying
a span as a target. All except one are correctly
annotated. In 10 posts, the target appears multiple
times, and in 2 cases, other potential targets appear
in the data. We further analyze 30 spans with 3
votes for target classification and 2 votes against.
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Figure 7: Post-level classes defined by the classes and
spans labeled in the aggregated data.

All except one span are indeed targets of toxic
remarks. In 16 cases, the target appears multiple
times in the post, and in 7 cases, multiple potential
targets are mentioned.

In summary, the frequent repetition of targets
within posts and target mentions as pronouns cre-
ates annotation challenges. This repetition creates
inconsistency; some annotators mark the target
closest to the most toxic passage, while others mark
its first appearance in the post. We advise authors
to provide clear instructions for annotating targets
of toxic statements, given their highly diverse man-
ifestations.

7 Disagreement Between the Jigsaw
Dataset and our Dataset

To enable meaningful comparisons with both the
Jigsaw dataset annotations and the German Aus-
troTox (Pachinger, 2024) dataset using a different
data source but shared annotation framework, we
aggregate the data using an approach that reduces
false negative classifications by being more sen-
sitive towards minority opinions for posts to be
toxic.

Data Aggregation We adopt the same aggrega-
tion strategy as the AustroTox dataset for both
classes and spans. This approach prioritizes avoid-
ing false negatives for minority perspectives by
creating broader decision boundaries. Specifically,
we exclude examples with high disagreement that
lean slightly toward non-toxic, while labeling ex-
amples with disagreement that lean slightly toward
toxic as roxic. Figure 4 illustrates how different
combinations of toxic versus non-toxic vote counts
are labeled for post-level offensiveness classifica-
tion. In especially, we label posts as non-toxic only
when they receive at most one toxic vote and at

least two non-toxic votes. We discard posts with
less than two votes for one class, posts with 2 votes
for a post to be toxic and 2 or 3 votes for a post
to be not toxic. The remaining posts are labeled
as offensive. The aggregated dataset results in a
Krippendorft’s alpha of 0.64. This value is higher
than for the disaggregated data due to the fact that
we discard instances with high disagreement and
viewer perceptions of toxicity.

Figure 5 shows how we aggregate the spans com-
prising vulgarities. We label spans as vulgarities
if they are annotated by at least two annotators
and are not left out by more than two annotators.
Spans in the comments comprising the different
target types are annotated by majority voting of
those who labeled the comment as offensive. If
two spans receive a majority for a target span, both
are annotated as the respective type of target. We
combine the aggregated post-level classifications
(offensive and not offensive) with span annotations
to create fine-grained categories. This allows us to
identify which types of toxicity are most prevalent
in the dataset according to broad annotator consen-
sus. Figure 7 shows the distribution of these cate-
gories and the frequency of different target types
appearing in toxic utterances.

Disagreement Between the Jigsaw Dataset and
our Dataset Figure 8 compares the label distri-
butions between the Jigsaw dataset and our aggre-
gated dataset. The majority of posts classified as
offensive in our dataset correspond to the labels
toxic or insult in the Jigsaw dataset. While the defi-
nition of toxicity differs between the two datasets,
this broad alignment suggests general agreement
among majority opinions regarding what consti-
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Figure 8: Labels in our vs. labels in the Jigsaw dataset.



tutes offensive content. In the area of toxic com-
ment classification and hate speech detection, the
labels profane and vulgar are often used simi-
larly. Comments labeled as not toxic and vulgar in
our dataset are categorized as foxic in the Jigsaw
dataset, yet they do not receive the label profane in
the Jigsaw dataset, suggesting that we use a broader
definition for vulgarity than was used for the origi-
nal data. The most significant divergence involves
155 posts that our dataset labels as not toxic and
not vulgar but that Jigsaw categorizes as toxic.

We manually review 50 of the 155 posts that
our dataset classified as non-toxic and non-vulgar,
but that the Jigsaw dataset labeled as toxic. We
find 14 comments to be genuinely non-toxic, while
12 fall into a subjective gray area where toxicity
judgments could reasonably vary. An additional 8
comments appear toxic under broader definitions
than ours, for instance, posts containing accusa-
tions of lying or spam that we would not classify
as toxic, and one comment is toxic according to
our definition. Further, 8 comments contain vul-
gar language, with 5 additional posts falling into a
subjective category for vulgarity. Five comments
use slang or specialized abbreviations that could
lead to different interpretations across annotators.
Lastly, 4 posts lack sufficient context for reliable
assessment.

In summary, our analysis reveals three primary
sources of disagreement between the datasets. Sub-
jective interpretation challenges are the most preva-
lent issue, affecting 26 of the 50 comments. These
include posts lacking sufficient context, containing
specific language or slang, or falling into gray areas
for toxicity or vulgarity assessment where annota-
tors can reasonably disagree. Definitional differ-
ences explain 8 cases where comments appear toxic
under Jigsaw’s broader criteria but not ours. Poten-
tial labeling inconsistencies exist as well, with 8
comments appearing vulgar despite being labeled
non-vulgar in our dataset, and 14 comments seem-
ing non-toxic despite Jigsaw’s toxic classification.

8 C(lassification Experiments

We conduct experiments on the aggregated data
in order to show that the labels provide learnable
signals. We conduct experiments on binary of-
fensiveness classification, token classification of
vulgar passages, and passages constituting the dif-
ferent types of targets. We fine-tune and evaluate
encoder-based models, and we evaluate the few-

shot performance of decoder-based models in a
10-fold cross-validation setting.

We fine-tune encoder-based models on all three
tasks independently. This means that the target
detection task inherently includes offensiveness
classification, as we only annotate targets of of-
fensive statements. We choose ELECTRA Large?
(Clark et al., 2020) and Roberta Large3 (Liu et al.,
2019) for our experiments, as they exhibit good
performance at the SemEval-2023 task 10: explain-
able detection of online sexism (Kirk et al., 2023).
Additionally, we assess the in-context learning per-
formance of the following large language models:
GPT 3.5(gpt-3.5-turbo-1106) (Ouyang et al., 2022),
GPT 4 (gpt-4-1106-preview) (et al., 2024), Llama
3% (AI@Meta, 2024) and Mistral > (Jiang et al.,
2023). We use the same prompts as Pachinger et al.
2024. They contain an offensiveness definition, the
post to be classified, and for the five-shot scenario,
randomly sampled annotated example posts. Due
to limited performance for Mistral and LLama3,
we adjust the prompt, requiring them to respond
with only O or /, and we define the token with
the higher logit as the Llama3 and Mistral’s pre-
diction. We tokenize the spans generated by the
generative models with the Roberta tokenizer. We
compute the Micro F1 by adding up the values of
the confusion matrix for the three target classes
using Nakayama’s (2018) framework.

Results Table 2 presents the evaluation results.
Several important limitations should be noted, par-
ticularly for the in-context learning experiments.
We did not fine-tune the decoder-based models or
perform prompt optimization, meaning the decoder-
based model results represent a lower bound of
achievable performance rather than optimal out-
comes. These results demonstrate that the mod-
els can achieve reasonable performance on several
tasks, which serves our primary objective. The
models perform better on our dataset than on Aus-
troTox, which results in a Binary and F1 score of
0.76 for offensiveness classification and 0.71 for
vulgarity token-classification, and a Micro F1 score
of 0.24 for target classification (Pachinger et al.,

2https://huggingface.co/google/
electra-large-discriminator

3https://huggingface.co/FacebookAI/
roberta-large

4https://huggingface.co/meta—llama/
Meta-Llama-3-8B-Instruct

5https://huggingface.co/mistralai/
Mistral-7B-vo.1
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https://huggingface.co/mistralai/Mistral-7B-v0.1

Offensive Vulgarity Target
Post-level, 2 cls Token-level, 2 cls Token-level, 4 cls
Params  Binary Macro Binary Macro Micro Macro
Electra L 335M S88+04 .79+15 64+24 87+07 .08+12 .35+16
Roberta & 9002 .86+03 .77+£03 .89+02 .27+03 .59+04
) 0-Shot A48 205 .55 4+04 - - - -
Mistral =5 o0 7248 27 03 73103 ; ; ] ;
0-Shot S78+03 .754+04 - - - -
Llama3 s ¢ v 8B 9402 75403 ; ; ] ;
GPT 3.5 0-Shot ) 89+02 .85+02 .46+04 .72+£02 .164+02 .504+02
"~ 5-Shot 89+02 .854+03 47+02 .73£01 .184+03 .52403
GPT 4 0-Shot 87+03 84+03 41406 .70+03 .15£02 .494+02
5-Shot ) 89+02 86+02 .43+04 .71+£02 .18+02 .52+02

Table 2: Mean F} scores and standard deviations of ten-fold cross-validation on the different tasks. Cls stands for
the number of classes for the respective task. The Micro F1 scores were computed, leaving out the negative class
since the negative class is highly prevalent. Values in bold are statistically insignificantly different.

2024). We attribute this to the general prevalence
of English in NLP and to the distinct data sources.
Further, the fine-tuned smaller language models
perform better in all tasks on our data. However,
fine-tuning the decoder-based models would likely
improve their performance significantly. These re-
sults suggest that fine-tuning yields better outcomes
in this setting, particularly for detecting vulgar con-
tent.

In line with the results of the experiments on
the AustroTox dataset, we find that especially the
vulgar token detection task profits from fine-tuning.
None of the models achieve good performance on
target token detection. However, several factors ex-
plain these poor results. First, this is a challenging
four-class classification task where the evaluation
using the Micro-F1 score focuses only on target
classes, excluding the predominant non-target class.
This evaluation approach, combined with the sparse
distribution of target spans in the data, inherently
produces lower scores compared to the other two
tasks. The high level of human annotator disagree-
ment provides additional insight into these perfor-
mance issues. Targets frequently appear multiple
times within posts and are often referenced only
through pronouns, creating ambiguity. Given that
human annotators struggled with the task, the poor
model performance becomes more understandable.

9 Conclusion

We re-annotate posts from the Jigsaw Toxic Com-
ment Classification Challenge, providing disaggre-

gated toxicity labels and spans that identify inap-
propriate language and targets. This sub-document
granularity enables more nuanced and personalized
toxicity classification. Manual analysis demon-
strates that five annotations per instance effectively
distinguish meaningful disagreement from anno-
tation inconsistencies. We find high levels of dis-
agreement on borderline toxicity cases, particularly
for toxic statements targeting non-human entities.
Additionally, when annotating spans comprising
inappropriate language, disagreement occurs both
on inherently questionable terms and on context-
sensitive words that may be acceptable in some
settings but inappropriate in others. Finally, exper-
iments show that transformer-based models effec-
tively learn from aggregated data that reduces false
negative classifications by being more sensitive to-
wards minority opinions for posts to be toxic.
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Appendix

Figure 9 provides a detailed breakdown of factors
contributing to disagreements in toxicity annota-
tion, expanding on the analysis from Section 6 and
offering a granular view of the data summarized in
Table 1. Similarly, Figure 10 presents the detailed
label distribution across post-level annotations and
spans in the aggregated dataset (Section 7), provid-
ing additional granularity beyond Figure 7. Finally,
Figure 11 displays the multitask system prompt
used in our experiments (Section 8).
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You receive a user comment. Your task is to answer
the following questions about the comment:

1. Is the comment toxic? (1 = toxic, @ = non-toxic)

Definition: An offensive or toxic comment includes derogatory remarks towards
individuals, groups of people, or other entities. It may also incite hatred or
violence against individual persons or groups of people.

2. Who or what is the target of toxicity?
Mark at least one of the following targets of toxicity if the comment is toxic:
"Target_Group”, "Target_Individual”, or "Target_Other".

3. Mark vulgarities with "Vulgarity”. Vulgarities can occur in toxic and
non-toxic comments.

Respond in JSON format with the following fields:

json
{
"Label”: <@ or 1>,
"Tags": [
{
"Tag": <"Target_Group”, "Target_Individual”, "Target_Other”,
or "Vulgarity">,
"Token": <Span of the target or the vulgarity>
}!
]
}

Figure 11: The multitask system prompt we use for the neural experiments.
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Abstract

Despite advances in conversational systems,
the evaluation of such systems remains a chal-
lenging problem. Current evaluation paradigms
often rely on costly homogeneous human an-
notators or oversimplified automated metrics,
leading to a critical gap in socially aligned con-
versational agents, where pluralistic values (i.e.,
acknowledging diverse human experiences) are
essential to reflect the inherently subjective and
contextual nature of dialogue quality. In this
paper, we propose CINEMETRIC, a novel
framework that operationalizes pluralistic align-
ment by leveraging the perspectivist capacities
of large language models. Our approach in-
troduces a mechanism where LLMs simulate
a diverse set of evaluators, each with distinct
personas constructed by matching real human
annotators to movie characters based on both
demographic profiles and annotation behaviors.
These role-played characters independently as-
sess subjective tasks, offering a scalable and
human-aligned alternative to traditional evalua-
tion. Empirical results show that our approach
consistently outperforms baseline methods, in-
cluding LLM as a Judge and as a Personalized
Judge, across multiple LLMs, showing high
and consistent agreement with human ground
truth. CINEMETRIC improves accuracy by up
to 20% and reduces mean absolute error in tox-
icity prediction, demonstrating its effectiveness
in capturing human-like perspectives.

1 Introduction

What makes a conversation good? If we ask ten
people, we might get ten different answers. As
shown in Figure 1 (Human Evaluators), a response
that one person finds relatively empathetic might
strike another as less empathetic or even offensive.
These differences highlight that the quality of the
dialogue is inherently subjective and multifaceted
(Foster et al., 2009). Yet the way we evaluate con-
versational systems today often assumes that there
is an objective fact (by using automatic evaluation
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CONVERSATION:

I've been feeling really overwhelmed at work
lately. Everything is piling up, and | don’t
know how to deal with it anymore.

o

Well, everyone can have problems. You just

have to toughen up and stop overthinking.

HUMAN EVALUATORS:

9
“Whille slightly harsh, it encourages

personal responsibility. Could be
framed better.”

Empathy: 3/5

support.”

“The response dismisses the user's
emotional state and lacks emotional

Empathy: 1/5

CINEMETRIC EVALUATORS:

p D

Mathilda Lando

Rachel Green Donald Trump
MBTI: ESFP MBTI: ESTP MBTI: ESFP
i F Bold, Attributes: Streetwise,
socially sensitive. prioritizes strength. emotionally scarred
. ‘rude much? If someone said  "The answer is good. People are too  "Sounds like something I'd expect
Reasoning: at 10 me, I'd probably cry.”  soft. we need winners, not whiners.”  from adults. It's right, though.”
Empathy: 215 4/5 3/5
Clarity: 2/5 5/5 4/5

Toxicity: 4/5 1/5 3/5

Figure 1: Comparison of Human vs. CINEMETRIC
Role-Played Evaluators. A user expresses emotional
distress, and the agent responds. Human evaluators and
three distinct characters evaluate the agent’s response.
In the CINEMETRIC evaluation, each character reflects
a unique personality profile, resulting in diverse ratings
and subjective commentary across various dimensions.

metrics) or a single definitive measure of quality
(by aggregating ratings from crowdworkers or do-
main experts) to rate qualities such as coherence
or overall satisfaction (Siro, 2023). However, this
“one-size-fits-all” human annotation approach has
its own blind spots. It implicitly assumes a ho-
mogeneous pool of evaluators, averaging out indi-
vidual differences. In reality, the background, val-
ues, cognitive styles, or personality of an annotator
may significantly influence how they perceive the
quality of a conversation (Prabhakaran et al., 2021;
Gautam and Srinath, 2024). Thus, both purely au-
tomatic metrics and aggregated human ratings risk
missing the plurality of perspectives inherent in
dialogue quality, struggling to capture the nuanced
dimensions in a scalable and robust way.
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To address this gap, we introduce CINEMET-
RIC, a novel framework grounded in perspectivist
principles for pluralistic alignment (Feng et al.,
2024b; Castricato et al., 2024). This idea breaks
away with from the singularity of current meth-
ods by embracing pluralism (Feng et al., 2024a).
As illustrated in Figure 1, the core idea behind
this framework is to simulate a panel of diverse
evaluators (i.e., movie and public characters), each
embodied as a distinct perspective-driven persona,
capable of assessing a conversation through differ-
ent lenses. These personas are defined by inter-
pretable attributes such as gender, personality traits
(e.g., MBTI types), thinking style (e.g., analytical
vs. intuitive), and more. We then task the LLM
to role-play these personas and evaluate conversa-
tional turns along multiple dimensions, including
but not limited to toxicity, persuasiveness, clarity,
and empathy. This work is guided by the following
research questions:

RQ1. How can the perspectivist role-playing of di-
verse personas by large language models en-
hance the pluralistic alignment of conversa-
tional agents?

RQ2. How can Human-AlI Collaboration be used to
design an evaluation framework that captures
the diversity of human values and preferences
in LLM outputs?

RQ3. To what extent can perspective-driven eval-
uations, as instantiated by CINEMETRIC,
approximate human judgments and enhance
alignment with diverse human evaluative pref-
erences?

In this paper, we propose several steps that help
answer our RQs: (i) We investigate the concep-
tual foundations of perspectivism and the need
for pluralistic alignment in conversational systems.
(Section 2), (ii) We detail the design of the CINE-
METRIC framework, outline our methodology for
persona construction and evaluation design (Sec-
tion 3). (iii) We describe our experimental setup,
including how we simulate annotator perspectives
through character personas, construct evaluation
tasks, and define comparison baselines (Section 4).
(iv) We present empirical results demonstrating the
effectiveness of our method in capturing individual
annotator perspectives compared to the baselines
(Section 5).
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2 Background

In this section, we discuss how perspectivism can
be operationalized by the role-playing technique.
We investigate the current approaches for evaluat-
ing conversational systems, and finally, we explore
the pluralistic alignment in conversational agents.

2.1 Perspectivism and Role-Playing

Perspectivism, rooted in Nietzsche’s philosophical
tradition, refers to the idea that there is no singular
objective viewpoint for many problems (Anderson,
1998; Cox, 1997), instead, understanding is shaped
by diverse perspectives. Recent work in NLP has
embraced this notion by treating annotator disagree-
ments not as noise but as a valuable signal (Uma
et al., 2021). For example, Basile (2020) advocates
disaggregating annotation labels to preserve indi-
vidual annotators’ viewpoints instead of enforcing
a single “ground truth,” thereby capturing genuine
differences in opinion. This perspectivist approach
aims to avoid marginalizing minority opinions and
to train models that recognize a spectrum of valid
interpretations (Muscato et al., 2025).

One effective way to apply perspectivism in
conversational systems is through role-playing
or persona-based prompting of LLMs. Role-
playing represents a core human ability to simu-
late different viewpoints and engage in perspective-
taking(Jones, 1973). Prior work has shown that
role prompts can improve the clarity and relevance
of responses by aligning them with the implied
perspective of the role (e.g., a “doctor” role yield-
ing medically grounded explanations) (Tseng et al.,
2024; Wang et al., 2024; Sun et al., 2024). At
the same time, researchers caution that persona
prompts can reinforce stereotypes if the model’s
training data contains biased representations of that
role. (Park et al., 2025; Tseng et al., 2024; Tan
and Lee, 2025). These studies highlight how role-
playing with LLMs provides a versatile framework
to inject perspectivism into conversational agents.

2.2 Evaluating Conversational Systems

Evaluating dialogue systems remains a difficult
problem in NLP. Traditional evaluation methods
for conversational systems have typically fallen
into two categories: automated metrics and hu-
man evaluation. Automated metrics such as BLEU
(Papineni et al., 2002), ROUGE (Lin, 2004), and
more recent neural embedding-based approaches
like BERTScore (Zhang et al., 2019), which com-



putes similarity scores using contextual embed-
dings, and contextually sensitive models such as
ADEM (Lowe et al., 2018) and DynaEval (Lowe
et al., 2018), which enhance correlation with hu-
man judgments by considering dialogue context
and structure. However, these metrics often fail to
capture the nuanced aspects of dialogue quality that
matter to humans (Liu et al., 2016). Human eval-
uation, while more aligned with user experiences,
faces challenges of cost, scalability, and annotator
variance (Smith et al., 2022; Liu et al., 2022).

A recent trend is to leverage large language mod-
els themselves as automatic judges of dialogue (i.e.,
LLM-as-a-Judge) (Gu et al., 2024; Chan et al.,
2023). Instead of a fixed metric formula, one
can prompt an advanced LLM (e.g., GPT-4) with
a conversation and ask it to provide a rating or
feedback, possibly with an explanation. For ex-
ample, Chiang and Lee (2023) showed that rat-
ings given by ChatGPT-based evaluators correlated
more strongly with human judgments than tradi-
tional metrics like BLEU or BERTScore. Further-
more, Dong et al. (2024) demonstrated that the stan-
dard LLM-as-a-Judge setting is not sufficiently re-
liable for personalization tasks, showing low agree-
ment with human ground truth. They identified
persona sparsity as a major cause of this unreliabil-
ity. Thus, efforts to infuse evaluation with multiple
perspectives from different backgrounds are a di-
rect motivation for the CINEMETRIC framework.

2.3 Pluralistic Alignment in Conversational
Agents

As conversational agents become more powerful
and widespread, the goal of alignment, i.e., en-
suring that an agent’s behavior is consistent with
human values and intentions, has taken center stage.
Traditional alignment approaches, such as rein-
forcement learning from human feedback (RLHF)
(Bai et al., 2022), typically optimize models to
perform on average according to the preferences
of a broad user base or a set of guidelines (e.g.,
being helpful, truthful, and harmless). Kirk et al.
(2023) show that standard RLHF tends to collapse a
model’s behavior towards a central norm, reducing
the richness of responses it can generate.

The concept of pluralistic alignment begins by
questioning "Whose values?" current systems are
aligned to (Bergman et al., 2024), and it has
emerged as a response to the limitations of mono-
lithic evaluation approaches (Conitzer et al., 2024).
Gabriel (2020) argues that conversational agents
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should be designed to acknowledge and respect the
diversity of human values rather than optimizing
for a single objective function. This perspective
aligns with Rawls (1971) concept of "reasonable
pluralism”, which recognizes that a just society
must accommodate diverse and sometimes con-
flicting conceptions of the good. Moreover, Feng
et al. (2024b) have argued that alignment must
be reconceived as a socially situated process, ac-
knowledging the pluralism of society rather than
pretending there is a single correct value system
for a conversational agent. Therefore, researchers
proposed diversity-aware alignment frameworks.
For instance, pluralistic alignment as defined by
Sorensen et al. (2024) is the capacity of conver-
sational agents to handle a plurality of values or
preferences, instead of being narrowly tuned to
one.

Given the fact that evaluation is inherently multi-
perspective, and that we can now harness LLMs
to simulate those perspectives in a principled and
reproducible way, CINEMETRIC offers a novel so-
lution, namely, a framework that explicitly encodes
pluralism into the evaluation pipeline.

3 Methodology: CINEMETRIC

The CINEMETRIC framework proceeds in three
steps as shown in Figure 2: (i) Perspective Source
(i.e., selecting representative human evaluators
from multi-perspective datasets (Section 3.1)),
(ii) Perspective Making (i.e., creating a set of
“persona” movie characters and their correspond-
ing perspectives for each sampled human evaluator
(Section 3.2)), and (iii) Perspective Taking (i.c.,
leveraging the movie characters and their perspec-
tives by LLMs to make predictions on held-out
human evaluator annotations (Section 3.3)).

3.1 Perspective Source

The first step in our framework involves sourcing di-
verse human perspectives that serve as the ground-
ing for the rest of the framework. To construct this
perspective source, we draw from existing datasets
that include both: (i) annotations made by individ-
ual human evaluators on subjective tasks such as
toxicity classification or multiple-choice opinion
questions, and (ii) demographic metadata about
each evaluator (e.g., age, gender, location, race, po-
litical orientation, marital status, education level,
etc.). From each dataset, we randomly sample a
fixed number of evaluators.
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me outside a gay bar. All from
behind...

0: Not toxic at all

4: Extremely toxic

Figure 2: A high-level overview of CINEMETRIC, consisting of three steps: (D Perspective Source (See
Section 3.1), @ Perspective Making (See Section 3.2), @) Perspective Taking (See Section 3.3). See Appendix B
for prompts for each step. To demonstrate how CINEMETRIC operates in practice, we provide a detailed example
in Appendix C centered on a human annotator and the corresponding personas assigned to represent their perspective.
We also include the reasoning behind the selection of each movie character, highlighting how their traits align with

the evaluator’s values and annotation.

3.2 Perspective Making

In this step, we transform each human evaluator
into a small set of movie characters who share
that evaluator’s demographic profile and annotation
tendencies.

Concretely, for each sampled human evaluator,
we perform the following steps using a large lan-
guage model: First, we compile the annotator’s
demographic metadata (e.g. age, gender, region,
education, etc.) and some examples of their an-
notations or responses (training set). Then, we
task the LLM to list five movie characters who are
demographically and behaviorally similar to this
person, given the demographic data as well as the
examples of annotations. The LLM also provides
a detailed reasoning for each character selection,
explaining how the movie character’s traits, back-
ground, and personality connect to the annotator’s
profile and annotation patterns, meaning that the
characters together capture multiple facets of the
human evaluator’s perspective. Finally, as the LLM
may hallucinate non-existent characters, we verify
each suggested character by asking the LLM to
check the existence of the movie character in the
suggested movie. Any suggested character that the
LLM cannot confirm is discarded. From the origi-
nal five, we keep the first three characters that pass
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validation. In rare cases where fewer than three
valid characters are found, we repeat the genera-
tion to produce additional candidates.

After this process, each real annotator is repre-
sented by three personas (movie characters), each
described by a name and a short rationale for the
match. These personas are intended to embody dif-
ferent, plausible user perspectives aligned with the
original annotator’s demographics and behavior.

3.3 Perspective Taking

Finally, we use the LLM to role-play each of the
three movie characters to predict how the persona
would respond to each held-out test query of an
annotator (test set). Therefore, each of the three
personas produces a predicted label or answer for
the query. We compute the final prediction by ma-
jority vote among the three. If all three differ, we
break ties by a fixed rule, choosing the prediction
of the first-listed persona.

4 Experimental Setup

To comprehensively evaluate the effectiveness of
our proposed approach, we conduct experiments
across a diverse set of tasks and models, employing
various techniques for comparison.



4.1 Evaluation Tasks

We focus our evaluation on two distinct subjective
tasks that require reasoning over human perspec-
tives. In particular, we utilize:

OpinionQA (Santurkar et al., 2023): a multiple-
choice question-answering dataset based on U.S.
public opinion surveys. OpinionQA contains re-
sponses from thousands of respondents, each anno-
tated with 12 demographic features (e.g. age, gen-
der, region, education, political ideology, race, etc.).
Each respondent answered 50 questions on various
topics, with an average of 3—4 answer choices per
question. In our setting, the LLM selects the most
likely answer based on a simulated annotator’s per-
spective.

DP (Diversity of Perspectives) (Kumar et al.,
2021): a large toxicity annotation dataset. In DP,
17,280 participants each assigned a score from 0
(not toxic) to 4 (very toxic) to 20 social-media com-
ments (drawn from Twitter/Reddit/4chan) and each
annotator provided demographic information and
personal background. In total, the dataset contains
107,620 comment judgments linked to annotator
metadata. The task captures how annotators with
diverse backgrounds perceive offensive content dif-
ferently. In our setting, the LLLM assigns a score to
the online comments.

In our experiments, for each dataset, we ran-
domly select 100 annotators. Each annotator has a
set of annotations (for DP) or answers (for Opin-
ionQA) and demographic information. To simulate
their perspectives using CINEMETRIC, we ran-
domly sample 5 examples from each annotator’s
data for training, used to select the movie charac-
ters and construct the perspective-driven reasoning,
and 10 examples for testing the evaluation perfor-
mance. This results in a total of 1,000 test instances
(100 annotators x 10 examples), each represent-
ing a comment or question to be evaluated by our
framework.

4.2 Benchmarking Models

To evaluate the performance of our approach across
a wide range of Large Language Models, we exper-
iment with the following LLM families:

1. DeepSeek: DeepSeek-V3
2. OpenAl: GPT-4.1

3. Google: Gemini 2.5 Flash
4. Mistral: Mistral Medium 3

These models were selected to cover a wide spec-
trum of capabilities, sizes and families, enabling us
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to test CINEMETRIC’s robustness across different
LLMs. We use the same persona-generation and
inference prompts across models. More details on
the implementation can be found in Appendix A.

4.3 Methods Studied

We compared our proposed approach against sev-
eral techniques. These approaches are chosen to
cover a range of strategies.

LLM-as-a-Judge (Zheng et al., 2023): In this
approach, the LLM is directly prompted to an-
swer questions or assess toxicity without any per-
sonalization. This represents the default, non-
perspectivist evaluation strategy.
LILM-as-a-Personalized-Judge (Dong et al.,
2024): In this approach, the LLM receives demo-
graphic metadata of the target annotator to judge
user preferences based on personas. This tech-
nique constructs personas but does not simulate
perspective-taking. This represents a personaliza-
tion baseline.
Ours: CINEMETRIC: This approach repre-
sents the core of our proposed method (described
in Section 3), which uses training examples and
demographics to match each annotator to movie
characters. These characters are then role-played
to predict labels on the test set, with majority
voting.
Ours: CINEM. w/o Training Examples: To
measure the effectiveness of our proposed ap-
proach, we remove behavioral data (i.e., the anno-
tator’s annotations) from the perspective making
step, using only demographic metadata to select
movie characters.

Ours: CINEM. w/o Character Names: An ab-

lation, in which the LLM receives the annotator’s

metadata and behavioral examples, but does not

use character names for perspective-taking (i.e.,

only for perspective-making). Instead, the LLM

directly simulates the annotator.

These variants allow us to examine the impact of
behavior-based persona construction (i.e., incorpo-
rating examples of evaluators’ annotations) and the
usefulness of using well-known movie characters
for grounding perspectives.

4.4 Evaluation Metrics

For OpinionQA, we report accuracy in predicting
the annotator’s answer. For DP, we report both
accuracy (exact match with the annotator’s score)
and mean absolute error (MAE) to account for near-
miss predictions in ordinal toxicity judgments.



Method DeepSeek OpenAl Google Mistral
DeepSeek V3 GPT 4.1 Gemini Flash 2.5 Mistral Medium
LLM as a Judge 37.71 45.26 43.56 43.83
LLM as a Personalized Judge 43.27 48.83 49.12 4542
CINEM. w/o Training Examples 50.00 50.29 48.83 46.79
CINEM. w/o Character Names 52.92 51.16 51.46 52.92
CINEMETRIC 57.31 52.33 53.53 48.75

Table 1: The performance (accuracy) of different methods with various LLMs on the OpinionQA dataset.

Method DeepSeek OpenAl Google Mistral
DeepSeek V3 GPT 4.1 Gemini Flash 2.5 Mistral Medium
LLM as a Judge 31.11 (1.183)  45.83(0.9) 43.06 (0.967) 31.37 (1.07)
LLM as a Personalized Judge 37.22 (0.981)  45.00 (0.9) 41.34 (0.934) 27.33 (1.064)
CINEM. w/o Training Examples 37.50 (0.972) 46.11 (0.872) 43.89 (0.844) 31.11 (1.05)
CINEM. w/o Character Names  43.33 (0.847) 47.50 (0.867) 52.78 (0.683) 35.46 (0.904)
CINEMETRIC 46.94 (0.747) 49.61 (0.808) 54.72 (0.653) 38.27 (0.891)

Table 2: On DP, CINEMETRIC consistently outperforms other techniques. We present the performance (accuracy
& MAE) of different methods with various LLMs on the DP dataset.

5 Results & Analysis

We evaluate the performance of CINEMETRIC
and competing methods on two datasets across a
diverse set of LLMs. As shown in Tables 1 and 2,
CINEMETRIC consistently outperforms all base-
line approaches, demonstrating its robustness and
adaptability across different model families and
evaluation formats.

5.1 Performance on OpinionQA

Table 1 presents detailed experimental results on
OpinionQA. CINEMETRIC achieves the highest
accuracy across all LLMs, surpassing both the
LLM as a Judge and LLM as a Personalized Judge
baselines. For instance, on DeepSeek V3, CINE-
METRIC achieves 57.31% accuracy, which is a
substantial improvement over the strongest base-
line (Personalized Judge) by significant margins of
about 15%. Similar gains are observed on GPT-
4.1 (52.33% vs. 48.83%), and on a smaller model
like Mistral Medium (48.75% vs. 45.42%). These
results indicate that the combination of character-
based simulation and perspective-driven alignment
significantly enhances model performance in cap-
turing annotator perspectives.

5.2 Performance on DP

Results on DP are presented in Table 2. Perfor-
mance on the DP dataset reinforces our findings on
OpinionQA. CINEMETRIC achieves the highest
accuracy on every model, with notable improve-
ments in both categorical prediction and mean ab-
solute error (MAE). For example, on DeepSeek
V3, CINEMETRIC reaches 46.94% accuracy with
a MAE of 0.747, compared to 37.22% and 0.981
for the Personalized Judge baseline. On GPT-4.1,
CINEMETRIC maintains its lead with 49.61%
accuracy and a MAE of 0.808. Gemini shows
particularly strong results, where CINEMETRIC
achieves 52.78% accuracy, again with the lowest
MAE (0.683), reflecting better ordinal sensitiv-
ity. Even on Mistral, the least capable model in
our suite, CINEMETRIC improves performance to
38.27% accuracy with a MAE of 0.891, surpassing
all alternative approaches.

5.3 Analysis of CINEMETRIC Aspects

Our baselines (i.e., CINEM. w/o Training Exam-
ples & CINEM. w/o Movie Characters) highlight
the individual contributions of CINEMETRIC’s
components. Removing the behavioral training
examples (CINEM. w/o Training Examples) con-
sistently reduces accuracy and increases MAE
across models, underscoring the value of using
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human-authored examples to align LLM behavior.
When movie characters are excluded (CINEM. w/o
Movie Characters), performance generally drops
as well, though the magnitude of the decline varies
by model. Notably, for Mistral on OpinionQA, the
version without movie characters slightly outper-
forms the full model. This suggests that in resource-
constrained models, reducing simulation complex-
ity may be beneficial, possibly due to prompt length
limitations or reduced capacity for role-play rea-
soning. Nevertheless, across all other settings, the
full CINEMETRIC framework provides the best
overall performance, reaffirming the utility of com-
bining character-based simulation with perspective-
driven alignment.

6 Conclusion

In this work, we introduced CINEMETRIC, a novel
evaluation framework that operationalizes perspec-
tivist alignment by simulating diverse evaluative
standpoints through LLM role-play. By draw-
ing on a rich set of character-based personas, our
approach provides a scalable, pluralistic alterna-
tive to monolithic evaluation practices. Through
comprehensive experiments on two diverse bench-
marks and across four leading LLM families, we
demonstrated that CINEMETRIC consistently out-
performs existing evaluation strategies in both ac-
curacy and MAE. Our results highlight the value
of perspective-driven simulation in enhancing the
human-likeness and value-diversity sensitivity of
automated evaluations. In particular, CINEMET-
RIC achieves stronger agreement with human judg-
ments than standard LLM-based or personalized-
LLM evaluation baselines.

Limitations

Dataset limitations: In this study, we evaluated
CINEMETRIC using only two benchmark tasks
(OpinionQA and DP), which are diverse in format
and domain, but do not exhaust the full range of
scenarios in which perspectivist evaluation may be
useful. Further evaluation on broader datasets, in-
cluding open-domain conversations and underrep-
resented demographic viewpoints, will be explored
in future work to strengthen the generalizability of
our framework.

Analysis limitations: While our results show
that CINEMETRIC exhibits higher agreement with
human annotators compared to existing approaches,
our current analysis focuses primarily on aggre-

gate accuracy and mean absolute error. We do not
yet conduct fine-grained error analyses on persona-
specific disagreements or examine how specific at-
tributes (e.g., gender, neurotype) contribute to eval-
uation variance. Additionally, our agreement met-
rics are indirect (e.g., accuracy on human-labeled
responses), rather than derived from inter-rater cor-
relation with actual human raters on a per-instance
basis. A deeper investigation into persona-level
contributions and alignment dynamics will help
better characterize the interpretability and fairness
of CINEMETRIC.
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A Model Implementation Details

All experiments were conducted using the Open-
Router API !. Across all models, the results are
averages over 5 runs with a temperature of 1.0 and
a maximum number of tokens of 2048. The other
parameters are set to their default values.

B Prompts Used in CINEMETRIC

We describe the prompts used for each step in the
CINEMETRIC framework.
B.1 Perspective Making

B.1.1 Character Selection w/ Training
Examples

### GOAL: #i##

You are a movie character matching expert. Your
goal is to suggest {num_characters} well-
known movie characters that match a user
profile.

### USER'S PROFILE: ###
{user_info}

### TRAINING EXAMPLES: ###

Here are some examples of how this user
annotated comments/ answered questions:

{examples with ground truth}

### TASK: #it#

Based on both the user's profile AND the
examples shown above, suggest {
num_characters} movie characters who would
likely have similar perspectives on what
content is toxic or harmful.

Consider:

- How this person's background might influence
their views.

- Characters whose values and experiences would
align with these judgment patterns.

### IMPORTANT RULES: ###

1. Only suggest real characters from real,
widely known movies.

2. Choose characters from popular, mainstream
movies that most people would recognize.

3. Make sure all {num_characters} characters
are DIFFERENT.

### OUTPUT FORMAT ###

Format your response EXACTLY as follows:

Character Name:[character name 1]

Movie Title:[movie title 1]

Reasoning:[explain why you chose this character,
considering the person's profile and the
examples shown]

nnn

B.1.2 Character Selection w/o Training
Examples

"https://openrouter.ai/models

##t# GOAL: #i#

You are a movie character matching expert. Your
goal is to suggest {num_characters} well-
known movie characters that match a user
profile.

### TASK: ###

Based on the following user profile, suggest {
num_characters} well-known movie characters
that match these characteristics:

{user_info}

### IMPORTANT RULES: ###

1. Only suggest real characters from real,
widely known movies.

2. Choose characters from popular, mainstream
movies that most people would recognize.

3. Make sure all {num_characters} characters
are DIFFERENT.

### OUTPUT FORMAT ###

Format your response EXACTLY as follows:
Character Name:[character name 1]

Movie Title:[movie title 1]

B.1.3 Character Validation

### TASK: ###

You are a movie expert. You should verify if
the character "{character_name}" is a
character from the movie "{movie_title}".

#i## IMPORTANT RULES: ##t#
1. Only respond with "VALID" if you are 100%
certain this character exists in this movie

2. Respond with "INVALID" if:
- The character doesn't exist in this movie
- The movie doesn't exist
3. Do not provide any explanation, just respond
with VALID or INVALID.

B.2 Perspective Taking

B.2.1 Evaluation w/ Reasoning
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### GOAL: ###

You should role-play the following movie
character and solve the task from the movie
character's perspective, informed by how
similar real people have approached these
evaluations.

### MOVIE CHARACTER: ###

You should role-play {character_name} from the
movie {movie_name}.

You must fully embody the role of {
character_name} throughout the entire
evaluation process. This means your
judgment and reasoning must reflect how {
character_name} behaves and thinks in {
movie_name}.

### CHARACTER SELECTION RATIONALE: ###

The reason why this character was chosen is as
follows:

{Reasoning}



https://openrouter.ai/models

#H#H TASK: #it#
As {character_name}, evaluate ...

### INSTRUCTION: #i##

Consider the character selection rationale
above and the character's values and
personality when making judgments. This
means your evaluation must reflect what the

movie character would genuinely prefer.
You should not say your personal opinion or
an objective analysis.

### OUTPUT FORMAT: ###

Your output should have the following format:

Reasoning: [The reason why you choose the
response. ]

Character's aspect: [The aspect of the movie
character's perspective you use to make
this judgment.]

Answer: [Your choice]

B.2.2 Evaluation w/o Reasoning

### GOAL: ###

You should role-play the following movie
character and evaluate the toxicity of the
following comment from the movie character'
s perspective, informed by how similar real

people have approached these evaluations.

i
You

MOVIE CHARACTER: #it#

should role-play {character_name} from the
movie {movie_name}.

must fully embody the role of {
character_name} throughout the entire
evaluation process. This means your
judgment and reasoning must reflect how {
character_name} behaves and thinks in {
movie_name}.

You

### TASK: #it#
As {character_name}, evaluate ...

### OUTPUT FORMAT: ###

Your output should have the following format:

Reasoning: [The reason why you choose the
response. ]

Character's aspect: [The aspect of the movie
character's perspective you use to make
this judgment.]

Answer: [Your choice]

B.2.3 Evaluation w/o Movie Character

### TASK: #i##

Your task is to evaluate ... from the
perspective of a user who has the following
characteristics: {user_info}

### USER RATIONALE: ###
{Reasoning}

### OUTPUT FORMAT: ###

Reasoning: [The reason why you choose the
response. ]

User's aspect: [The aspect of the user's
perspective you use to make this judgment.]

Answer: [Your choice]

B.2.4 LLM-as-a-Personalized-Judge

### GOAL: ###
Based on the user profile provided below,
evaluate ...

### User Profile:
{user_info}

i

### OUTPUT FORMAT: #i##

Reasoning: [Explain your reasoning based on
your profile]

Answer: [Your choice]

B.2.5 LLM-as-a-Judge

### TASK: ###
Evaluate ...

### OUTPUT FORMAT: ###
Answer: [Your choice]
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C Case Study Example

To illustrate the workings of CINEMETRIC in a
concrete scenario, we present an example involv-
ing a single real-world annotator and their three
selected personas. The goal is to showcase how the
model simulates different character perspectives
during toxicity evaluation.

C.1 Persona Matching and Evaluation
Walkthrough

Human Annotator Profile: The person is female.
Racially, the person is Asian. She is 55 - 64 years
old and has some college but no degree. The person
views technology’s impact as somewhat positive
and uses social media, news media, video media,
online forums. The person has personally seen
toxic content online and considers toxic comments
to be occasionally a problem. Politically, the person
is independent and identifies as heterosexual. The
person is a parent. Religion is very important to
the person.

Selected Movie Characters and Rationales:

* Mulan (Mulan, 1998): A disciplined, honor-
driven Asian woman with strong moral values,
aligned with the user’s cultural identity and
parenting role. Likely sensitive to personal
attacks and sexually inappropriate content.

* Helen Parr / Elastigirl (The Incredibles,
2004): A pragmatic parent and protector, in-
clined to flag comments that threaten familial
or social wellbeing, while tolerating factual or
benign competition-related statements.



¢ Evelyn Wang (Everything Everywhere All
At Once, 2022): A resilient Asian immigrant
navigating chaos and family, with deep moral
grounding. Strong aversion to disrespect, but
tolerant of less consequential critiques or po-
litical slogans.

Task:
Rating the toxicity of the following comment:
Comment: "Denying genocide is a crime!”

Role-Played Evaluations:

e Mulan:

— Reasoning: Mulan, as a soldier and sym-
bol of justice, sees genocide denial as
morally egregious. Upholding truth and
defending the vulnerable are central to
her character.

— Character Aspect: Military background
and moral absolutism.

— Toxicity Score: 2
¢ Helen Parr:

— Reasoning: As a mother and protector,
Helen supports the comment as a factual
and justice-aligned assertion. She inter-
prets it as a call to accountability rather
than toxicity.

— Character Aspect: Balanced, justice-
oriented parental perspective.

— Toxicity Score: 0
* Evelyn Wang:

— Reasoning: Evelyn, grounded in spiri-
tual resilience and firsthand experience
with injustice, perceives the comment as
morally justified. Her empathy for vic-
tims drives her interpretation.

— Character Aspect: Lived trauma, spiri-
tual values, and parental protectiveness.

— Toxicity Score: 0
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Abstract

Irony is a subjective and pragmatically complex
phenomenon, often conveyed through rhetori-
cal figures and interpreted differently across
individuals. In this study, we adopt a per-
spectivist approach, accounting for the socio-
demographic background of annotators, to in-
vestigate whether specific rhetorical strategies
promote a shared perception of irony within
demographic groups, and whether Large Lan-
guage Models (LLMs) reflect specific perspec-
tives. Focusing on the Italian subset of the
perspectivist MultiPICo dataset, we manually
annotate rhetorical figures in ironic replies us-
ing a linguistically grounded taxonomy. The
annotation is carried out by expert annotators
balanced by generation and gender, enabling
us to analyze inter-group agreement and po-
larization. Our results show that some rhetori-
cal figures lead to higher levels of agreement,
suggesting that certain rhetorical strategies are
more effective in promoting a shared percep-
tion of irony. We fine-tune multilingual LLMs
for rhetorical figure classification, and evalu-
ate whether their outputs align with different
demographic perspectives. Results reveal that
models show varying degrees of alignment with
specific groups, reflecting potential perspec-
tivist behavior in model predictions. These
findings highlight the role of rhetorical figures
in structuring irony perception and underscore
the importance of socio-demographics in both
annotation and model evaluation.

1 Introduction

Irony is a complex communicative phenomenon in
which the intended meaning diverges from the lit-
eral interpretation of an utterance (Muecke, 1970).
It often relies on pragmatic inference and contex-
tual cues, making it a challenging target for compu-
tational modeling. Beyond its linguistic complex-
ity, irony is also deeply subjective: its perception

“Equal contribution.
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varies across individuals and is shaped by socio-
demographic traits such as age, gender, or cultural
background (Frenda et al., 2023a).

Linguistic studies distinguish several categories
of irony, including hyperbole, exaggeration, and
changes in register, conveyed through rhetorical
figures (Karoui et al., 2017). These rhetorical fig-
ures can be seen as markers of different categories
of irony, each relying on distinct communicative
cues (Athanasiadou and Colston, 2020; Kiihn and
Mitrovié, 2024). Recognizing such strategies may
therefore aid in detecting irony and understanding
how it is perceived across individuals.

At the same time, the subjectivity inherent in
irony interpretation poses a challenge: what one
person may find clearly ironic, another may inter-
pret literally or fail to recognize altogether. This
perspectivist dimension (Frenda et al., 2024) high-
lights the subjective variability in irony perception,
posing challenges for both annotation and compu-
tational modeling.

In this paper, we study irony not as a uniform
phenomenon, but as a set of rhetorical categories
that shape its interpretation. Specifically, we inves-
tigate whether certain rhetorical figures promote a
shared perception of irony categories among indi-
viduals who share socio-demographic traits—and
whether such alignment can also be observed in the
behavior of Large Language Models (LLMs).

Indeed, LLLMs have emerged as powerful tools
for natural language understanding and genera-
tion. Their ability to capture subtle patterns in lan-
guage makes them promising candidates for mod-
eling complex pragmatic phenomena such as irony
(Balestrucci et al., 2024). Yet, LLLMs are not neu-
tral observers: their outputs reflect the data they
were trained on, which may embed implicit cul-
tural backgrounds, social perspectives, or biases
(Kotek et al., 2023). When applied to subjective
phenomena like irony, this raises the question of
whether LLMs themselves adopt specific perspec-
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tives in how they interpret rhetorical and ironic
content (Basile et al., 2024).

To this end, in the first part of the paper, we
focus on the Italian subset of the perspectivist Mul-
tiPICo dataset (Casola et al., 2024), which con-
tains short social media conversations annotated
for irony (ironic versus not-ironic) by a diverse
pool of annotators. So, we augment the MultiPICo
annotation by manually annotating the rhetorical
figures, adopting the taxonomy proposed by Karoui
et al. (2017), into the replies that were labeled as
ironic by majority vote in the original campaign.
This process is carried out by annotators grouped
by generation and gender, allowing us to exam-
ine patterns of agreement both within and across
demographic groups.

In the second part of the study, we first train
LLMs to automatically classify rhetorical figures in
ironic replies. In order to improve classification per-
formance, we fine-tune the models on TWITTIRO-
UD (Cignarella et al., 2017), a corpus of ironic
Italian tweets annotated with rhetorical figures. We
then examine whether the predictions made by the
models reflect the annotation patterns of particular
demographic groups—thus highlighting potential
perspectivist biases in how LLLMs handle complex
pragmatic phenomena like irony.

Our study is guided by the following research
questions (RQs):

* RQ1: Do rhetorical figures promote a shared
perception of irony categories across different
demographic groups?

* RQ2: Do LLMs exhibit perspectivist behavior
when classifying rhetorical figures in ironic
texts?

The remainder of the paper is structured as fol-
lows. Section 2 reviews the literature on irony,
rhetorical figures, and perspectivist annotation.
Section 3 introduces the MultiPICo dataset. Sec-
tion 4 outlines our experimental design, followed
by the manual annotation campaign and result anal-
ysis in Section 5. In Section 6, we present the au-
tomatic classification experiments with LLMs. We
conclude with a summary of findings in Section 7
and a discussion of limitations in Section 8.!

TAll code

used

and the  manually annotated
corpus in this study are  available
at: https://github.com/MichaelOliverio/
perspectivist-understanding-rhetorical-figures.
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2 Related Works

Recent work in NLP has increasingly emphasized
the importance of taking annotators’ perspectives
into account when dealing with subjective linguis-
tic phenomena such as irony or hate speech. In-
stead of treating disagreement as a flaw to be min-
imized, the perspectivist approach (Basile et al.,
2021; Frenda et al., 2025) considers it meaningful
variation that reflects different ways of interpreting
language. To support this view, several studies have
proposed modeling annotations at the level of indi-
viduals (Davani et al., 2022) or groups defined by
shared beliefs or demographic traits (Frenda et al.,
2023b; Akhtar et al., 2019).

This line of research relies on disaggregated
datasets, where annotations are linked to metadata
such as age, gender, ideology, or cultural back-
ground (Cabitza et al., 2023; Sachdeva et al., 2022).
These datasets allow researchers to investigate how
socio-demographic traits influence linguistic judg-
ments, and to build models that better capture the
diversity of interpretations (Sap et al., 2021; Wan
et al., 2023). Incorporating this information has
been shown to improve not only fairness, but also
classification performance.

In the domain of irony detection, several studies
have started to explore the relationship between
perspectivism and the perception of irony (Frenda
et al., 2023a,b), revealing, for instance, that irony
can be more polarizing depending on the annota-
tors’ generation (Casola et al., 2024). In line with
this direction, the present work aims to further in-
vestigate the perspectivist nature of irony by consid-
ering it as a phenomenon that can be classified into
rhetorical categories (Karoui et al., 2017). Specif-
ically, we propose a study that seeks to explain
and analyze the role of annotators’ perspectives in
the perception and classification of irony through
rhetorical figures.

3 MultiPICo

MultiPICo (Casola et al., 2024) is a multilingual
dataset of short social media conversations, each
consisting of a post and its reply, annotated to indi-
cate whether the reply is ironic in response to the
post. It contains a total of 18,778 post—reply pairs
collected from Reddit (8,956) and Twitter (9,822),
spanning nine languages. The annotations were
obtained through crowdsourcing from 506 individ-
uals with diverse demographic profiles, resulting in
94,342 labels—an average of 5.02 annotations per
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post-reply pair. Each label is enriched with demo-
graphic metadata, including gender, age, ethnicity,
student status, and employment.

In the Italian subset, 24 annotators provided
4,790 labels across 1,000 conversations.” Among
them, 11 were female and 13 male. With respect
to age groups, 11 annotators belonged to Gen Z
(born between 1997 and 2012), 12 to Gen Y or
Millennials (born between 1981 and 1996), and 1
to Gen X (born between 1965 and 1980).

4 Methodology

The first step of our methodology consists in the
manual annotation of the Italian subset of Mul-
tiPICo by linguistically trained experts with spe-
cific knowledge of rhetorical figures. We adopt
the taxonomy proposed by Karoui et al. (2017),
which classifies irony into eight categories. Seven
of these are grounded in rhetorical structures, while
the eighth—OTHER —serves as an umbrella cate-
gory encompassing situational irony and humor
(Shelley, 2001; Niogret, 2004).
The seven rhetorical categories are as follows:

* ANALOGY (Ritchie, 2005; Burgers, 2010): in-
volves similarity between two things that have
different ontological concepts or domains, on
which a comparison may be based.

* HYPERBOLE (Berntsen and Kennedy, 1996;
Mercier-Leca, 2003; Didio, 2007): makes a
strong impression or emphasizes a point.

¢ EUPHEMISM (Muecke, 1978; Seto, 1998): re-
duces the facts of an expression or an idea
considered unpleasant in order to soften the

reality.
¢ RHETORICAL QUESTION (Barbe, 1995;
Berntsen and Kennedy, 1996): asks a

question in order to make a point rather than
to elicit an answer.

e CONTEXT SHIFT (Haiman, 1998; Leech,
2016): a sudden change of topic or frame;
use of exaggerated politeness in a situation
where it is inappropriate, etc.

* FALSE ASSERTION (Didio, 2007): a proposi-
tion, fact, or assertion that fails to make sense
against reality.

2https://huggingface.co/datasets/
Multilingual-Perspectivist-NLU/MultiPICo

* OXYMORON/PARADOX (Gibbs, 1994; Barbe,
1995; Tayot, 1984): equivalent to “False asser-
tion” except that the contradiction is explicit.

All annotators belong to the same demographic
groups considered in the original MultiPICo an-
notation campaign. For this study, we focus on
two dimensions: gender and generation. A sub-
set of 200 ironic Italian post-reply pairs was an-
notated by six individuals—three male and three
female—balanced across generations: two from
Gen X, two from Gen Y, and two from Gen Z.

We then analyze whether these groups show con-
sistent patterns in the identification of rhetorical
figures for ironic texts, both within and across de-
mographic groups, in order to address our first re-
search question.

In the second phase of the study, we fine-tune
various LLMs on rhetorical figure classification.
We then evaluate their capability to classify rhetor-
ical figures in ironic post—reply pairs from Multi-
PICo. Finally, we investigate whether these LLMs
exhibit specific perspectives in their classification
outputs, analyzing potential alignment with human
demographic groups.

5 MultiPICo Annotation

In this section, we describe the annotation of the
Italian subset of MultiPICo using the taxonomy
proposed by Karoui et al. (2017), which was specif-
ically developed for the analysis of ironic texts.
We focus exclusively on post-reply pairs annotated
as ironic in MultiPICo, selected through a major-
ity vote strategy. This yields a total of 278 ironic
post—reply pairs.

The annotation was performed by six volunteer
native Italian speakers, all with a strong academic
background in linguistics, on 200 out of the 278
ironic post-reply pairs.

The annotation process follows these steps:

* We adopt the annotation guidelines released
by Karoui et al. (2017) to ensure consistency
with their framework.?

* We label the reply, using the post as contextual
information to support the classification of
rhetorical figures;

* We assign one or more labels to each reply,
depending on the rhetorical figures identified.

3Guidelines available at:
Jihen-Karoui/Scheme

https://github.com/
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Annotator Agreement across Rhetorical Figures
Once the annotation phase was completed, we ana-
lyzed the level of agreement among annotators to
understand whether certain rhetorical figures pro-
mote a more shared perception of irony.

Our hypothesis is that, if some rhetorical figures
are more easily or intuitively recognized as mark-
ers of irony, they should yield higher agreement
scores across annotators. To test this, we com-
puted inter-annotator agreement for each figure us-
ing both Fleiss’ « (Fleiss, 1971) and Krippendorff’s
a (Krippendorff, 2011), as shown in Table 1.

The results reveal notable differences across la-
bels: RHETORICAL QUESTION achieves the highest
agreement (v = 0.426, o = 0.426), followed by
HYPERBOLE and ANALOGY. This may be due to the
fact that these figures often exhibit salient syntactic
or lexical markers in Italian—such as the use of
a question mark in rhetorical questions, or com-
parative structures introduced by come (“like/as”)
in analogies—making them more easily recog-
nizable and less open to interpretive ambiguity.
Other figures—such as EUPHEMISM, OXYMORON, and
CONTEXT SHIFT—show much lower agreement
scores.

Figure 1: Distribution of Rhetorical Figures Annotated
per Annotator

An analysis of label distribution (Figure 1)
shows that the most frequent categories are OTHER
and CONTEXT SHIFT, further confirming that anno-
tator agreement is driven more by the presence of
recognizable linguistic cues than by the predomi-
nance of any single category within the annotated
sample.

To illustrate how certain rhetorical figures may
be more easily and consistently identified, we re-
port two representative examples from our dataset:

* Post: “@USER Not exactly good morning.”
(“@USER Non troppo buongiorno.”)
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* Reply: “@USER Grandpa! Already
awake???” (“@USER Nonnino! Gia sveg-
lio???”)

Five annotators labeled the reply as a rhetorical
question. The ironic tone emerges from the con-
trast between the reply’s exaggerated cheerfulness
and the original negative tone. The question is not
meant to be answered, but rather functions as a
rhetorical device to underscore the mismatch in
mood, making irony both recognizable and effec-
tive.

* Post: “If you find university easier than high
school, I would seriously question your de-
gree program. After all, that’s how it should
work—you grow, you mature, and gradually
you deal with more difficult topics. But the
truth is, many universities are just daycare
2.0 for people in their twenties.” (“Se trovate
piu facile ['universita che il liceo mi farei se-
rie domande sulla vostra facolta. D’altronde
dovrebbe essere ’ordine naturale delle cose,
Si cresce, si matura e pian piano si affrontano
argomenti piu difficili. La verita é pero che
tante universita non sono altro che un asilo
2.0 per ventenni.”)

Reply: “Of course, everyone knows that in
every RPG, the final boss is always the hardest
one—especially if it’s the biggest in the game.”
(“Del resto lo sanno tutti che in ogni GDR il
boss piu difficile in assoluto é quello finale,
soprattutto se e il pin grosso del gioco.”)

Also in this case, five out of six annotators la-
beled the reply as an analogy. The ironic intent is
conveyed through a comparison between university
education and video game dynamics, suggesting
that an academic path should progressively become
more challenging—ijust like in a role-playing game.
The analogy is built around a clearly structured
evaluative comparison, making the rhetorical fig-
ure relatively unambiguous and contributing to the
high level of agreement among annotators.

While these examples show that some rhetorical
figures can be consistently identified by different
annotators, the overall picture remains more nu-
anced. The average agreement across all figures is
modest (x = 0.198, a = 0.199), suggesting that
only some rhetorical strategies promote a shared
perception of irony categories.

Crucially, all annotators involved are trained lin-
guists with expertise in rhetorical analysis, and



were provided with detailed annotation guidelines.
One might therefore expect a high level of objec-
tivity and consistency. However, the observed vari-
ation indicates that the classification of rhetorical
figures in ironic texts is not a straightforward or
universally shared process, but rather a task that
involves subjective interpretation—even among ex-
perts.

Label Fleiss’ x Krippendorff’s o
ANALOGY 0.238 0.238
CONTEXT SHIFT 0.112 0.112
EUPHEMISM 0.089 0.090
FALSE ASSERTION 0.194 0.194
HYPERBOLE 0.304 0.304
OTHER 0.142 0.143
OXYMORON 0.084 0.085
RHETORICAL QUESTION 0.426 0.426
Average 0.198 0.199

Table 1: Inter-annotator agreement scores (Fleiss’ x and
Krippendorff’s «) for each rhetorical figure.

Annotators’ Polarization Following the analy-
sis proposed by Casola et al. (2024), we used the
Polarization Index (P-index) introduced by Akhtar
et al. (2019). This measure evaluates, for each
instance—in our case, each post—reply pair—the
polarization in annotations provided by annotators
grouped according to specific sociodemographic
characteristics. An example of such grouping,
shown in Table 2, is by gender (male/female) or by
generation (Gen X/Y/Z).

The P-index ranges between 0 and 1, where 0 in-
dicates complete agreement across different groups
(no polarization), and 1 indicates maximum inter-
nal agreement within each group but total disagree-
ment between groups (maximum polarization).

Formally, the P-index for an instance 7 is defined
as:

P(i) = ey

x| =

.
> a(G) - (1 - a(@))

where k is the number of groups (for example,
3 in the case of grouping by generation), a(G,)
is the internal agreement level within group G,
for instance 4, and a(G) is the overall agreement
level of all annotators on instance 7. Following the
original proposal, the agreement (a) is calculated
using a normalized x? statistic:

X (G)
| M|

a(G) = 2
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where x?(G) denotes the chi-square statistic for
group G, and | M| is the number of annotations for
the corresponding instance.

We employed the P-index for groups defined
by gender and generation. Due to the multi-label
nature of our annotation scheme, where annotators
can assign multiple rhetorical figures to a single
instance, we compute the P-index independently
for each rhetorical figure and report the average
across all figures. An example of the P-index on an
instance can be seen in Table 3.

To establish a baseline, we calculated the P-index
for each rhetorical figure over all possible ran-
dom combinations of annotators—pairs for gender
grouping and triplets for generation grouping—and
averaged the results accordingly.

Additionally, we also calculated the percentage
difference (%A) between the real P-index and the
random P-index, to highlight the degree of polar-
ization actually observed compared to a random
baseline.

Gender | Generation
real random VAN real random %A
0.124 0.132 —6.10 0.191 0.146 31.13

Table 2: Polarization index values calculated for annota-
tor groups based on gender and generation. The table
shows the real P-index, the random P-index obtained
by averaging over random permutations of annotators,
and the relative percentage difference (%A) between
the real and random values.

The results in Table 2 show that for the gender
dimension, the real P-index value (0.124) is lower
than the one expected by chance (0.132), with a
negative percentage difference of —6.10%. This
suggests that annotators do not tend to polarize
based on gender; in fact, their annotations appear
to be slightly less variable within gender groups
than would be expected randomly. In contrast, for
the generation dimension, the real P-index value
(0.191) is higher than the random baseline (0.146),
with a positive difference of 31.13%. This indicates
that generation is a polarizing trait in the annotation
of rhetorical figures. In other words, annotators
within the same age group tend to agree more with
each other, while differing more from those in other
generational groups.



Ann.

Post Reply Gen. An Cs Eu Fa Hy Ot Ox Rq | P-index
@USER It will be the X 0 1 0 0 0 0 0 1

first strong team they @USER Which X 0 1 0 0 0 0 0 0

face.... one of the two? ? Y 0 0 0 0 0 0 0 1 0.100
(@USER Sara la prima | (@USER Quale Y 0 0 0 0 0 0 0 1 ’
squadra forte che delle due? ?) Z 0 0 0 0 0 0 0 1
affrontano.... Z 0 0 0 0 0 0 0 1

Table 3: Example of polarization in the annotations. While the reply “Which one of the two?” may appear as a
rhetorical question, the table reveals disagreement among annotators from different generations. All Gen Z and
Gen Y annotators labeled it as a Rhetorical question (Rq), whereas only one Gen X annotator agreed, with another
opting for Context shift (Cs). Abbreviations: Ann. Gen. = Annotator Generation, An = Analogy, Cs = Context shift,
Eu = Euphemism, Fa = False assertion, Hy = Hyperbole, Ot = Other, Ox = Oxymoron, Rq = Rhetorical question.

6 Rbhetorical Figure Classification and
Perspective Alignment in LLMs

In this section, we explore whether LLMs reflect
specific perspectives when classifying rhetorical
figures in ironic texts. As a first step, we fine-tuned
a set of multilingual LLMs on the TWITTIRO-UD
dataset, aiming to enhance their performance in the
classification of rhetorical figures within ironic lan-
guage. Indeed, while the TWITTIRO-UD dataset
serves to fine-tune and evaluate the LLMs’ classifi-
cation abilities, the MultiPICo data instead allow
us to assess whether model predictions align more
closely with specific demographic perspectives.

TWITTIRO-UD TWITTIRO-UD is a corpus of
ironic Italian tweets annotated with rhetorical fig-
ures and linguistic information following the Uni-
versal Dependencies (UD) framework.* It contains
1,424 tweets and over 28,000 tokens, originally
collected for the fine-grained annotation of irony.
Each tweet is labeled with the rhetorical figure used
to convey irony, based on the taxonomy proposed
by Karoui et al. (2017).

Model Setup and Fine-Tuning We fine-tuned
four LLMs on TWITTIRO-UD using a reasoning
instruction format, in which the model is prompted
to first generate a short explanation before produc-
ing the final label, following the Chain-of-Thought
prompting strategy (Wei et al., 2022). The models
we used are:

o Llama-3.1-8B-Instruct’,

* Ministral-8B-Instruct-2410°,

*https://github.com/UniversalDependencies/UD_
Italian-TWITTIRO

5https://huggingface.co/meta—llama/Llama—3.
1-8B-Instruct

6https://huggingface.co/mistralai/
Ministral-8B-Instruct-2410
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o LLaMAntino-3-ANITA-8B-Inst-DPO-ITA’,
¢ Minerva-7B-instruct-v1.08.

Model fine-tuning Fine-tuning was performed
using the Low-Rank Adaptation (LoRA) method
(Hu et al., 2021). All models were prompted in
English and trained to output both the explanation
and the final rhetorical figures using the labels from
the original annotation schema. The training was
conducted using the transformers and peft li-
braries. Table 4 summarizes the main parameters
used in the TrainingArguments class and in the
LoRA configuration.

Parameter Value
LoRA configuration

LoRA rank (r) 64
LoRA alpha 16
Dropout probability 0.1
TrainingArguments

Number of training epochs 5
Enable fp16 training False
Enable bf16 training True
Batch size per GPU for training 1
Batch size per GPU for evaluation 1
Gradient accumulation steps 1
Maximum gradient norm 0.3
Initial learning rate 2e—4
Weight decay 0.001
Optimizer adamw_torch
Learning rate schedule cosine
Warmup ratio 0.03

Table 4: Configuration of hyperparameters used in the
LoRA-based fine-tuning process.

The input prompt for the fine-tuning followed
this format:

"https://huggingface.co/swap-uniba/
LLaMAntino-3-ANITA-8B-Inst-DPO-ITA

8https://huggingface.co/sapienzanlp/
Minerva-7B-instruct-v1.0
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Instruction: Given the ironic sentence
(INPUT), identify and return the rhetor-
ical figure it exemplifies in (OUTPUT).
Explain your reasoning first, and then
answer with the rhetorical figure.

Baselines To contextualize the performance of
the fine-tuned models, we defined two baselines:

* Random: a naive classifier that assigns one
of the eight possible rhetorical categories uni-
formly at random. This provides a sense of
the task’s inherent difficulty.

Zero-Shot prompting: we prompted the best-
performing model in its non—fine-tuned ver-
sion using the same instruction and listing
all rhetorical categories as candidate outputs.
This baseline allows us to estimate how much
LLMs know about rhetorical devices without

fine-tuning.
Model Precision Recall F1-score
Llama-3.1-8B 0.378 0.406 0.384
LLaMAntino-3-8B 0.382 0.397 0.385
Ministral-8B 0.393 0.408 0.396
Minerva-7B 0.367 0.385 0.372
Random 0.138 0.122 0.125
Zero-Shot 0.213 0.218 0.185

Table 5: Performance of fine-tuned models on the
TWITTIRO-UD test set. Scores are reported as
weighted averages of precision, recall, and F1-score
across three runs.

Results on TWITTIRO-UD Table 5 reports the
classification results on the TWITTIRO-UD test
split. Each LLM was run three times per input
using a temperature of 0.1. We report the results
as the weighted average of Precision, Recall, and
F1-score, in order to account for the different dis-
tribution of the rhetorical figures in the dataset.
The random baseline acts as a benchmark to
evaluate the inherent difficulty of the task: given
the presence of eight possible classes, it is very
unlikely to achieve strong results through chance
alone. Within this challenging setup, Ministral-8B
achieves the highest performance, narrowly sur-
passing other fine-tuned models. Moreover, the
zero-shot results obtained by prompting Ministral-
8B reveal that LLMs possess some prior under-
standing of rhetorical figures and their use, as ev-
idenced by their performance exceeding random
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chance. Finally, fine-tuning on the TWITTIRO-UD
dataset leads to a substantial improvement in their
classification performance.

Do LLMs Exhibit a Specific Perspective? To
explore whether LLMs adopt a specific perspective
when classifying rhetorical figures, we assessed
their performance against gold references derived
from different demographic groups. Specifically,
for each group in the Italian subset of MultiPICo
(Female, Male, Gen X, Gen Y, Gen Z), we com-
puted the most frequently assigned rhetorical figure
label across all instances, based on the annotations
provided by human annotators belonging to that
group in Section 5. These labels were then used
as gold references to calculate precision, recall,
and F1-scores for each model. We also computed
an additional “Global” reference, using the most
frequent label aggregated across all annotators, re-
gardless of group.

Table 6 reports model performance under these
different evaluation perspectives. The results show
consistent variation depending on which group’s
labels are used as gold. For instance, Llama-3.1-
8B performs notably better when evaluated against
the Gen X labels (F1 = 0.215), suggesting a closer
alignment with the rhetorical preferences of Gen X
annotators. Minerva-7B shows a similar trend, also
achieving its highest F1-score (0.260) with Gen X.
In contrast, LLaMAntino-3-8B performs best when
evaluated against the labels assigned by the Gen Z
group (F1 = 0.241), while Ministral-8B performs
best with the Female group (F1 = 0.261)

These findings suggest that LLMs may align
more closely with certain annotation patterns, re-
flecting differences in how rhetorical figures are
interpreted across demographic groups.

Error Analysis To better understand the classifi-
cations produced by the models, we conducted an
analysis of the most frequent errors.

One of the most common issues involves the
distinction between the post and the reply. In many
cases, the models tend to assign the label to the
post rather than the reply, which is actually the
correct target for classification. For example, in the
following pair:

* Post: “Do you think a MORTADELLA
SANDWICH could be considered HOME-
OPATHIC?” (“Secondo voi il PANINO
CON LA MORTADELLA si puo considerare
OMEOPATICO?”)



Model Group Precision Recall F1-Score
Female 0.236 0.214  0.204
Male 0.220 0.199  0.177
GenX 0305 0.199 0.215
Llama-3.1-88 GenY  0.187 0.194  0.160
GenZ  0.161 0.159 0.138
Global 0.217 0.219 0.195
Female 0.333 0.174 0.187
Male 0.271 0.189  0.202
. GenX  0.251 0.179  0.193
LLaMAntino-3-88 . v (267 0199  0.204
GenZ 0275 0.249 0.241
Global  0.311  0.204 0.224
Female 0.327 0.244 0.261
Male 0.254  0.199  0.200
. GenX  0.258 0.184  0.202
Ministral-8B GenY 0275 0224 0218
GenZ  0.193 0.189 0.182
Global 0.346 0.239  0.250
Female 0.305 0.214  0.220
Male 0.327 0.184 0.183
Minerva 7B GenX 0.367 0.234 0.260
GenY  0.296 0.184  0.166
GenZ  0.181 0.184 0.167
Global  0.314  0.209  0.202

Table 6: Performance of each model on the Italian subset
of MultiPICo, reported as weighted averages of preci-
sion, recall, and F1-score. Gold labels correspond to the
most frequent label assigned by human annotators for
each demographic group (Female, Male, Gen X, Gen Y,
Gen Z) and overall (Global).

* Reply: “@USER Yes” (“@USER Si”)

LLaMAntino-3-8B  assigns  the  label
RHETORICAL QUESTION, which is more ap-
propriate for the post than for the reply. In this
case, most human annotators labeled the reply as
FALSE ASSERTION, a rhetorical figure that better
reflects the content of the response.

Another critical issue is the presence of halluci-
nations in the models’ responses. For instance:

* Post: “@USER No no, it’s right, it has to be
there, you feed it, cuddle it, keep it warm, it
has to be there” (“@ USER No no ¢ giusto, ce
deve sta, la nutri la coccoli la tieni calda, ce
deve sta’)

* Reply: “@USER Actually, the other one
handles it. I’'m just a disruptive element.”
(“@USER Veramente ce pensa quell’altro. lo
sono un mero elemento di disturbo.”)

In this case, Llama-3.1-8B labels the reply as
SITUATIONAL IRONY, which is not part of the label
set used during fine-tuning. The appropriate label
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would be OTHER, which was in fact the most fre-
quently assigned category by annotators in similar
situations.

This analysis highlights the need for improve-
ments in the fine-tuning phase of the models, partic-
ularly to ensure clarity that the classification should
refer exclusively to the reply, with the post serving
only as contextual information. Additionally, it is
important to reinforce the alignment between the
available labels and those used by the model, in
order to avoid generating labels not included in the
adopted taxonomy.

7 Conclusions

In this paper we investigated irony as a multifaceted
phenomenon, structured by different rhetorical fig-
ures that guide its interpretation. By focusing on
the Italian subset of the perspectivist MultiPICo
dataset, we conducted a manual annotation cam-
paign in which expert annotators labeled rhetorical
figures in ironic replies. The annotators were bal-
anced across gender and generation, allowing us
to explore patterns of agreement both within and
across demographic groups.

Our findings show that only some rhetorical fig-
ures—such as RHETORICAL QUESTION, HYPERBOLE,
and ANALOGY—promote a more shared perception
of irony categories. Others yielded lower agree-
ment, highlighting the subjective nature of this task.
Despite the linguistic expertise of the annotators
and the use of detailed guidelines, the overall agree-
ment remained modest, supporting the perspectivist
view that irony interpretation is influenced by socio-
demographic background.

We then trained and evaluated LL.Ms on rhetori-
cal figure classification. While fine-tuned models
outperformed baselines, their predictions showed
variation depending on which group’s annotations
were used as gold labels. In particular, different
models aligned more closely with different demo-
graphic perspectives—suggesting that LLMs may
replicate specific patterns observed in human anno-
tation.

These results emphasize the importance of in-
corporating socio-demographic information when
modeling complex pragmatic phenomena such as
irony, both to improve classification performance
and to better account for variation in human inter-
pretation.



8 Limitations

This study presents a first attempt to investigate
the perspectivist nature of irony through the lens
of rhetorical figures. However, it presents some
limitations that open directions for future work.

First, our analysis is limited to the Italian sub-
set of the MultiPICo dataset. While this choice
enabled a controlled and linguistically grounded
study, future work will extend the approach to
other languages and cultural contexts, to assess
whether similar perspectivist patterns emerge cross-
linguistically.

Second, the annotation was carried out by a
small group of six annotators. This limited sample
size may restrict the generalizability of our find-
ings. Nonetheless, we opted for a small but expert
group of annotators—all with a background in lin-
guistics—to ensure a high-quality annotation of
complex rhetorical phenomena. Relying on larger
but less specialized crowdsourcing platforms could
have introduced noise and inconsistencies, particu-
larly in the classification of fine-grained rhetorical
strategies.

Third, to improve model performance in the au-
tomatic classification task, we fine-tuned the LLMs
on the TWITTIRO-UD dataset. While this resource
provides valuable rhetorical annotations for ironic
content, its use may introduce a potential source of
bias, as the labels reflect the interpretative choices
of a different group of annotators.
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The Case for Ambiguity Detection in NLI
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Abstract

This position paper argues that annotation
disagreement in Natural Language Inference
(NLI) is not mere noise but often reflects mean-
ingful variation, especially when triggered by
ambiguity in the premise or hypothesis. While
underspecified guidelines and annotator behav-
ior contribute to variation, content-based am-
biguity provides a process-independent signal
of divergent human perspectives. We call for
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amples, and motivates targeted detection meth-
ods that better align models with human in-
terpretation. Although current resources lack
datasets explicitly annotated for ambiguity and
subtypes, this gap presents an opportunity: by
developing new annotated resources and ex-
ploring unsupervised approaches to ambiguity
detection, we enable more robust, explainable,
and human-aligned NLI systems.

1 Introduction

This paper takes a position on how disagreement
in Natural Language Inference (NLI) is best un-
derstood and modeled. While prior work has
often treated annotator disagreement as noise—
something to be minimized or resolved (Snow et al.,
2008; Bowman et al., 2015)—we argue that such
disagreement can reflect meaningful, coexisting
interpretations grounded in linguistic ambiguity.
NLI, also known as Recognizing Textual En-
tailment (RTE) (Dagan et al., 2005), aims to clas-
sify the relationship between a premise (P) and
a hypothesis (H). Suppose P1=John likes Mary,
P2=John lives near Mary, Hl=John knows Mary,
H2=John doesn’t know Mary. Standard inference
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Figure 1: Framework for ambiguity-aware NLI: First
detect whether a (P)remise or (H)ypothesis is ambigu-
ous and, if so, classify the ambiguity type. Generate
disambiguated versions and pass these to the inference
classifier. Linguistic and other relevant background
knowledge inform each stage. Gray = focus of this
paper; white = supporting stages.

labels would assign entailment to (P1, H1), contra-
diction to (P1, H2), and neutral to (P2, H1). How-
ever, humans may diverge: (P1, H2) could also be
neutral if likes is interpreted as distant admiration
(e.g., of a celebrity).

We adopt a perspectivist reframing of NLI that
treats variation in inference classifications not as a
flaw but as an inherent feature of natural language
understanding. We emphasize content-based am-
biguity as a central source of disagreement and
advocate for deeper exploration of its role in shap-
ing inference judgments.

We situate our analysis within a framework for
handling ambiguous NLI instances (Figure 1). This
framework first determines whether an input pair is
ambiguous; if so, it disambiguates the pair into dis-
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tinct yet plausible human interpretations, enabling
predictions aligned with each interpretation.

NLI is pivotal in understanding semantic rela-
tionships and is central to evaluating how well
language models process natural language. NLI
benchmarks are typically constructed using human-
annotated entailment labels (Bowman et al., 2015;
Williams et al., 2018). Despite frequent disagree-
ments among annotators on the “correct” label for
a given premise-hypothesis pair, most NLI research
assumes a single “true” inference for each case.

Instances that deviate from this assumption
are either filtered out during dataset construction
(Bayer et al., 2005) or handled via majority vote
(Bowman et al., 2015), based on the belief that an-
notation disagreements reflect random error rather
than systematic variation. However, this approach
contradicts the original purpose of NLI: to model
what a reasonable, attentive, and informed human
would plausibly infer from text (Manning, 2006).

Recent studies have challenged the assump-
tion that annotation disagreements are mere noise,
demonstrating instead that such disagreements ex-
hibit reproducible patterns grounded in legitimate
interpretive differences (Pavlick and Kwiatkowski,
2019). This recognition has motivated efforts to
model the full distribution of plausible human in-
ferences (Chen et al., 2020; Meissner et al., 2021).

While these efforts are important, understanding
why such differences arise is equally critical for
developing systems that reflect multiple human in-
terpretations. This position paper argues for an NLI
modeling goal that centers on identifying and cat-
egorizing ambiguity into recurring interpretive
patterns, rather than merely modeling annota-
tor distributions to capture coexisting human
perspectives. We support this position through a
review and analysis of existing research.

The next section reviews work on modeling an-
notator label distributions and their limitations, mo-
tivating a closer look at sources of disagreement
in NLI. Section 3 examines prior categorizations
of these sources, Section 4 highlights the unique
role of ambiguity in premise-hypothesis pairs, and
Section 5 surveys current ambiguity-focused NLI
research and future directions.

2 Modeling annotator distribution

Most NLI benchmarks are constructed using
human-annotated entailment labels, which often
result in cases where multiple annotators assign dif-
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ferent labels to the same premise-hypothesis pair.
From the early days of NLI research, scholars have
expressed concerns about how to handle such dis-
agreements (Bayer et al., 2005).

Re-annotation of the RTE1 development and
training sets reveals substantial discrepancies be-
tween the original and new labels (Bayer et al.,
2005). Even after filtering out problematic exam-
ples, human judges only achieve a 91% agreement
rate. Similar disagreements in the Stanford Natural
Language Inference (SNLI) dataset complicate the
process of learning robust decision boundaries for
each entailment label (Pan et al., 2018).

Such cases are typically treated as “annotation
noise,” resolved by assigning a majority label under
the assumption that one “true” inference exists for
each premise-hypothesis pair. However, growing
evidence suggests that these disagreements reflect
systematic, reproducible variation rather than ran-
dom error (Pavlick and Kwiatkowski, 2019). In
many cases, divergent annotations signal the exis-
tence of multiple plausible interpretations.

Current NLI models, trained on majority-labeled
benchmarks, struggle to capture the full distribution
of human judgments and tend to perform better
when annotator agreement is high (Nie et al., 2020).
This highlights both a dependence on agreement
and a failure to model collective human reasoning.
Meissner et al. (2021) further show that models
trained on soft labels—distributions over annotator
responses—better approximate human judgments
and improve single-label prediction accuracy.

These findings have inspired a growing line of
research focused on modeling human opinion dis-
tributions. For example, the Uncertain Natural Lan-
guage Inference (UNLI) framework (Chen et al.,
2020) proposes predicting subjective probabilities
of entailment rather than coarse categorical labels.
While UNLI captures a more probabilistic notion of
inference, it targets average responses and does not
attempt to model the full range of interpretations.

Zhang and de Marneffe (2021) contrast system-
atic inference (high agreement) and ambiguous
cases (high disagreement). They build artificial
annotators using BERT (Devlin et al., 2019) to sim-
ulate annotation variation, enabling downstream
models to determine if a given premise-hypothesis
pair is likely to elicit disagreement. Zhou et al.
(2022) further improve modeling of opinion distri-
butions beyond standard softmax assumptions.

Together, these studies mark a shift from a pre-
scriptive view—assuming a single correct label—



toward a descriptive approach that acknowledges
interpretive variations. They help pave the way for
systems that capture ambiguity inherent in natural
language. However, simply modeling disagreement
alone does not explain why interpretations diverge.
To advance beyond descriptive modeling, we argue
that NLI systems must also systematically iden-
tify and categorize the sources of disagreement—
especially content-based ambiguity—as a foun-
dation for more perspective-sensitive inference
(Plank, 2022). We next examine the sources that
give rise to divergent judgments in NLIL.

3 Disagreement sources in NLI

According to the “Triangle of Reference” (Aroyo
and Welty, 2015), disagreement in annotation
arises from three main sources: (1) interpretative
ambiguity in the input content itself (Uncertainty
in sentence meaning); (2) unclear annotation guide-
lines (Underspecification in guidelines); and (3)
differences in annotators’ background knowledge
or task understanding (Annotator behavior). This
framework maps directly onto annotation work-
flows in NLI benchmarks. Building on this founda-
tion, Jiang and de Marneffe (2022) propose a more
fine-grained taxonomy for NLI, refining each cat-
egory into subtypes that reflect recurring premise-
hypothesis patterns (Figure 2).

{ Ambiguity in "\ ( Underspecification)

Sentence P —»> of Guidelines
Meaning
Temporal
Reference
Interrogative
Hypothesis
Disagreement Behavior
Sources
Probabilistic Accommodating
Enrichment Minimally Added
Content
I fecti

Figure 2: The taxonomy of disagreement sources de-
veloped by Jiang and de Marneffe (2022), building on
Aroyo and Welty (2015). While these frameworks clas-
sify sources of disagreement, we argue for reframing
such disagreement as a signal of coexisting interpreta-
tions to model—not noise to be resolved.
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In the subsections below, we adopt a variant of
this taxonomy, reframing Uncertainty in Sentence
Meaning as Ambiguity in Sentence Meaning (Sec-
tion 3.1), a shift already noted in Figure 2. This
distinction is central to our position. For complete-
ness, we also briefly describe the roles of guide-
line underspecification (Section 3.2) and annotator
behavior (Section 3.3), though these are not the
central emphasis of our position.

In addition, while we view Jiang and de Marn-
effe’s taxonomy as a valuable classification frame-
work, we go further: rather than treating disagree-
ment as noise to be explained or resolved, we
reframe it as a meaningful signal of coexisting
interpretations—something to be modeled directly
as part of the NLI task.

3.1 Ambiguity in Sentence Meaning

Ambiguity in sentence meaning—manifesting as
multiple plausible interpretations—is a major
source of disagreement in NLI annotations. In
the taxonomy introduced by Jiang and de Marn-
effe (2022), this form of content-based ambiguity
is further divided into five subtypes: Lexical, Impli-
cature, Presupposition, Probabilistic Enrichment,
and Imperfection. Together, these categories reflect
the range of interpretative uncertainty that arises
from the language content itself, independent of
annotator knowledge or instructions specified in
annotation guidelines.

Lexical arises when a word or phrase in the
premise or hypothesis has multiple possible senses
or is underspecified. Implicature refers to cases
where the hypothesis expresses a logical or prag-
matic implication of the premise, leaving room for
divergent judgments depending on the reader’s per-
spective. Presupposition covers instances where
the hypothesis draws on background presupposi-
tions introduced by the premise, which may or
may not be universally shared. Probabilistic
Enrichment denotes cases where the inference re-
lationship is not categorical, but depends on plausi-
bility or likelihood, producing variation in individ-
ual perception (Figure 3). Imperfection includes
typos, grammatical errors, or fragmented phrasing
that impede clear interpretation.

While this categorization is based on a manually
analyzed sample and shaped by the judgments of
linguistically trained annotators, it offers a valuable
foundation for surfacing and organizing patterns
of interpretative variation in NLI. Although it does
not capture the full range of ambiguities present in



Probabilistic Enrichment

Premise: “I think this report shows that we have had an
inordinately productive and successful year.”

Hypothesis: “The report shows that we need to be produc-
tive to have a successful year”

Figure 3: Probabilistic Enrichment ambiguity: Annota-
tor’s label choice—Entailment or Neutral—depends
on whether the relationship between productivity and
success mentioned in the premise is considered plausi-
ble or not.

premise-hypothesis pairs, it provides an important
starting point for tracing the roots of disagreement
in NLI annotations and for recognizing how such
divergences arise from legitimate differences in
interpretation rather than annotation error.

3.2 Underspecification of Guidelines

Guideline underspecification is another source of
annotation disagreement, but unlike content-based
ambiguity, it often reflects task design flaws that
can be addressed through clearer instructions. Even
when the premise-hypothesis pairs are unambigu-
ous, annotators may diverge in how they interpret
or apply the labeling instructions if those instruc-
tions lack sufficient precision or fail to address edge
cases. Jiang and de Marnefte (2022) identify three
specific subtypes under this category: Coreference,
Temporal Reference, and Interrogative Hypothesis.

Temporal Reference

Premise: “You wake up one bright autumn morning and
you’re halfway to the subway when you decide to walk to
work instead.”

Hypothesis: “You wake up early and decide to walk instead
of take the subway.”

Figure 4: Temporal Reference disagreement: Annota-
tor’s label choice—Contradiction or Entailment—
depends on whether the decision is interpreted as hap-
pening before or after the commute, respectively.

Coreference cases involve unclear assumptions
about whether entities in the premise and hypoth-
esis refer to the same thing. Without guidance on
how strongly to assume shared reference, annota-
tors may reach inconsistent labels.

Temporal Reference arises when it is unclear
when the hypothesis should be evaluated. In Fig-
ure 4 one annotator might interpret the decision as
occurring before the commute (Contradiction),
while another may align it with a decision made
during the commute (Entailment).

The Interrogative Hypothesis covers cases
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where the hypothesis is phrased as a question.
Since questions are not truth-apt (i.e., not directly
true or false), annotators must infer an implied
assertion. Jiang and de Marneffe (2022) focus
only on interrogative hypotheses, while others (e.g.,
Gubelmann et al. (2023)) argue that interrogative
premises can cause similar confusion.

These sources of disagreement are worth recog-
nizing, but they stem from instruction gaps rather
than genuine interpretive variation—and thus lie
outside this paper’s primary focus.

3.3 Annotator Behavior

The third pillar of disagreement, according to the
Triangle of Reference, is variation in annotation be-
havior: differences in background knowledge, be-
liefs, attention, or task interpretation across annota-
tors. While often treated as noise in NLI pipelines,
such variation can reflect meaningful differences in
how people reason with language. Two annotators
may bring different contextual assumptions to the
same premise-hypothesis pair, leading to divergent
but reasonable judgments.

Jiang and de Marneffe (2022) identify two spe-
cific behavioral tendencies that contribute to such
disagreement: Accommodating Minimally Added
Content and High Overlap. The first involves
hypotheses that add a small amount of plausible
but unstated information. Some annotators accept
this as implied, while others reject it based on
stricter entailment criteria. The second reflects a
tendency to judge Entailment based on surface-
level similarity—Iexical or structural. This can lead
some to overestimate entailment based on form
rather than meaning, while others focus on more
subtle semantic distinctions (Figure 5).

High Overlap

Premise: “The sunlight, piercing through the branches,
turned the auburn of her hair to quivering gold.”
Hypothesis: “The auburn of her hair became golden then
the sunlight hit it.”

Figure 5: High Overlap disagreement: Annotators may
infer Entailment between the premise and hypothesis
due to the high lexical overlap, while the meaning of
the two sentences suggests Contradiction.

Some annotation tendencies stem not from
errors, but from genuine interpretive variation.
For example, Accommodating Minimally Added
Content reflects meaningful differences, whereas
High Overlap more likely signals annotation er-
ror. This underscores the importance of evaluating



annotator behavior carefully, rather than assuming
that all variation reflects valid perspectives.

Among the various sources, content-based am-
biguity is the most direct and reliable indicator of
genuine interpretive divergence. While understand-
ing annotator behavior is useful, our focus is on
detecting ambiguity in the language itself. Even
s0, recognizing behavioral patterns can inform fu-
ture perspectivist NLI systems that accommodate
multiple interpretations. Next, we motivate why
content-based ambiguity merits special attention
relative to guideline and annotator effects.

4 Why Does Content-Based Ambiguity
Deserve Special Attention?

Among the disagreement sources outlined above,
content-based ambiguity stands out as the only type
that can be systematically addressed through com-
putational modeling without relying on additional
information about the annotators or the guidelines
they follow. This form of ambiguity originates
from the text itself, independent of the annotation
process, yet it remains a fundamental driver of di-
vergent interpretations. As such, it represents a root
cause of disagreement inherent to natural language,
posing a persistent challenge for inference systems
aiming for consistent and reliable predictions.

Implicature Ambiguity

Premise: “It hopes to bring on another 25 or 35 people
when the new building opens next fall.”

Hypothesis: “They already have a waiting list for the new
building”

Figure 6: Implicature Ambiguity: Annotators may infer
a waiting list from hopes to bring on another 25 or 35
people. If so, they label it Entailment; if not, they label
Neutral.

Consider the Implicature ambiguity in Fig-
ure 6. Some annotators interpret hopes to bring
on another 25 or 35 people as implying a waiting
list and choose Entailment. Others focus strictly
on what is stated and select Neutral. This interpre-
tative variability stems from linguistic ambiguity
rather than annotator background or faulty instruc-
tions. Such cases underscore the importance of
treating content-based ambiguity as central to anal-
ysis, rather than dismissed as noise.

Jiang and de Marneffe (2022)’s findings indicate
that the most common sources of disagreement fall
under content-based ambiguity, underscoring its
prevalence. In contrast, issues related to underspec-
ified guidelines can typically be resolved through
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clearer instructions and better annotation practices,
meaning they do not strongly reflect genuine differ-
ences in human interpretation.

Similarly, while some annotator behaviors—
such as Accommodating Minimally Added
Content—reflect natural variation, others like
High Overlap may undermine the goals of the
NLI task. Disagreements stemming from annotator
behavior or guideline underspecification therefore
warrant scrutiny before being treated as meaning-
ful. Not all disagreements are noise, though some
clearly reflect error (Weber-Genzel et al., 2024). In
contrast, content-based ambiguity arises from the
language itself and requires no external filtering
or supervision, making it a uniquely reliable
source of interpretive variation. Identifying such
ambiguity supports the creation of disambiguated
versions, allowing NLI benchmarks to better
capture the range of plausible interpretations.
Beyond benchmarking, ambiguity-aware modeling
has practical consequences in downstream settings.

Identifying content-based ambiguity in NLI
data has significant real-world implications. NLI
frequently serves as a core component of fact-
verification pipelines, where it is used to as-
sess the relationship between claims and sup-
porting evidence (Thorne et al., 2018; Jayaweera
et al.,, 2024). Effectively pinpointing poten-
tial ambiguities—including those intentionally
introduced—strengthens such pipelines by improv-
ing their capacity to flag potentially misleading
content in real-world settings (Liu et al., 2023).

However, there are currently no established
methods for disentangling disagreements caused
by content-based ambiguity from those arising due
to underspecified annotation guidelines or anno-
tator behavior. As a result, most existing work
focuses primarily on detecting premise-hypothesis
pairs with high annotation disagreement, rather
than investigating the underlying types of disagree-
ment, particularly those stemming from ambigu-
ity. Therefore, there is a necessity to build models
that: (1) identify ambiguous premise-hypothesis
pairs and (2) classify the respective ambiguity type.
These observations motivate two concrete tasks—
ambiguity detection and ambiguity classification—
which we discuss next.

5 Understanding Ambiguity in NLI

NLI systems aim to determine the inference re-
lationship between a given premise and hypoth-



esis, but ambiguity in either can complicate that
process (Figure 6). This often leads to discrep-
ancies among annotators, who may assign differ-
ent inference labels based on their individual in-
terpretations. In some cases, annotators may even
agree on the same label while interpreting the text
differently—a phenomenon known as within-label
variation (Jiang et al., 2023). Further complicating
matters, ambiguity may arise in the premise, the
hypothesis, or both, increasing the complexity of
inference decisions (Liu et al., 2023).

While some efforts have been made to de-
velop models that detect instances with high an-
notator disagreement (Jiang and de Marneffe,
2022; Jiang et al., 2023; Park and Kim, 2025),
there are no existing implementations that specif-
ically identify or classify ambiguous instances in
NLI—underscoring the need for systems designed
to address this gap.

5.1 Ambiguity Detection in NLI

We define ambiguity detection in NLI as identifying
instances that elicit divergent interpretations due
to input ambiguity—whether in the premise, the
hypothesis, or both.

Jiang and de Marneffe (2022) explore the de-
tection of high-disagreement instances in NLI us-
ing multi-label prediction and a four-class clas-
sification scheme (Entailment, Contradiction,
Neutral, and Complicated). However, their work
does not go further to distinguish ambiguity as a
specific cause of disagreement. Jiang et al. (2023)
build on this by incorporating explanations for
disagreement but still focus solely on identifying
highly contested instances.

Park and Kim (2025) attempt to detect ambigu-
ous cases in NLI benchmarks using hidden layer
representations of Large Language Models (LLMs),
but their training data includes disagreements from
all categories, making the system a general dis-
agreement detector rather than a model focused on
ambiguity. Liu et al. (2023) assess language mod-
els’ ability to detect ambiguous instances using the
Ambient dataset, but their results show that model
performance remains below human-level accuracy.

These studies reflect the current state of ambigu-
ity detection in NLI, highlighting the need for fur-
ther investigation. A key challenge in developing
systems to identify ambiguous premise-hypothesis
pairs is the lack of datasets annotated for ambi-
guity. Creating annotated datasets and exploring
unsupervised methods are essential next steps.
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To address the current scarcity of ambiguity-
type annotated NLI data, we leverage existing
datasets that already incorporate disambigutations
(Liu et al., 2023) and explanations (Jiang et al.,
2023) as assistive cues to annotate ambiguity types.
This approach would help create a more cohesive
dataset that integrates insights across the various
taxonomies discussed in Section 5.

At the same time, the limited scale of these re-
sources highlights the need for additional strategies.
Promising directions include data augmentation
techniques such as paraphrasing, the continued use
of manual annotation to ensure high-quality gold
standards, and the strategic use of large language
models (LLMs) as evaluators. Together, these
methods can substantially expand the availability
of annotated data, enabling both broader coverage
of ambiguity types and more robust evaluation of
ambiguity-aware NLI systems.

5.2 Ambiguity Classification in NLI

Ambiguity classification identifies the exact type(s)
of ambiguity present in a premise-hypothesis pair.
Several taxonomies have been developed to cat-
egorize the various forms of ambiguity found in
NLI inputs. As noted and illustrated in Figure 2,
Jiang and de Marneffe (2022) present a taxonomy
comprising five ambiguity types. These have been
identified in samples from the ChaosNLI (Nie et al.,
2020) and MNLI (Williams et al., 2018) datasets.

Liu et al. (2023) introduce a taxonomy based
on expert linguistic annotations of the Ambient
dataset, which contains both curated and generated
ambiguous premise-hypothesis pairs. They identify
additional ambiguity types in NLI data, including
Syntactic, Pragmatic, Scopal, and Figurative
ambiguities, while grouping others under a residual
Other category.

Building on this, Li et al. (2024) refine the clas-
sification by proposing finer-grained types such as
Type/Token and Collective/Distributive, and align-
ing with Jiang and de Marneffe (2022) through
the inclusion of Presupposition and Implicature.
These refinements reveal further unexplored ambi-
guities that enhance the understanding of human
interpretations. Drawing on these developments,
we present a unified taxonomy,! that organizes am-
biguity types into four broad categories—Lexical,
Syntactic, Semantic, and Pragmatic—to support a
more comprehensive view (Figure 7).

Refer to (Li et al., 2024) for the definitions of each ambi-
guity type not described in this paper.
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Figure 7: Unified ambiguity type taxonomy: We build
on prior taxonomies (Jiang and de Marneffe, 2022;
Liu et al., 2023; Li et al., 2024), organizing them
into four broad types—Lexical, Syntactic, Semantic
and Pragmatic—to support tailored detection strategies
based on common characteristics.

However, to our knowledge, no existing sys-
tem automatically identifies the ambiguity type(s)
present in a given premise—hypothesis pair. This
gap highlights the practical importance of our
framework: by organizing ambiguity types into
linguistically grounded categories, we lay the foun-
dation for developing detection methods tailored to
each type. In doing so, we advance toward more
nuanced, interpretable NLI models that not only
detect ambiguous input, but also explain how and
why human interpretations diverge.

6 Call to Action: Recognizing Ambiguity
as Signal, Not Noise

Disagreement among annotators in Natural Lan-
guage Inference (NLI) is often treated as noise—
something to minimize or discard. However, many
of these disagreements reflect genuine interpretive
differences, often triggered by ambiguity in the
premise, hypothesis, or both. Our analysis suggests
that while underspecified annotation guidelines and
inconsistent annotator behavior can lead to label
disagreement, such cases must be carefully scruti-
nized to distinguish between annotation errors and
genuine differences in human interpretation.

In contrast, ambiguity in the NLI input itself—
whether lexical, syntactic, semantic, or pragmatic—
serves as a clear, process-independent signal of
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interpretive variation, providing a basis for under-
standing how meaning can diverge across readers.
This highlights a needed shift: from optimizing
for annotator consensus to explicitly identifying
and characterizing ambiguity as a central feature
of natural language.

To support this shift, we outline the following
two key directions:

* Identify Ambiguous Pairs: Develop robust
methods to detect premise—hypothesis pairs
that exhibit inherent ambiguity, using cues
from linguistic theory, annotation patterns,
and interpretability tools.

Classify Ambiguity Types: Design strategies
for distinguishing among different types of
ambiguity. A unified classification framework
that groups ambiguity types based on their
shared characteristics can offer a foundation
for designing targeted identification methods.

A key novelty of this work lies in articulating a
unified framework (Figure 1) that extends beyond
prior approaches focused solely on modeling anno-
tation distribution. Whereas earlier efforts largely
stop at detecting high-disagreement instances, this
framework explicitly distinguishes ambiguity from
other sources of variation by leveraging linguistic
features and pertinent background knowledge.

The framework consists of four stages. The first
determines whether a premise-hypothesis pair is
inherently ambiguous, thereby distinguishing be-
tween genuine interpretive variation from annota-
tion noise and other sources of disagreement. If
an instance is ambiguous, the second classifies the
type(s),creating systematic linkages to linguistic
background knowledge.

The third stage generates relevant disambiguated
versions, after which the fourth models infer-
ence classification for both ambiguous and non-
ambiguous instances, based on predictions from
earlier stages. The framework’s strength lies in
offering a structured and operational foundation
for ambiguity-aware NLI, moving the field from
descriptive accounts of disagreement toward a prin-
cipled methodology that can be empirically tested.

By pursuing these goals, we can build NLI mod-
els that are not only more aligned with human inter-
pretation, but also more explainable in predictions.
Ambiguity-aware systems better align with human
interpretation and produce more consistent, inter-
pretable, and robust predictions.



This reframing is not only timely—it is essen-
tial for developing NLI systems that reflect the
complexity of human understanding, rather than
abstracting it away.

While we advocate for a shift toward ambiguity-
aware NLI systems, realizing this vision is cur-
rently constrained by a key limitation: the lack of
datasets that are explicitly annotated for ambiguity
and categorized by ambiguity type. Most existing
NLI datasets are not designed with interpretive vari-
ation or ambiguity classification in mind, making
it difficult to systematically identify and analyze
ambiguous instances or to evaluate models on their
ability to handle them.

This gap limits the development and benchmark-
ing of methods for detecting and classifying am-
biguity. The absence of gold-standard annotations
for different ambiguity types hinders progress in
training and evaluating models that aim to align
more closely with human interpretive processes.

To address this, we suggest two complemen-
tary directions. First, there is a clear need for
the creation of new datasets specifically anno-
tated for ambiguity presence and type. Such re-
sources would lay the groundwork for both empiri-
cal analysis and model development. Second, we
see promise in exploring unsupervised or weakly
supervised methods that can surface potential am-
biguities without requiring extensive manual label-
ing. Techniques leveraging patterns of annotator
disagreement, discourse features, or model uncer-
tainty could offer scalable alternatives in the ab-
sence of annotated data.

Despite current limitations, these strategies offer
a promising path toward building NLI systems that
better reflect the complexity and nuance of human
language understanding.

Limitations

The framework we articulate for ambiguity-aware
NLI systems establishes a theoretical foundation,
with empirical validation remaining an important
next step. As a position paper, our aim is to stimu-
late discussion and motivate future empirical work.
The framework’s logical rigor and integration of
existing taxonomies offer a strong basis for future
experimentation and evaluation.

Future research must address the creation of
datasets explicitly annotated for ambiguity, along-
side the development and evaluation of systems to
identify ambiguous instances in NLI. Such efforts
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will contribute to a deeper understanding by identi-
fying indicators of different ambiguity types, and
characterizing how they shape inference judgments.
We also anticipate exploring hybid approaches that
combine linguistic analysis with large language
models to advance ambiguity detection for NLI.
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Abstract

For datasets to accurately represent diverse
opinions in a population, they must preserve
variation in data labels while filtering out spam
or low-quality responses. How can we balance
annotator reliability and representation? We
empirically evaluate how a range of heuristics
for annotator filtering affect the preservation
of variation on subjective tasks. We find that
these methods, designed for contexts in which
variation from a single ground-truth label is
considered noise, often remove annotators who
disagree instead of spam annotators, introduc-
ing suboptimal tradeoffs between accuracy and
label diversity. We find that conservative set-
tings for annotator removal (<5%) are best, af-
ter which all tested methods increase the mean
absolute error from the true average label. We
analyze performance on synthetic spam to ob-
serve that these methods often assume spam
annotators are less random than real spammers
tend to be: most spammers are distributionally
indistinguishable from real annotators, and the
minority that are distinguishable tend to give
fixed answers, not random ones. Thus, tasks
requiring the preservation of variation reverse
the intuition of existing spam filtering methods:
spammers tend to be /ess random than non-
spammers, so metrics that assume variation is
spam fare worse. These results highlight the
need for spam removal methods that account
for label diversity.

1 Introduction

Because spam responses are common on crowd-
sourcing sites, researchers need reliable ways to
filter out low-quality data. Many of these meth-
ods aim to find annotators with unusual labeling
behavior. However, a growing body of work has
found that information from annotators with minor-
ity opinions can be a valuable source of informa-
tion, since this disagreement helps to understand

“Equal contribution; order determined by coin flip.
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variability in the opinions of a population, iden-
tify cases where some annotators may be better-
or worse-informed, or reveal ambiguity in the task.
How can we preserve the opinions of annotators
who disagree, while still removing spam annota-
tions?

We examine the effects of applying several com-
mon methods for discounting spam annotators
based on their labeling behavior. Despite the exis-
tence of spam removal methods that use attention
checks or metadata (e.g., time spent on task), filter-
ing based on labeling behavior remains common
practice (Klie et al., 2024); thus, weaknesses in
these methods risk affecting a wide range of com-
mon machine learning tasks. We test three of these
methods—MACE (Hovy et al., 2013), CrowdTruth
(Aroyo and Welty, 2014), and inter-annotator agree-
ment metrics—on relatively subjective tasks and
analyze effects on variability in the filtered data.
We find that, although many methods are near-
indistinguishable in terms of their accuracy at clas-
sifying spam annotators, some are far more likely
to remove non-spam annotators who disagree. Fur-
thermore, we find that under most tested methods,
removing more annotators degrades the variety of
opinions expressed, without improving accuracy
at removing spam annotators; thus, these methods
seem most effective only when a very low number
of annotators are removed.

We also find that assumptions about the distribu-
tion of spam annotations can hinder the effective-
ness of these methods. We examine performance
on synthetic distributions of spam annotations to
analyze whether these methods effectively remove
spam annotations, or simply remove annotations
farther from the mean. Performance on synthetic
spam indicates that most methods perform far bet-
ter for random spam (e.g., randomly clicking an-
swers) than fixed spam (e.g., always answering
“No”). Yet true spammer behavior exhibits the op-
posite trend: most spammers are distributionally
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similar to high-quality annotators; the minority that
can be reliably identified tends to have fixed spam-
ming behavior. As a result, methods that perform
poorly on fixed spam tend to also perform poorly
on real spam.

Our results indicate that spam detection for sub-
jective problems flips model assumptions: spam
annotators are often less random than non-spam
ones. Thus, attempts to remove spam can back-
fire by instead removing annotators with minority
opinions who are not spammers. As a result, exist-
ing methods work best when only low percentages
of annotators are removed based on their labeling
behavior. When over-filtering for spam, these meth-
ods risk distorting the distributions of labels.

2 Related Work

Methods for spammer removal impact the variation
in resulting disaggregated datasets, as discussed in
work on spammer detection and aggregation meth-
ods and studies underscoring the role of subjectivity
and variation in annotation.

Defining Spammers in Annotation. Drawing a
conceptual boundary between spammers and gen-
uine annotators is complex; definitions vary on
what range of intentional, inattentive, or low-effort
behaviors should be filtered out; and on whether
spammers are posited as too random or too fixed.
Buchholz and Latorre (2011) highlight that spam-
mers are incentivized to earn more money faster,
leading them to ignore task instructions or partic-
ipation requirements. Rothwell et al. (2015) ar-
gue that spammers act with intention, unlike other
types of low-quality annotators, and show repeated
patterns in an attempt to complete tasks fast. In
contrast, Raykar and Yu (2012) posit that spam-
mers assign labels randomly, because they do not
follow labeling criteria, skip reading the instances
or might use automation. Gadiraju et al. (2015)
present a nuanced taxonomy of annotator types
and underscore that genuine annotators’ behavior
might overlap with spammers, e.g., failing atten-
tion checks for innocuous reasons. The datasets
used in our study excluded annotators if they failed
data quality checks combining multiple sources
of information, thus following a wider definition
of spam (Aroyo et al., 2023; Huang et al., 2023,
see Section 3). To summarize, any definition of
“spammer” includes or excludes different subsets
of annotators. These ambiguous boundaries sug-
gest that different subsets of spammers may exhibit
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different behaviors, potentially raising challenges
in distinguishing spammers from non-spammers.

Spammer Detection and Gold Label Aggrega-
tion. Data quality and questionable trust in non-
expert raters are longstanding problems in crowd-
sourced annotation (Snow et al., 2008). Attempts
to improve data quality may modify tasks to at-
tract less spam before data collection (Eickhoff and
de Vries, 2013) or use quality control afterwards
(Difallah et al., 2012). Methods for a posteriori
detection of low-quality raters and spammers often
use intrinsic metrics based on the labeling behavior
itself (Buchholz and Latorre, 2011). Intrinsic met-
rics used for spammer detection include clustering
on a post-processed annotation matrix (Traganitis
and Giannakis, 2021), rater similarity and agree-
ment scores (Ak et al., 2021), or distance between
sequential spamming behaviors (Ba et al., 2024),
among others (Ipeirotis et al., 2010; Raykar and Yu,
2012; Gadiraju et al., 2015). Other methods ana-
lyze labeling behavior with the goal of aggregating
to the true label while accounting for varying an-
notator reliability. Dawid and Skene (1979) model
annotator error rates to estimate the true labels and
are foundational to many subsequent aggregation
methods (Whitehill et al., 2009; Welinder et al.,
2010), including in NLP (Wiebe et al., 1999). Pas-
sonneau and Carpenter (2014) present a probabilis-
tic variant of the Dawid & Skene model, and many
other extensions of this basic model exist (Paun
et al., 2018, 2022). In particular, Hovy et al. (2013)
present MACE, a probabilistic model tailored to-
wards estimating annotator competence by model-
ing spamming behaviors. In contrast, CrowdTruth,
a non-probabilistic paradigm, derives quality met-
rics from vector space representations of annota-
tors, annotated examples and annotations (Aroyo
and Welty, 2014; Dumitrache et al., 2018b). We
evaluate MACE and CrowdTruth as they underwent
widespread adoption in NLP and have reference im-
plementations available (see Sections 4.1, 4.2).

Subjectivity and Variation in Annotation.
There is a growing body of work researching infor-
mative disagreement, diversity of perspectives, and
label variation in human annotation (Plank, 2022;
Leonardelli et al., 2023; Sandri et al., 2023; Frenda
et al., 2024; Fleisig et al., 2024). These works agree
that aggregating labels into a single truth is an over-
simplification for many tasks (Aroyo and Welty,
2015; Uma et al., 2021; Basile et al., 2021) and
might not represent perspectives fairly (Abercrom-



bie et al., 2022). Instead, studies release annotator-
level labels (Prabhakaran et al., 2021) to enable al-
ternative approaches, such as modeling individual
annotators’ rating behaviors (Fleisig et al., 2023;
Orlikowski et al., 2023; Heinisch et al., 2023; Or-
likowski et al., 2025). Our work is motivated by
studies on rating distributions in a given popula-
tion as an alternative to single ground truth predic-
tion (Sorensen et al., 2024; Meister et al., 2025).
Among these, Prabhakaran et al. (2024) study sys-
tematic disagreement using similar metrics to ours,
but on the level of demographic subgroups. In this
context, the issue of how capturing labeling varia-
tion intersects with annotation quality is largely un-
explored. One exception is VariErr (Weber-Genzel
et al., 2024), an annotation methodology to dif-
ferentiate between annotation errors and plausible
variation in annotation. In contrast, we study prop-
erties of methods that determine annotator reliabil-
ity, not individual annotation errors.

3 Datasets

We selected two datasets for the basis of our experi-
ments: DICES 350 (Aroyo et al., 2023) and Huang
et al. (2023)’s survey of Amazon Mechanical Turk
workers. We present each dataset’s statistics and
discuss our dataset selection process below.

DICES-350 DICES-350 (Aroyo et al., 2023), a
harmful language dataset, consists of 43,050 anno-
tations on a 3-point scale across 350 items, each
of which was labeled by every participant. 123 an-
notators participated, of whom 19 annotators were
labeled as spam (15% of annotators).

MTurk From Huang et al. (2023)’s survey, we
used 16 questions on a 7-point scale, each of which
was answered by every participant, for a total of
3,312 annotations. 207 annotators participated, of
whom 40 were labeled as spam (19% of annota-
tors).

Dataset selection. Our experiments require
datasets that retain (a) responses from multiple
annotators per question, permitting measurement
of disagreement statistics, and (b) responses from
known spammers. Despite increasing availability
of annotator-level data,' most public datasets do
not include spammer information. For papers that
report spammer removal, we contacted authors for

!For example, https://github.com/mainlp/
awesome-human-1label-variation
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access to the unfiltered datasets, but spammer re-
sponses are regularly lost over time (e.g., Buchholz
and Latorre, 2011; Dumitrache et al., 2017; Paun
et al., 2018). Even for published data, maintaining
data access is not always possible; some datasets
with verified spammer information were no longer
available (e.g., Sober6n et al., 2013; Gadiraju et al.,
2015). Similarly, many studies on spammer de-
tection evaluate only on downstream performance
or exclusively use synthetic data, so they do not
provide metadata on known natural spammers (e.g.,
Raykar and Yu, 2012; Ak et al., 2021). See Ap-
pendix D for details on all 22 considered datasets,
including spammer metadata and data availabil-
ity. In summary, DICES-350 and the MTurk sur-
vey are, to the best of our knowledge, the only
available datasets meeting our criteria. Neverthe-
less, these datasets do represent two representative
use cases in which preserving rater variation is
essential. DICES-350 collects annotations on Al
safety to preserve variation on diverse perspectives
regarding high-stakes topics; the MTurk dataset
polls workers on their personal opinions about their
crowdwork experiences in order to best understand
the range of opinions of the community.

4 Methods for Spammer Detection

We study a number of established methods and
baselines to calculate scores of annotator reliability.
To perform spammer detection, we rank annotators
using the respective reliability score and identify
the k£ lowest-scoring annotators as spammers for a
given value of k.

4.1 Multi-Annotator Competence Estimation
(MACE)

MACE (Hovy et al., 2013) is based on a proba-
bilistic model of annotation. We highlight a few
aspects of MACE that are important to our study
and refer to the original paper for full details. The
model includes a parameter 6 for each annotator
which encodes the probability that they give the
true answer (competence). Specifically, for each
instance ¢ and annotator j, the binary variable S;;
indicates whether an annotator is spamming. S;; is
drawn from a Bernoulli distribution with parameter
1 — 6;. If the annotator is spamming, i.e., S;; = 1,
then the assigned label A;; is sampled from a multi-
nomial distribution with a parameter vector (; that
encodes each annotator’s spamming strategy. Oth-
erwise, if S;; = 0, the model assumes that the


https://github.com/mainlp/awesome-human-label-variation
https://github.com/mainlp/awesome-human-label-variation

annotator simply assigns the correct label—an in-
tentional simplification to focus on modeling spam
behavior. Only the annotations A;; are observed;
the other parameters are inferred when updating
the model from data.

Usually, when applying MACE for label aggre-
gation, the model would weigh all annotations to es-
timate the correct labels without discarding specific
annotators. But the learned parameters can also be
used to identify spamming annotators: the compe-
tence # correlates more strongly than agreement
measures with an annotator’s fraction of correctly
annotated examples (Hovy et al., 2013) and both
learned annotator parameters (6, () were shown to
encode characteristic spamming behaviors (Paun
et al., 2018). Consequently, other studies have used
MACE to exclude spammers during dataset con-
struction based on an empirically chosen threshold
for competence (Pei and Jurgens, 2023). In our ex-
periments, we also use the competence parameter
to score annotators.

4.2 CrowdTruth

The CrowdTruth framework (Aroyo and Welty,
2014) computes several interdependent quality met-
rics that use vector representations of annotations
to measure disagreement and ambiguity, including
a worker quality score. The metrics follow the
aim of ambiguity-aware label aggregation, so that,
for example, disagreement on ambiguous instances
discounts worker quality less. The worker qual-
ity score (WQS) for an annotator ¢ is computed
as the product of two other scores WQS(i) =
WUA(i) - WW A(i), the worker-unit agreement
(WUA) and the worker-worker agreement (WWA).
Conceptually, WWA measures how similar a given
worker’s annotations are to other workers, weighted
by the workers’ quality and the instances’ ambigu-
ity. WUA measures how much a worker agrees
with the aggregate label over all their annotated
instances, weighted by the instances’ ambiguity.
(See Appendix A for details on how these metrics
are computed.)

The CrowdTruth metrics were explored on vari-
ous tasks (Dumitrache et al., 2017, 2018a) and have
been explicitly used for spammer removal (Dumi-
trache et al., 2021). In a related study, Soberén
et al. (2013) report an accuracy of 0.88 for remov-
ing spam annotators using CrowdTruth metrics. In
our experiments, we use the worker quality score
(WQS) to score annotators.
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4.3 Cohen’s Kappa

As a representative example of using inter-
annotator agreement metrics to filter annotators,
we compute each annotator’s pair-wise agreement
as measured by Cohen’s kappa (Cohen, 1968) with
each other annotator. We then use the averaged
agreement to score annotators.

4.4 Random Baseline

We assign scores to annotators (from 0.0 to 1.0) by
drawing from a uniform distribution.

5 Results

We applied MACE, Crowdtruth, the Cohen’s kappa
filter, and a random baseline on both datasets, as
the threshold for number of annotators removed
increases. For studies in spammer detection and
gold label aggregation (see Section 2) the primary
metric to optimize is downstream classification per-
formance, often based on synthetic spam annota-
tions, whereas we focus on tasks where preserv-
ing labeling variation is key. We measured the
change in standard deviation, entropy, and accu-
racy of spammer detection for the DICES-350 and
Mturk datasets, as well as the KL-divergence and
mean absolute error of the filtered labels from the
labels of non-spammers.

5.1 Accuracy vs. Preserved Variation for
Spam Detection

Across methods, increasing the number of removed
annotators gradually decreases the accuracy of clas-
sifying annotators as spammers (Figure 1, top). For
the MTurk dataset, the accuracy of spam classifica-
tion never rises above the accuracy of not removing
any annotators. For the DICES dataset, Cohen’s
kappa and MACE outperform removing zero anno-
tators when <10% of annotators are removed, while
CrowdTruth and random removal quickly fall be-
low baseline accuracy (Figure 1, bottom). The best
accuracy is achieved when only focusing on the
lowest-scoring annotators (lowest 2-4%).

We also measured the change in entropy and
standard deviation of the filtered dataset, finding
that these methods typically reduce variance in the
distribution of annotator opinions, discarding in-
formation about annotator disagreement (Figures 2
and 3). Except for the random baseline, the tested
methods generally decrease the entropy of the dis-
tributions as more raters are removed. This is espe-
cially true of CrowdTruth, which quickly decreases
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Figure 1: Across methods, increasing the number of
removed annotators gradually decreases the accuracy
of spam classification when over 2-4% of annotators
are removed. Cohen’s kappa and MACE increase the
spam classification accuracy up to 4% of annotators
removed on DICES; otherwise, the spam classification
accuracy rarely rises above the baseline of not removing
any annotators. The blue line indicates the true number
of spammers in the data; the gray line indicates the
baseline classification accuracy before removing any
spammers.

the entropy; MACE and Cohen’s kappa also de-
crease the entropy to a lesser extent. CrowdTruth
also consistently decreases the standard deviation
of the data. MACE and Cohen’s kappa decrease
the standard deviation on the MTurk dataset, but
not on DICES.

To understand whether these methods affect how
well the filtered datasets represent the true distri-
bution of non-spam annotators’ ratings, we also
measured the mean absolute error (MAE) per ex-
ample between the filtered annotators and the true
non-spam annotators (i.e., the difference between
their average labels on a given example; Figure
5) and the KL-divergence between the filtered and
non-spam annotators (Figure 6). All tested meth-
ods eventually increase the mean absolute error,
indicating that the mean label of the filtered data
drifts away from that of the true non-spam anno-
tators as more labels are removed. However, the
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Figure 4: Entropy of each annotator’s labeling distribution over all instances vs. score under filtering metrics
(CrowdTruth and MACE). While many spam annotators are indistinguishable from non-spam ones under these
metrics, those that are often have very low entropy: they are less random than non-spam annotators, not more.

extent of this varies by method and dataset: on
the MTurk dataset, all non-random methods have
relatively little change in MAE when <5% of an-
notators are removed, but increases after that; on
the DICES dataset, CrowdTruth worsens the MAE
much faster than other tested methods. The KL di-
vergence remains relatively steady, but eventually
increases on the MTurk dataset for all non-random
methods, and fluctuates widely across methods on
the DICES dataset.

Why might these methods fail to capture all
spammers? Comparing the entropy of the re-
sponses given by each annotator with their scores
under these metrics helps to understand where the
assumed spammer behavior, as modeled by these
metrics, differs from the spammer behavior seen
in practice (Figure 4). Most annotators lie well
within the distribution of non-spammers in terms
of entropy, MACE score, and CrowdTruth score.
However, a subset of annotators are distinguishable
as spammers (best seen on the DICES dataset) be-
cause they have especially low entropy. MACE
captures many of these annotators, but CrowdTruth
only captures some of them, perhaps explaining the
difference in these metrics.

Since a cluster of spam annotators that can be
reliably distinguished tends to have especially fixed
behavior, perhaps models perform best at capturing
spam if they can identify annotators with unusually
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fixed annotation patterns. To investigate this, we
next studied model performance using synthetic
spam.

5.2 Synthetic Spam Analysis

To understand what factors affect spam detection
methods’ accuracy at classifying spam, and propen-
sity to misclassify annotators who disagree as spam,
we experiment with several kinds of synthetic data.
Random spam experiments simulate spam anno-
tators whose annotations are random; fixed spam
experiments simulate spam annotators who always
give the same answer, which is set to the mode
response for the dataset.

Fixed spam. Because these methods tend to filter
out annotators who are farther from the mean, most
of them struggle to filter out annotators whose be-
havior is fixed to the mode value (e.g., answering
"No" to every question). MACE performs much
better than the other methods on fixed spam for
DICES, but all methods are worse than the baseline
for the fixed spammers on the MTurk data (Figure
7). MACE’s higher accuracy on DICES can par-
tially be explained by how well the method can cap-
ture fixed spamming behavior given how it is set up
(see Section 4.1): A spammer would have low com-
petence 6, so that the assigned label is frequently
sampled from the annotator’s spamming strategy
(. As the spammer assigns always the same label,
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the parameter vector would encode high probabil-
ity for that particular label and low probability for
all others. In contrast, CrowdTruth factors in am-
biguity but is ultimately based on agreement (see
Section 4.2). As a spammer who always assigns
the mode label can score relatively high agreement
in subjective tasks with stronger labeling variabil-
ity, fixed spam annotators are not filtered out by
CrowdTruth. This result about agreement for fixed
spam is in line with the accuracy scores by Cohen’s
kappa filtering, which are identical to CrowdTruth.
Notably, this observation does not transfer to real
spammer behavior (Figure 1), where CrowdTruth
is often more accurate than Cohen’s kappa.

MACE’s poor accuracy on MTurk is surprising
given its perfect accuracy on DICES. This result
is likely caused by answers in the MTurk dataset
mostly following a normal distribution with the
same mode, so that MACE overestimates the com-
petence of fixed spammers (in contrast to DICES;
see Appendix C).

Because the spammers all give the same ratings,
we expect accurate spam classification to increase
the standard deviation and the entropy, as happens
for MACE on DICES; by contrast, Crowdtruth and
Cohen’s kappa filtering on DICES (and MACE on
MTurk) decrease the standard deviation and the
entropy without ever increasing spam classification
accuracy above the baseline (Appendix B).

Random spam. On the random data (Figure 7,
right), CrowdTruth, MACE, and Cohen’s kappa
have similar accuracies (peaking when the num-
ber of annotators removed equals the number of
spam annotators). This suggests that random spam
is closest to the spam behavior for which these
methods work optimally.

In this case, we expect accurate spam classifica-
tion to decrease the entropy, which indeed happens
for both datasets across methods (Appendix B); the
standard deviation also decreases for MTurk, and
is more random for DICES, likely because DICES
has a smaller set of possible answer values.

Together, these results suggest that real spam
annotators are less random than the imagined
spammer behavior under CrowdTruth and inter-
annotator agreement filtering. This makes these
methods vulnerable to removing annotators who
are further from the mean rather than actual spam-
mers. MACE, which is more robust to filtering out
fixed spammers, also performs better at filtering
out real spammers.
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Figure 7: Accuracy with fixed-spam and random-spam synthetic annotators. For DICES, MACE performs best on
fixed data; the other methods universally struggle. For random spam, all methods outperform the baseline, with

Cohen’s kappa performing optimally on DICES.

6 Discussion and Conclusion

Spam detection for subjective problems flips
model assumptions: spam annotators are often
less random than non-spam ones. Longstand-
ing paradigms of annotation, focused on improving
downstream model accuracy under the assumption
of a single ground truth, often assume that disagree-
ment indicates low-quality annotations. However,
in problems where disagreement is expected, and
preserving this variation is the goal, this intuition
is flipped. We find that many spam annotators are
indistinguishable from non-spam annotators, and
those that are identifiable are in fact those with very
low entropy. Examining the performance of tested
methods on completely random vs. completely
fixed spam reveals that many methods struggle to
identify fixed spam. In particular, as a fixed mode
response results in relatively high agreement in
datasets with substantial variation. These mod-
els also struggle on real-world spam in our tested
datasets, suggesting that, where preserving vari-
ation is paramount, models assuming that spam
annotators are more random are not as well suited.

Existing methods work best only when removing
few annotators, and distort distributions after-
wards. Tested methods (particularly MACE) are
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effective at identifying spam annotators for low n
(<2-4% of tested annotators). When more annota-
tors are removed, we see issues across a range of
metrics: increased mean absolute error; lower ac-
curacy at spam detection, lower standard deviation,
and lower entropy. These issues mean that over-
filtering data can lead to labels that do not fully
represent the variation in the original distribution.

Detecting spammers vs. detecting low-quality
raters. Since different types of low-quality an-
notators behave differently, annotators that need to
be excluded can exhibit varied behaviors beyond
simple patterns such as always selecting the same
answer. Consequently, while annotator reliability
scoring can often single out spammers showing
these stereotypical behaviors, many genuine anno-
tators will be scored similarly to low-quality raters.
This result highlights that in addition to the label-
ing behavior, additional signals should be included
in spammer removal. These can be metadata, such
as when and how much time is spent on annota-
tion (Rothwell et al., 2015) or previous acceptance
rates of annotators (Difallah et al., 2012). Simi-
larly, verifiable test questions could be used, that is,
unambiguous cases where comparison to known an-
swers is possible (gold standard or attention checks,



Difallah et al., 2012; Rothwell et al., 2015).

Future work. Existing methods struggle to dis-
tinguish spam from non-spam annotators in con-
texts where variation in opinion is expected and
desirable. This gap highlights the need for spam
filtering methods that are robust to variation in la-
beling behavior.

In addition, the scarcity of available metadata
on removed spam data makes it difficult to charac-
terize spammer behavior across a range of con-
texts. Difallah et al. (2012) highlight a “need
for new benchmarks on which to evaluate and
compare existing and novel spam detection tech-
niques for crowdsourcing platforms” that still per-
sists. Datasets often do not report spam filtering
techniques or preserve the spam responses; how-
ever, this data is extremely helpful for more fine-
grained characterization of spam behavior, espe-
cially in complex contexts where variation is ex-
pected. Thus, making this data available would be
a valuable resource for future research.

Limitations

Due to data scarcity, we only used a narrow range
of datasets. While the used datasets represent two
important use cases where capturing variation mat-
ters (Al safety annotations, survey questions), more
datasets are needed, especially with different levels
of subjectivity, languages and use cases. As such
our results represent only a fraction of relevant sce-
narios.

Categorizing raters as “spammers” is based on
varying definitions and procedures. So “gold spam-
mers” are not ground truth the same way that other
data might be. Importantly, self-reported spammer
information, where spammers disclose themselves,
is largely not even gathered (see for an exception,
Paun et al., 2018) and not publicly available. Con-
sequently, the “gold spammer” labels used in our
study are based on external categorizations. While
these are reported to be based on manual checks
and multiple data types (labeling behavior, meta-
data, and attention checks), there remains a risk of
wrong categorizations.

We scoped to spam filtering methods that only
look at the labeling behavior, given our research
question on how this (widely adopted) type of fil-
tering changes the captured variation in labeling.
However, there are approaches based on metadata
that we could expect to be more effective, perhaps
in combination with the evaluated methods using
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intrinsic metrics based on labeling behavior.
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A Computing the CrowdTruth Worker
Quality Score

As highlighted in Section 4.2, WWA measures how
similar a given worker’s annotations are to other
workers, weighted by the workers’ quality and the
instances’ (or units’) ambiguity. WUA measures
how much a worker agrees with the aggregate label
over all their annotated instances, weighted by the
instances’ ambiguity. WWA and WUA are roughly
computed as follows (ignoring the normalization
terms for clarity, full details in Dumitrache et al.,
2018b):

WWA() = Z sim(i, j,u) - WQS(5) - UQS(u)

WUA(i) = sim(i,u) - UQS(u)
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Figure 8: Standard deviation on random spammers.

Here, sim(i,j,u) is the cosine similarity be-
tween the annotation vectors of workers ¢ and j
on an instance u. Similarly, sim(i,u) is the co-
sine similarity between the annotation vector by
worker ¢ and the instance vector for instance u
(i.e., summed annotation vectors of all other anno-
tators). It is computed over all instances annotated
by annotator i, denoted units(i). Additionally,
UQS(u) measures how much workers agree on an
instance u (how ambiguous it is) and is also con-
nected to the workers’ quality scores. Due to their
inter-dependent nature, the CrowdTruth metrics are
re-calculated iteratively until convergence.

B Details of Synthetic Spam Results

Standard deviation and entropy for the random and
fixed spammers are shown in Figure 8, Figure 9,
Figure ??, and Figure ??.

C Why does MACE fail to recognize fixed
spammers on the MTurk dataset?

On fixed spammers, who always respond with the
mode (the most frequent label in each dataset),
MACE gets perfect accuracy on DICES, while on
MTurk it performs as poorly as all other methods,
failing to reach baseline performance (see Section
5.2). This result is likely due to the peculiarities
of the survey data in the MTurk dataset, where an-
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Entropy of MTurk Dataset (Random Spam)
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Figure 9: Entropy on random spammers. Entropy gen-
erally decreases as more spammers are removed, as
expected for accurate spam classification.

swers follow a normal distribution and the mode is
the same for most questions. Here, fixed spammers’
seem competent because they always respond with
the ground truth as estimated by MACE. Because
of this perfect answering behavior of spammers,
their average difference to the estimated ground
truth is zero, as shown in Figure 10, so that nat-
urally non-spammers are further away from the
estimated ground truth, looking less competent to
MACE. In contrast, on DICES, which has more var-
ied examples of labeling behavior, non-spammers
are on average closer to the estimated ground truth
than spammers (see Figure 10).

D Dataset Selection Table

A total of 22 datasets were considered to be in-
cluded in our study, mostly informed by related
work. Table 1 lists all of these datasets, including
the corresponding references. The table details for
each dataset if gold spammer data was collected in
principle and if that data was still available. As de-
scribed in Section 3, we were only able to include
two out of these 22 datasets in our experiments.



Difference to Label Estimate by MACE for Fixed Spammers

=@ MTurk
0.301 DICES

0.25
0.20
0.15 4 T

0.10 1

Difference to Estimated Ground Truth

0.00 ‘®

T T
Not Spammer Spammer

Figure 10: Distance to the ground truth estimated by
MACE on fixed spammers vs non-spammers (lower is
better). Shows the averaged absolute difference between
annotations and the estimated ground truth label. Be-
fore averaging, distances are normalized using min-max
normalization for each dataset, scaling distances into
the range of zero to one.
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Dataset Reference Gold Included? | If excluded, why?

spam-
mers?

DICES Aroyo et al. 2023 Yes Yes

MTurk Survey Huang et al. 2023 Yes Yes

MHS corpus Sachdevaet al. 2022 | Yes No Raters excluded (details in their
paper), but data not available.

AdultContent3 Ipeirotis et al. 2010 | No No No gold spammers. Experiments

(’Get Another in paper use synthetic data and

Label datasets) simply report impact on the col-
lected dataset

HITspam Discussed in | No No Despite the name, does not con-

Ertekin et al. 2014 tain spammers. Instead, the task
is to judge whether a task on
MTurk itself should be consid-
ered spam (e.g., because it asks
workers to follow a specific social
media account).

EDOS-DOM Jiang et al. 2024 Yes No Only one annotator removed after
labels were collected. That anno-
tator had annotated only 8 exam-
ples (first author vial email).

Argument Quality | Mirzakhmedova No No Excludes a number of disagreeing

et al. 2024 annotations per example. Does
not exclude on the level of the an-
notator.

MultiPref Miranda et al. 2025 | No No No gold spammers.

HelpSteer2 Wang et al. 2025 No No No gold spammers.

CrowdTruth Corpus | Dumitrache et al.| No No Emailed first author, full data not

for Open Domain | 2017 available anymore.

Relation Extraction

AMR / Sentence | Wein and Schneider | Yes No Only one annotator removed out

Similarity Data 2022 of three in total.

Phrase Detectives Chamberlain et al.| Yes, self- | No Spammer data not available any-

2016 reported more according to authors.

Crowd-Sourced Buchholz and La- | Yes, No Data not available anymore ac-

Preference Tests torre 2011 inferred cording to first author.

VariErr NLI Weber-Genzel et al. | No No Data has annotator IDs and

2024 individual decisions plus error
judgments (error = no self-
validations), but no excluded
raters. Not a crowd-sourced study
(four annotators).

Malicious Worker | Gadiraju et al. 2015 | Yes No Dataset is not available anymore.

Survey Dataset

Dog (Imagenet Sub- | Deng et al. 2009 No No No spammer information. Used

set) by Traganitis and Giannakis
(2021), but only evaluated by ac-
curacy of resulting classifier.

ImageNetV2 Recht et al. 2019 No No No spammer information.
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Bluebird Welinder et al. 2010 | No No No spammer information. Used
by Traganitis and Giannakis
(2021), but only evaluated by ac-
curacy of resulting classifier.

Web Zhou et al. 2012 Unlikely | No Could not find reference to data.

WSD Snow et al. 2008 Unlikely | No Data not available anymore

RTE Snow et al. 2008 Unlikely | No Data not available anymore

TEMP Snow et al. 2008 Unlikely | No Data not available anymore

POPQUORN Pei and Jurgens | Yes No Only a single annotator was re-

2023

moved.

Table 1: Dataset Selection. Shows which datasets where considered and why 20 out of 22 datasets were not included

in our study.
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Abstract

We commonly use agreement measures to as-
sess the utility of judgements made by hu-
man annotators in Natural Language Process-
ing (NLP) tasks. While inter-annotator agree-
ment is frequently used as an indication of
label reliability by measuring consistency be-
tween annotators, we argue for the additional
use of intra-annotator agreement to measure
label stability (and annotator consistency) over
time. However, in a systematic review, we find
that the latter is rarely reported in this field.
Calculating these measures can act as impor-
tant quality control and could provide insights
into why annotators disagree. We conduct ex-
ploratory annotation experiments to investigate
the relationships between these measures and
perceptions of subjectivity and ambiguity in
text items, finding that annotators provide in-
consistent responses around 25% of the time
across four different NLP tasks.

1 Introduction

Agreement measures are commonly used to assess
the utility of judgements made by human annota-
tors for Natural Language Processing (NLP) tasks.
Indeed, the reporting of inter-annotator agreement
(or inter-rater reliability) has long been the stan-
dard to indicate dataset quality (Carletta, 1996) and
frequently serves as an upper bound for model per-
formance on a task (Boguslav and Cohen, 2017).
While inter-annotator agreement is frequently
used in NLP to determine the reliability of labels
or the processes used to produce them (Artstein,
2017), intra-annotator agreement is rarely, if ever,
reported. However, we can use it to measure the
temporal consistency of the annotators who chose
the labels and, hence, the stability of the labels and
data that they generate.! Consistency and label

*Now at Google DeepMind
'We apply the term consistency to annotator behaviour and
stability to labels and datasets.
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stability are important because, without them, an-
notation schemes are unlikely to be repeatable or
reproducible (Teufel et al., 1999).2

Such measures of intra-rater agreement are fre-
quently reported in areas of medicine such as phys-
iotherapy (e.g. Bennell et al., 1998; Meseguer-
Henarejos et al., 2018), and speech pathology (e.g.
Capilouto et al., 2005; Rose and Douglas, 2003).
Intra-rater measures are also reported in other fields
as diverse as economics (Hodgson, 2008), software
engineering (Grimstad and Jgrgensen, 2007), and
psychology (Ashton, 2000).

However, reporting intra-annotator agreement is
so far extremely uncommon in NLP, as we show in
a systematic review in Section 2.

Disagreement and label variation in NLP In
addition, we argue that the use of inter- and intra-
annotator agreement allows us to distinguish and
measure different sources of observed label vari-
ation (Rottger et al., 2022; Plank, 2022). This is
important as NLP researchers have increasingly
recognised that, for many tasks, different points of
view may be equally valid (Aroyo and Welty, 2015;
Basile et al., 2021a; Plank, 2022; Rottger et al.,
2022), and that their aggregation can erase minority
perspectives (Basile et al., 2021a; Blodgett, 2021).

One of the main challenges in implementing this
new paradigm is the interpretation of disagreement.
Disagreement between annotators may be due to
two sources: 1) genuine differences in their sub-
jective beliefs/perspectives, which can be desirable
under this paradigm, or 2) task difficulty, ambigu-
ity, or annotator error, all of which are undesirable.
While agreement measures between annotators can
give us an idea of task subjectivity, they provide
little insight as to its difficulty, ambiguity, or the
quality and attentiveness of the annotators them-
selves (Rottger et al., 2022).

2Although there may be situations in which annotation

consistency is not expected, such as longitudinal studies of
attitudinal change.
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In the following, we propose the use of intra-
annotator agreement as a measure of subjectivity.

The reliability-stability agreement matrix
What then, does it mean when individual an-
notators’ interpretations are not stable, i.e.,
internally inconsistent? In addition to providing an
additional layer of quality control, we suggest that
measurement of label stability can help to interpret
potential causes of infer-annotator disagreement.
To this end, we propose the reliability-stability
matrix, a framework for mapping and interpreting
the relationship between inter- and intra-annotator
agreement in labelled datasets (Table 1).

Reliability
(between annotators)
Low inter | Highinter
. Variable Straight-
o= 51;%2 perspectives/ forward{
=5 _ % High subjectivity Good quality
= g-'g ‘é Low Ambiguous Systematic
% g § S e or difficult/ errors/
Poor quality Value changes

Table 1: The reliability-stability matrix for inter- and
intra- annotator agreement.

Under this framework, infer-annotator agree-
ment and intra-annotator agreement, taken together,
indicate the task’s ambiguity or complexity and its
subjectivity level. Inter-annotator agreement mea-
sures reliability, while infra-annotator agreement
measures stability. The resulting axes form a con-
fusion matrix that describes four cases.

If both measures are high, we assume the task is
unambiguous and simple, and the annotator group
relatively homogonous. Presumably, the quality of
the guidelines and textual data is also good (Ide
and Pustejovsky, 2017). In this scenario, the task
or item should be relatively straightforward.

Where both agreement measures are low, we
are likely to be faced with a highly ambiguous or
difficult task or item—perhaps with multiple equally
valid responses—or the annotation quality is poor.

If reliability is low, but consistency is high, the
labels likely reflect the annotators’ varied but po-
tentially equally valid subjective perspectives.

We do not foresee many situations where reli-
ability is high yet stability/consistency is low. Any
agreement between inconsistent annotators would
presumably be purely by chance or mass random
spamming, i.e., systematic errors. Exceptions
could include population-level value shifts over
longer time intervals arising from awareness-

raising events such as the #MeToo (Szekeres et al.,
2020) and #BLM (Sawyer and Gampa, 2018)
movements.

Our framework can be applied at the dataset- or
item-level by computing any standard agreement
metrics. We illustrate this in exploratory annotation
experiments described in Section 3.

Our contributions 1) We conduct a systematic
review, finding that a tiny fraction of NLP pub-
lications report intra-annotator agreement; (2)
we suggest addition of intra-annotator agreement
as a standard measure, and show how measuring
annotator stability could complement existing
reliability measures to distinguish reasons for
label variation; and (3) we conduct exploratory
longitudinal annotation experiments across four
NLP tasks, finding that annotators provide incon-
sistent responses for more than 25% of items,
calling into question the implicit assumption that
differences in annotation behaviour are seen only
between and not within individuals.?

2 Intra-Annotator Agreement in the NLP
Community

To get a snapshot of the extent to which intra-
annotator agreement is reported in the NLP commu-
nity, we conducted a systematic review of papers
published in the Anthology of the Association for
Computational Linguistics (ACL).* Here, we wish
to discover for which tasks and what purposes NLP
researchers collect and report on repeat annotations
and evidence for how and when repeat items should
be presented to annotators. Full details of the re-
view methodology are available in Appendix A.

To what extent and why is intra-annotator agree-
ment reported in NLP? When we conducted our
study, the search and filtering process returned only
56 relevant publications out of more than 80,000
papers listed in the Anthology. In other words, a
tiny fraction (less than 0.07%) of computational
linguistics and NLP publications in the repository
report measurement of intra-annotator agreement.’

The only area of NLP in which intra-annotator
agreement is somewhat regularly reported is
machine translation (MT), which accounts for

‘Data available  at
HWU-NLP/consistency.

*nttps://aclanthology.org/

>We acknowledge that intra-annotator agreement is irrele-
vant to many papers, but highlight that the number of publica-
tions which report it is nevertheless extremely low.

https://github.com/
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more than half of the included publications. Most
of these were agreement measures on human
evaluation of translation quality, with one on word
alignment annotation for MT (Li et al., 2010).
Several other publications on evaluating natural
language generation also report measurement on
human evaluation tasks (e.g. Belz and Kow, 2011;
Belz et al., 2016, 2018; Jovanovic et al., 2005).
Other included fields are semantics (e.g. Cao et al.,
2022; Hengchen and Tahmasebi, 2021), syntax (e.g.
Baldridge and Palmer, 2009; Lameris and Stymne,
2021), affective computing (including sentiment
analysis (Kiritchenko and Mohammad, 2017)
and emotion detection (Vaassen and Daelemans,
2011)), and automatic text grading (Cleuren et al.,
2008; Downey et al., 2011). There is also one
paper on abusive language detection (Cercas Curry
etal., 2021).°

Where the authors motivate the collection of re-
peat annotations, they usually mention quality con-
trol or annotator consistency. Notably, no papers
mention the possibility that intra-annotator incon-
sistency could be valid or informative beyond these
factors, as we propose.

Best practice for measuring intra-annotator
agreement: how long should the label-relabel
interval be? When designing annotation tasks
(such as ours in Section 3), it would be helpful to
know when to present repeated items, thus avoid-
ing annotators labelling from memory, which may
not be an actual test of their consistency.

Over a quarter of the papers (15/56) do not pro-
vide enough information to determine the interval
between initial and repeat annotations. In most
other cases, either it can be inferred, or the authors
explicitly state that re-annotations are conducted in
the same session as the original annotation. Those
that report more extended time before re-annotation
leave intervals varying from a few minutes (Kir-
itchenko and Mohammad, 2017) to a year (Cleuren

We provide a full list of included papers in Appendix B.

et al., 2008; Hamon, 2010).

Two papers do specifically investigate the effects
of time on annotator consistency. Li et al. (2010) ex-
perimented with intervals of one week, two weeks,
and one month, comparing intra-annotator agree-
ment for these and finding that consistency on their
word alignment annotation degraded steadily over
time. Kiritchenko and Mohammad (2017) per-
formed a similar study, comparing intra-annotator
agreement on ratings (on a scale) that were con-
ducted with intervals from a few minutes to a few
days between the initial and repeat judgements.
They too found that inconsistencies increased as a
function of increase in interval.

3 Exploratory annotation experiments

We conduct an exploratory annotation experiment
to investigate the relationships between agreement
measures and the possible reasons for disagree-
ments and inconsistencies. We also investigate
whether, as is commonly believed, specific task
types are generally more subjective than others.

Hypotheses
At the individual annotation item level, for a given
task and dataset:

H1.1 Subjective annotation items have lower in-
ter-annotator agreement than straightforward
items, but higher intra-annotator agreement
than ambiguous items.

H1.2 Ambiguous annotation items have lower in-
ter- and intra-annotator agreement than both
straightforward and ambiguous items.

At the dataset/task level:

H2 Social tasks—such as offensive language de-
tection and sentiment analysis—are more sub-
Jjective than linguistic tasks, like textual entail-
ment or anaphora resolution. That is, stability
is higher for social tasks than linguistic tasks.

Task Dataset Labels
Social Offensive language detection Leonardelli et al. (2021) Offensivelnot offensive
Sentiment analysis Kenyon-Dean et al. (2018)  Positive/negativelobjective
o Natural language inference/ Williams et al. (2018) Entailment/contradiction/
Linguistic | textual entailment neutral

Anaphora resolution

Poesio et al. (2019)

Referring/non-referring

Table 2: Datasets used in the annotation experiments.
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Data We use subsets of four English language
datasets, see Table 2: two social tasks that are
commonly assumed to be subjective, and two
linguistic tasks, thought of as objective (Basile
et al., 2021b). These were selected because they
(1) have limited label sets (of two or three classes),
allowing for comparison across tasks; and (2)
have been published with non-aggregated (i.e.
annotator specific) labels, allowing us to include
items with known inter-annotator disagreement in
our subsamples. From each dataset, we selected 50
items with high disagreement in the original label
sets for re-annotation.

Methodology We recruited crowdworkers from
Prolific’ to annotate a subset of fifty items from
each of the tasks/datasets. As much of the text
data is primarily sourced from the United States of
America and, in some cases,® concerns American
news stories such as the controversy surrounding
the killing of George Floyd,” we recruited only
annotators located in the US. To obtain high quality
annotations, we prescreened participants to ensure
that (1) their first language was English, and that
(2) they had a 100% approval rate on Prolific.

Based on the evidence of our review (Li et al.,
2010; Kiritchenko and Mohammad, 2017), and of
more recent work by Abercrombie et al. (2023), we
left an interval of two weeks before we recall the
annotators to collect a second round of annotations
in order to measure their consistency. Of 30 anno-
tators that began the first task, 16 completed both
rounds of all four tasks, and we base our results
on the labels they provided. All annotators were
L1 English speakers; nine were male and eight fe-
male; 11 identified as ‘White’, four as ‘Black’, one
‘Asian’, and one ‘Mixed’; and ages ranged from
20 to 67; (1 = 43.9; s = 14.0). Annotators were
provided with the original instructions pertaining
to each task.

We then recruited a second set of expert anno-
tators to annotate the examples that demonstrate
internal and or external disagreement with rational-
isations for these disagreements, using the labels
ambiguous. subjective, or straightforward.

4 Results

We report agreement for each task, and examine
differences between the groups of items labelled

"https://www.prolific.co/
8Particluarly in the offensive language dataset.
9The Guardian April 20 2021 (McGreal, 2021).

as subjective, ambiguous, and straightforward.

Overall agreement As infra-annotator agree-
ment is typically assumed to be 100% (i.e. by
omitting to consider it (Abercrombie et al., 2023)),
we measure and raw report percentage agreement
as a primary metric to examine whether this holds.
For inter-annotator agreement, we calculate these
pairwise across annotators and report the means.
For completeness, we also report Cohen’s kappa
scores in Appendix C.

Reliability | Stability
(Inter-) (Intra-)
% % |

I o 7 o
Offence 683 154|744 150
Sentiment | 63.6 21.7 | 69.2 19.5
Entailment | 58.6 21.4 | 72.6 15.1
Anaphora | 76.2 14.3 | 80.5 13.0
Overall 66.7 19.6 | 742 16.3

Table 3: Pairwise reliability and stability of the collected
labels measured with mean (1) and standard deviations
(o) across items for raw percentage inter- and intra-
annotator agreement scores.

Agreement scores are presented in Table 8. As
expected, agreement is higher for stability than re-
liability for all tasks, although considerably lower
than perfect agreement—just 74.2% overall, and
no higher than 80.5% for any task. Individual an-
notators all have very similar levels of stability:
w = 74.2%;0 = 4.3%;max = 81.5%;min =
67.5%. These results are also remarkably similar
to those of Abercrombie et al. (2023), who reported
mean intra-annotator agreement of 74.5% on a hate
speech identification task conducted over a compa-
rable time frame and on the same recruitment and
annotation platforms.

Agreement by task The distribution of anno-
tation items on the reliability-stability matrix is
shown in Figure 1. A multivariate Kruskal-Wallis
test indicates statistically significant differences be-
tween tasks for both variables: for inter-annotator
agreement, H —statistic : 12.42, p—value : 0.01;
and for intra-annotator agreement, H — statistic :
10.76, p — value : 0.01.1°

10post-hoc pairwise Dunn’s tests with Bonferroni correction
reveal that only sentiment-anaphora and entailment anaphora
have significantly different distributions for reliability, and
only sentiment-anaphora for stability.
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Figure 1: By task raw percentage agreement on individ-
ual items for reliability (pairwise) and stability.

However, these differences do not confirm the
view that social tasks are more subjective than
linguistic tasks (H2). Rather, the offense and
anaphora tasks obtain higher agreement (both inter
and intra) than the sentiment and entailment tasks,
suggesting that, for the particular items in these
data samples, the former are simply easier to agree
and be consistent on than the latter.

Bottom- Top- Top- Bottom-
left left right right

(Amb.) (Subj.)  (Straight.)  (Errors)
Offense 30.0 18.0 38.0 14.0
Sentiment 46.0 10.0 38.0 6.0
Entailment 48.0 20.0 28.0 4.0
Anaphora 22.0 10.0 56.0 12.0
Overall 36.5 14.5 40.0 9.0

Table 4: Percentage of annotation items in each quadrant
of the plot in Figure 1.

As Figure 1 and Table 4 show, while the anno-
tation items are predominantly distributed across
the bottom-left and top-right quadrants, sentiment
and entailment are skewed to the bottom left, indi-
cating greater ambiguity, and offensive language
and entailment tend towards the top-right (subjec-
tivity). With 68% of items on the left-hand side,
entailment is the least, and anaphora, with 56% in
the top-right, the most straightforward task.

Anaphora resolution seems to be the most
straightforward task, with most items in the upper-
right quadrant, while sentiment analysis and entail-
ment are the most ambiguous/difficult, both having
almost 50% of examples fall in the bottom left
quadrant. As expected, the lowest number of items
fall in the bottom right section of the plot.

Rationalisation In an attempt to validate the
reliability-stability matrix and to test H1.1 and
H1.2, rationalisation labels were applied by two
postdoctoral researchers with backgrounds in NLP
and computational linguistics. They were asked
to read the annotation instructions and items and
provide each example with a label: subjective, am-
biguous, or straightforward. Disagreements were
resolved by discussion between these and a third au-
thor. Inter-annotator agreement (before resolution)
is shown in Table 5, indicating that this in itself
was a very difficult task to reach agreement on.

Offence
0.26

Entailment
0.47

Sentiment
0.11

Anaphora
0.02

Table 5: Inter-annotator agreement on the rationalisation
labelling task, measured with Cohen’s kappa.

To quantitatively examine the relationship
between the perceived reason for agree-
ment/disagreement and the reliability and
stability measurements, we applied a multivariate
Kruskal-Wallis test to the independent categorical
variable rationale (straightforward, subjective, and
ambiguous) and the two dependent continuous
variables inter- and intra-annotator agreement.

The test showed that there is only a very small
and non-significant difference in the dependent
vectors between the different groups, with an H-
statistic of 2.734, p = 0.26, indicating that the as-
signed rationale labels do not explain the inter- and
intra annotator agreement rates.

5 Discussion and conclusion

We have examined the role and use of intra-
annotator agreement measures in NLP research.
Calculation of such measures can act as an impor-
tant quality control and could potentially provide
insights into the reasons for disagreements between
annotators. However, in a systematic review, we
found that they are rarely reported in this field.
We have proposed a framework for the interpre-
tation of inter- and intra-annotator agreement, the
reliabilty-stability agreement matrix. Exploratory
annotation experiments failed to validate our the-
ory that this framework can be used to tease apart
subjectivity and ambiguity, and it proved to be very
hard to recognise or agree on these, even for trained
annotators. However, we have shown how com-
paring both inter- and intra- annotator agreement
enables quantification of the difficulty of particular



tasks and/or annotation items. Strikingly, we found
that, across four different tasks, crowdsourced an-
notators were consistently inconsistent, calling into
question the implicit assumption that labels pro-
vided by individual annotators are stable, and rein-
forcing the need to collect within-annotator labels
for NLP tasks, including those typically considered
to be ‘objective’.

Limitations

We acknowledge that the scope of our exploratory
experiments is quite small at 50 items per task
and 16 annotators, and that larger studies may pro-
duce different results. While we took some mea-
sures to ensure the quality of recruited annotators
(section 3), there are known issues with crowd-
worker quality for annotation (e.g. Hovy et al.,
2013; Weber-Genzel et al., 2024), and some annota-
tor inconsistency may due to inattention—another
factor that should be considered and further reason
to measure and report intra-annotator agreement.

Ethical considerations

Because we recruit humans to work on data la-
belling, we obtained approval to undertake this
study from the Institutional Review Board (IRB) of
the School of Mathematics & Computer Science at
Heriot-Watt University, reference 2023-4926-7368.
Additionally, we took the following measures:

Compensation We paid the annotators above the
Living Wage in our jurisdiction (higher than the
legal minimum wage, as recommended (as a mini-
mum) by Shmueli et al. (2021).

Welfare As some of the data to be labelled in-
cluded offensive language, we:

* avoided recruiting members of vulnerable
groups by restricting annotators to those aged
over 18, provided them with comprehensive
warnings prior to consenting to participate,
and asked them to self-declare that they would
not be adversely affected by participating;

allowed annotators to leave the study at any
time and informed them that they would be
paid for their time regardless;

kept the annotation task short to avoid lengthy
exposure to material which may exceed ‘mini-
mal risk’ (Shmueli et al., 2021).

Privacy All personal data of recruited annotators
was collected anonymously.
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A Systematic review methodology

For this review, we followed the established sys-
tematic review guidelines of the PRISMA (Pre-
ferred Reporting Items for Systematic Reviews and
Meta-Analyses) statement (Moher et al., 2009), as
recommended by van Miltenburg et al. (2021):

1. Develop search query terms

2. Conduct search

3. Apply inclusion/exclusion criteria
4. Code included publications

5. Measure inter- and intra-annotator agreement
(re-code subset of publications)

6. Synthesise results

The review covers all results retrieved from the
Anthology’s search facility. The searches were con-
ducted on September 14 2022. Following retrieval
of the resulting publications, we applied the inclu-
sion/exclusion criteria shown in Table 6.

Include

Exclude

Human annotation studies

Repeated annotations are
collected
Intra-annotator
ment is reported
Measurement conducted on
manual labels applied by hu-
man annotators

‘Intra-’ refers to repeat an-
notations of the same items
by the same annotator

measure-

Publication is a full paper

No human annotation study
is conducted (e.g.  sur-
veys/reviews of other work)
Repeated annotations are
not collected
Intra-annotator
ment not reported
Labelling is performed auto-
matically

measure-

Term ‘intra-’ is used, but
refers to agreement mea-
surements between different
items and/or annotators
Posters, proceedings, pro-
posals, technical system de-
scriptions etc.

Table 6: Criteria for in/exclusion in/from the review.

The searches returned 138 publications. After
removing duplicates, and applying the inclusion
criteria we were left with 56 relevant publications
in the Anthology.
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Machine Translation
Semantics

Abuse detection
Automatic text grading
Sematics

Semantics
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Graham et al. (2013)
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Table 7: Publications in the ACL Anthology in which intra-annotator agreement is reported.

B Included papers

A list of included publications from the ACL An-
thology that report intra-annotator agreement is

presented in Table 7.

C Cohen’s kappa scores

Reliability | Stability
(Inter-) (Intra-)
K K

7 o 7 o
Offence 0.05 028 | 0.27 0.28
Sentiment | 0.02 0.25 | 0.17 0.29
Entailment | 0.02 0.25 | 0.28 0.28
Anaphora | 0.07 0.31 | 0.22 0.35
Overall 0.04 0.28 | 0.23 0.30

Table 8: Pairwise reliability and stability of the collected
labels measured with mean (1) and standard deviations
(o) across items for inter- and intra-annotator agreement

scores measured with Cohen’s kappa (k).
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Abstract

Access to high-quality labeled data remains a
limiting factor in applied supervised learning.
Active learning (AL), a popular approach to
optimizing the use of limited annotation bud-
gets in training ML models, often relies on at
least one of several simplifying assumptions,
which rarely hold in practice when acknowledg-
ing human label variation (HLV). Label vari-
ation (LV), i.e., differing labels for the same
instance, is common, especially in natural lan-
guage processing. Yet annotation frameworks
often still rest on the assumption of a single
ground truth, overlooking HLYV, i.e., the occur-
rence of plausible differences in annotations, as
an informative signal. In this paper, we exam-
ine foundational assumptions about truth and la-
bel nature, highlighting the need to decompose
observed LV into signal (e.g., HLV) and noise
(e.g., annotation error). We survey how the
AL and (H)LV communities have addressed—
or neglected—these distinctions and propose a
conceptual framework for incorporating HLV
throughout the AL loop, including instance se-
lection, annotator choice, and label representa-
tion. We further discuss the integration of large
language models (LLM) as annotators. Our
work aims to lay a conceptual foundation for
(H)LV-aware active learning, better reflecting
the complexities of real-world annotation.

1 Introduction

Prediction algorithms play a central role in many
natural language processing (NLP) tasks, like hate
speech detection (Basile, 2020), sentiment analysis
(Kenyon-Dean et al., 2018), or natural language in-
ference (NLI; Pavlick and Kwiatkowski, 2019). For
training such supervised machine learning (ML)
models, a notable amount of labeled training data
is necessary. However, acquiring high-quality la-
bels is expensive as human crowd workers or, even
more expensive, domain experts need to annotate
the data. A popular scheme to efficiently guide the
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Figure 1: The traditional AL loop with possible adap-
tations in different steps, leading to generalized label
variation aware AL

annotation process and allocate annotation budgets
is active learning (AL; Abney, 2007; Settles, 2009).
AL aims to maximize the expected predictive per-
formance of the resulting model while minimizing
the required number of annotations; often done by
iterating the following three steps: (1) Training the
ML model on available labeled data. (2) Selecting
new instances for labeling from a pool of unlabeled
data, usually based on an acquisition function. (3)
Labeling these with an oracle. Those steps, which
are repeated until the available annotation budget
is depleted or the model has reached its target ac-
curacy, rest on the following assumptions:

A1 There exists a single ground truth label per
instance.

A2 The oracle provides the ground truth labels
without any noise.

A3 The annotation difficulty or cost is equal for
all instances.

Equal annotation cost is not, strictly speaking, a
critical assumption for AL, but is becoming in-
creasingly important to consider. However, in NLP,
those assumptions often are not or cannot be ful-
filled. Especially in the presence of human label
variation (HLV), i.e., differences in human anno-
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tations that are plausible variability due to subjec-
tivity or ambiguity and explicitly no sign of error
(Plank, 2022; cf. §3), even the existence of such an
omniscient oracle is questionable.

When we move away from these assumptions
and acknowledge HLYV, the AL loop is extended:
an annotator selection function is introduced to
choose among multiple annotators with varying
perspectives or expertise, rather than assuming a
single infallible oracle (cf. Figure 1).

Contributions In this work, we examine the con-
sequences for the AL cycle when its conventional
assumptions, i.e., A1 — A3, are violated due to plau-
sible variation in labels, often coined HLV. We be-
gin by discussing foundational assumptions about
truth in annotation (§2), laying out different per-
spectives on label nature and emphasizing the need
for a signal-noise decomposition of label variation
(LV) into plausible variation (e.g., HLV) and noise.
In what follows, we provide an overarching survey
of the literature of both fields, i.e., (H)LV and AL,
that reveals an emerging line of research integrat-
ing aspects of (H)LV into AL (§3), but simultane-
ously also uncovers shortcomings and misunder-
standings between the fields. We then identify and
categorize the adaptations required in the AL loop
(§4), including modifications to the annotator selec-
tion function and considerations for incorporating
LLMs. Altogether, we offer a holistic perspective
on AL in the presence of (H)LV, aiming to estab-
lish a more structured ground for discussion and
future empirical investigation by bridging ongoing
debates across NLP, empirical ML, statistics, and
philosophy.

2 Assumptions about Truth in Annotation

When observing LV in human annotations, it is
important to recognize that this variation may
arise from both error and HLV (Weber-Genzel
et al., 2024), which can be present simultaneously.
Throughout this work, we use LV to refer to the
observed differences in annotation, which can be
decomposed into signal, such as HLV, and noise,
such as actual annotation error. Reflecting on the
underlying assumptions about the true labels is cru-
cial, as it helps to distinguish between these sources
of LV, or, in other words, aids the “interpretation
of any observed annotator disagreement” (Rottger
et al., 2022, p. 3).
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Task Dependence and Subjectivity The extent
to which observed LV is attributed to HLV is of-
ten judged based on the (assumed) subjectivity of
the task (Basile et al., 2021). In domains such as
specific image classification tasks in computer vi-
sion (e.g., distinguishing between images of cats
or dogs), lower levels of HLV may be expected,
as the real-world categories constituting the data-
generating process (e.g., actual cats or dogs) are
typically less subjective. In such cases, higher
shares of the observed label variation may be at-
tributable to various types of errors, such as issues
arising from imprecise measurement, the compres-
sion of real-world information into data, or noise,
e.g., introduced during data collection like blurri-
ness in images (Gruber et al., 2025), rather than to
HLV.

The notion of inferring task subjectivity from
observed LV introduces a certain circularity: LV is
intuitively taken as evidence of subjectivity, while
assumptions about subjectivity, in turn, inform how
much of the variation is attributed to HLV. A more
thorough discussion and a systematic approach to
operationalizing subjectivity appear essential for
future work when aiming to disentangle signal and
noise in observed LV.

Worldviews and Nature of Truth Many NLP
tasks, as well as certain computer vision tasks
(e.g., image segmentation in medicine; Zhang et al.,
2020), are assumed to involve a higher degree of
subjectivity. Particularly when addressing such
tasks, different underlying philosophical assump-
tions on the nature of truth and the closely related
nature of reality can lead to varying methodologi-
cal implications. For example, adopting a monistic
worldview—drawing on the discussion of monism
by Russell (1907)—may involve the assumption of
a single underlying reality, with different annota-
tions merely being different perspectives on it. In
this context, no observed annotation could be fully
true or false, and taking individual annotations into
account as a distribution on the instance level may
be a reasonable approach.

Label Non-Determinism and Levels Whether
label variation is viewed from the annotator’s per-
spective (annotator level) or the instance’s perspec-
tive (instance level) can help clarify certain com-
plexities. For example, on the annotator level, label
non-determinism, defined as a probabilistic map-
ping between a real-world instance and a set of
labels, can vary in degree between both subjec-



tive and less subjective cases, and may even in-
clude label-deterministic subjective settings. In
contrast, on the instance level, greater subjectivity
inherently results in more label non-determinism.
Ambiguity, here clearly distinguished from subjec-
tivity, is linked to higher label non-determinism at
both levels. While factors like these—label non-
determinism, subjectivity, ambiguity, and annota-
tor level vs. instance level-—can, in principle, be
treated separately, we assume substantial dependen-
cies between them. For instance, even at the anno-
tator level, tasks that are assumed to be more sub-
jective may be likely prone to exhibiting a greater
degree of label non-determinism.

Types of Label Nature Approaching the discus-
sion from a more applied perspective, we provide
an overview of possible types of labels: (a) dis-
crete class label (also known as “hard label”), (b)
label as probability for discrete classes (sometimes
referred to as “soft label”, Uma et al., 2021, or
“human judgment distribution’), and (c) label as
continuous distribution for underlying fixed num-
ber of classes (cf. Figure 2). Note, that while the
illustration depicts only scenarios with k& € {2, 3}
classes for simplicity, this schema is generally also
applicable to settings with k£ > 3 classes. When
viewing the annotation process from a statistical
perspective, i.e. making assumptions about the data
generating process, each label y; can be regarded
as a realization of a random variable Y. For dis-
crete labels (a), an example in the binary setting
isy; = 1, with Y ~ Bin(1, p); in the ternary case,
i.e., three classes, an example is y; = [1, 0, 0], with
Y ~ Multinom(1,p), p = (pa,pn,pc). Mov-
ing to probability labels (b), the label itself rep-
resents a probabilistic belief over class member-
ship. For instance, y; = (.75 may arise from
Y ~ Beta(a, ), and y; = [0.6,0.2,0.2] may be a
realization from Y ~ Dir(a), @ = (a4, ap, ac).
Finally, in the case of distribution labels (c), y;
takes the form of a full probability distribution—
for example, y; = Beta(8, 3.5) in the binary case or
y; = Dir(8, 3, 4) in the ternary case. Here, the la-
bel y; is itself a distribution over class probabilities.
The distribution of Y is modeled hierarchically by
placing priors on the parameters of this distribu-
tion, e.g., on o, (3 in the Beta case or on « in the
Dirichlet case (Hechinger et al., 2024a).

We here challenge the common assumption of
the first type (discrete class labels, sometimes also
referred to as “single ground truths”) by propos-
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ing the consideration of the latter two types, both
as assumed true labels and requested annotations.
The third label type appears to be the least stud-
ied of the ones listed; however, some work in un-
certainty quantification has begun to explore dif-
ferent label representations (Bengs et al., 2022;
Hechinger et al., 2024a; Sale et al., 2024; Wimmer
et al., 2023).

In practice, a discrepancy can occur between the
type of label assigned by the annotator and the as-
sumed nature of the true label. This mismatch is
especially likely when true labels are assumed to
be continuous distributions over classes (cf. case
(c) in Figure 2), as human annotators are not inher-
ently equipped to give non-discrete annotations (cf.
§4.4 for further discussion of the “oracle” in the AL
cycle). This discrepancy introduces an irreducible
uncertainty and may result in the interpretation that
the observed label variation does not necessarily
equate to HLV. This again emphasizes the impor-
tance of distinguishing between assumptions about
the true labels and assumptions that may be re-
quired for practical reasons during annotation and
the AL loop.

3 Views on Label Variation and Active
Learning

In what follows, we outline key stages in how dif-
ferent fields have approached label variation, a phe-
nomenon discussed under various terminologies
and theoretical perspectives, and illustrate them
with literature examples. Starting from work doc-
umenting its occurrence across diverse tasks, we
move from approaches that neglect or seek to miti-
gate LV, to studies that measure variation mainly to
steer away from high LV instances. Subsequently,
we summarize recent perspectives that embrace
(H)LV as a valuable signal, integrating it into learn-
ing objectives through distributional labels and mo-
tivating its decomposition. We then examine how
the field of AL has responded to, incorporated, or
overlooked these diverse understandings of LV in
its methodological developments.

3.1 Label Variation

Supervised ML depends fundamentally on anno-
tated data, making the quality and nature of labels
a central part of the learning process. The phe-
nomenon of LV, i.e., the occurrence of differing an-
notations for the same instance, both between and
within annotators, is not limited to subjective tasks



(a)

(b)

—

(c)

Figure 2: Types of labels visualized. Each label y; is a realization of a random variable Y.

Top row: binary classes; bottom row: three classes.

(a) Discrete label: y; = 1 with Y ~ Bin(1, p) (top) and y;

(b) probability label: y; = 0.75 with Y ~ Beta(c, 8) (top) and y;

[1,0,0] with Y ~ Multinom(1, p) (bottom),
[0.6,0.2,0.2] with Y ~ Dir(a) (bottom),

(c) distributional label: y; = Beta(8,3.5) (top) and y; = Dir(8, 3,4) (bottom) with a hierarchical model for the
distribution of Y with priors on the parameters of the respective distributions. In the bottom row, ternary plots
visualize the relative proportions of three classes as positions within a triangle. Each cross represents a single label,
with its location indicating the class composition: the closer a point is to a corner, the higher the class proportion.

but has been found across a wide range of applica-
tions. In NLP, this includes tasks such as sentiment
analysis (Kenyon-Dean et al., 2018), hate speech
detection (Basile, 2020), veridicality judgments
(De Marneffe et al., 2012), argumentation mining
(Trautmann et al., 2020), natural language infer-
ence (Pavlick and Kwiatkowski, 2019), and even
tasks traditionally considered “objective” like part-
of-speech tagging (Plank et al., 2014b), word sense
disambiguation (Passonneau et al., 2012), semantic
role labeling (Dumitrache et al., 2019), and named
entity recognition (Inel and Aroyo, 2017). Simi-
lar variation has also been observed in computer
vision tasks like medical image classification and
object identification (Uma et al., 2021), or remote
sensing (Hechinger et al., 2024b), where annotator
disagreement arises from ambiguity and subjectiv-
ity in visual interpretation. While most existing
works listed treat this as either signal or noise, we
refrain from exclusively assigning observed label
variation to either category in the first place.

Mitigating Label Variation The assumption of
a single ground truth label has long dominated ML
practice, as reflected in foundational ML litera-
ture (Goodfellow et al., 2016; Hastie et al., 2009;
Mitchell, 1997). Within this framework, LV is
typically regarded as erroneous and to be mini-
mized or corrected (Alm, 2011; Aroyo and Welty,
2015) with Cabitza et al. (2023), for example, doc-
umenting widespread practices of “disagreement
removal”.
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Treating ‘“Hard” Cases Moving beyond the tra-
ditional view of LV, early work has begun to ex-
plore LV as a potential source of information. Ex-
emplary, Reidsma and Op Den Akker (2008) advo-
cate for analyzing patterns of disagreement, provid-
ing an overview of the various factors that may un-
derlie annotator disagreement. However, this line
of work uses information from LV to steer ML mod-
els away from “hard” cases (i.e., items with high
LV), by, e.g., enabling classifiers to abstain from
making predictions. Plank et al. (2014a) propose
incorporating inter-annotator agreement measures
into a cost-sensitive loss function, thereby explic-
itly integrating LV into the learning process as a
signal of uncertainty. The next paragraph discusses
approaches seeking to embrace LV more directly
by explicitly modeling it, for instance, through ad-
justments to the nature and interpretation of the
labels.

Human Label Variation There are two main
bodies of literature relevant to this work addressing
differences in human annotations: one that pre-
dominantly uses the term variation and another
that refers to disagreement. We adopt the terminol-
ogy of Plank (2022), who introduced the notion of
HLV to conceptualize such differences as plausible
and meaningful variations rather than as annotation
errors. This perspective has been particularly moti-
vated by developments in NLP, where subjectivity,
leading to HLYV, is recognized as an inherent prop-
erty of many language-related tasks (Alm, 2011).



This framework further aligns with the concept of
perspectivism introduced by Cabitza et al. (2023),
which emphasizes that, rather than seeking a sin-
gle ground truth, collecting multiple labels offers a
way to sample the range of perceptions, opinions,
and judgments present in a population.

The related body of literature that adopts the
term disagreement rather than variation is more het-
erogeneous in its interpretation and evaluation of
annotation differences. While some contributions
view such disagreement as plausible or informa-
tive (Uma et al., 2021), others primarily treat it
as a source of noise or error (Beigman Klebanov
and Beigman, 2009). Throughout this section, we
review work from both terminological traditions.

Distributional Labels Several contributions
have moved beyond discrete labels by aggregat-
ing multiple annotations into distributional labels
(cf. Figure 2 for the different types of label na-
ture), aligning with a (strong) perspectivist stance.
De Marneffe et al. (2012) frame veridicality assess-
ment as a “distribution-prediction task”, using judg-
ments from 10 annotators per instance. Similarly,
Aroyo and Welty (2015) view disagreement as a
signal and introduce the “Crowd Truth” framework,
which incorporates distributional labels through an-
notation aggregation and addresses factors like the
design of annotation guidelines and differing anno-
tator expertise. In computer vision, Peterson et al.
(2019) show that training convolutional neural net-
works on soft labels derived from multiple annota-
tors improves generalization under distributional
shift. For NLI, Pavlick and Kwiatkowski (2019)
use slider-based annotations to capture uncertainty
and argue for models that predict distributions over
judgments. More recently, Chen et al. (2022) and
Gruber et al. (2024) investigated whether to priori-
tize more annotators per instance or more annotated
instances when working on the distributional level
via label aggregation.

However, these contributions primarily address
HLYV by aggregating multiple annotations per in-
stance, thereby treating distributional labels as post-
hoc constructions rather than as distributional by
nature—as in case (c) above—i.e., labels deliber-
ately designed from the outset to capture uncer-
tainty directly as a characteristic of the label.

Decomposing Label Variation Furthermore, the
above contributions tend to conflate LV with HLV,
overlooking the simultaneous presence of both
noise and signal within LV. Incorporating this con-
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ceptual distinction, Palomaki et al. (2018) highlight
the need to distinguish between actual annotation
errors and “disagreement that falls within the ac-
ceptable range”, introducing the concept of accept-
able variation, which may differ across subsets
of instances and has direct implications for task
design. Weber-Genzel et al. (2024) extend this
conceptual distinction to NLI. They address the
challenge of identifying annotation error by incor-
porating validated annotator labels with explana-
tions through a second round of validity judgments,
rather than relying on post-hoc interpretation alone.
This builds on earlier work by Jiang et al. (2023),
who identify the phenomenon of within-label vari-
ation, where, even when the same label is assigned,
annotators may vary in their explanations.

Data annotation remains a labor-intensive and
complex process, particularly when aiming to ana-
lyze or leverage a signal-noise decomposition of
LV. The following section, therefore, turns to the
field of active learning, which focuses on strategies
for optimizing annotation budgets and minimizing
annotation effort.

3.2 Active Learning

Active Learning has been a vivid field of research
for over 30 years (Aggarwal et al., 2014; Lewis and
Catlett, 1994; Settles, 2009; Seung et al., 1992).
Settles (2011) already discussed practical issues
arising in active learning, including querying in
batches, noisy oracles, and variable labeling costs.
Zhang et al. (2022) provide a survey on AL for
NLP, while Rauch et al. (2023) propose a tailored
NLP benchmark for AL.

Annotation Costs and Quality The true costs
of annotation are explored in Krishnamurthy et al.
(2019); Margineantu (2005); Settles et al. (2008);
Tomanek and Hahn (2010); Xie et al. (2018), chal-
lenging assumption A3 (“The annotation difficulty
or cost is equal for all instances.”) by model-
ing variation in annotation effort. Gao and Saar-
Tsechansky (2020); Donmez et al. (2009) extend
this by accounting for annotators with varying ac-
curacies, while Donmez and Carbonell (2008) ac-
knowledge that even oracles might be incorrect de-
pending on task difficulty, both relaxing A2 (“The
oracle provides the ground truth labels without any
noise.”). Yan et al. (2011, 2012) suggest jointly se-
lecting an instance and an annotator. Furthermore,
Zhang and Chaudhuri (2015) and Chakraborty
(2020) incorporate both low-cost and expert annota-



tors by assuming a trade-off between cost and label
quality. However, these approaches still assume a
single ground truth label per instance (reliance on
A1; “There exists a single ground truth label per
instance.”) and treat label variation as noise.

In contrast, we highlight the underexplored set-
ting where (H)LV is inherent and may carry an
informative signal, arguing that its integration into
the AL framework requires rethinking core compo-
nents such as acquisition and annotation strategies.

Relabeling Relabeling, i.e., collecting additional
annotations for previously labeled instances to re-
duce noise or correct errors, is explored in Chen
et al. (2022); Goh and Mueller (2023); Lin et al.
(2016); Yuan et al. (2024). These approaches im-
plicitly challenge assumptions A2 and A3 by ac-
knowledging annotation errors and varying diffi-
culty. However, they treat disagreement as an error
rather than a potentially meaningful signal.

HLV-aware AL A few recent studies have begun
to explore how AL can be adapted to account for
HLV. Wang and Plank (2023) and van der Meer
et al. (2024) suggest strategies to choose which
human annotator should label an instance. Further-
more, Baumler et al. (2023) suggest aligning model
uncertainty with annotator uncertainty. While these
works offer valuable insights, they address specific
assumptions or propose targeted adaptations to the
AL process. In §4, we build on these efforts by
systematically analyzing their contributions and or-
ganizing them into a broader framework. There,
we formalize and categorize key adaptations re-
quired for making AL effective in the presence of
HLYV, and point to open challenges and directions
for future research.

4 The Active Learning Loop Revisited

In the following, we discuss the consequences of
the assumptions about truth in annotation and the
nature of the labels (§2) on each of the steps of the
AL loop (as visualized in Figure 1).

4.1 Training Measure

Traditional AL assumes a single ground truth
label provided by an oracle. This aligns naturally
with classic supervised ML, where models are
optimized based on hard-label measures like
Bernoulli loss or cross-entropy. However, in
cases where label variation is not due to error but
comes from plausible causes, different soft-label
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measures are necessary. In such cases, alternative
loss measures based on label distributions, such
as Kullback-Leibler (KL) divergence (Koller
et al., 2024), Jensen-Shannon divergence, or
label embeddings (Schweden et al., 2025) have
been proposed. Baumler et al. (2023) offer
solutions by comparing the predicted and observed
label distribution, thus directly optimizing for a
trustworthy representation of LV.

(C1) Consequence: In the presence of HLV,
distributional measures must be used for opti-
mizing and evaluating the classifier.

4.2 Acquisition Function

The acquisition function ranks all unlabeled
instances by their usefulness if they were to be
labeled. The oracle then provides labels to the
most instructive cases. Traditional AL (Zhang
et al., 2022) uses querying strategies based on
either informativeness or representativeness, or
hybrid approaches (Ash et al., 2020). Informative
querying often uses uncertainty sampling (Lewis
and Gale, 1994), where the samples with the
highest predicted label entropy get labeled
first, thus the ones with the highest uncertainty.
However, with HLV, high entropy can also be
integral to the task, and thus not necessarily a sign
of uncertainty. This shows that classic entropy
sampling is not suitable for AL in the presence of
HLV. Representativeness sampling favors samples
that represent the unlabeled pool well. However,
classical representativeness sampling ignores the
option of labeling some instances multiple times to
represent HLV properly and is thus also unsuitable
for HLV. Further, defining representativeness in
distributions is not trivial. One option to take HLV
into account is to precede the AL loop by training
a prediction model for annotator disagreement
(entropy) and then changing the acquisition
function to query samples where the predicted
annotator entropy and model entropy diverge the
most (Baumler et al., 2023).

(C2) Consequence: In the presence of HLV,
classical informativeness or representative-
ness sampling are unsuitable, as they ignore
the option of labeling instances multiple times
and fail to process distributional labels.




4.3 Annotator Selection Function

The assumption of having an oracle providing
the single ground truth label is not suitable in
subjective tasks, where the distribution of human
opinions is of interest, or other tasks with high
(assumed) HLV. Therefore, an additional step in
the AL cycle needs to be considered: the selection
of annotators. In many crowd worker settings, it
is possible to inquire about labels from a specific
annotator. Extending this thought, different “types’
of annotators could be queried, e.g., not only
human workers but also large language models
(LLM). This is also known as “pre-annotation’
(Zhang et al., 2022) in the pre-LLM era, and
analogously as “LLM-as-annotator” (or “LLM-
as-a-judge”; Wu et al., 2024; Zheng et al., 2023)
today, where the idea is that a model’s predictions
are given to human annotators to confirm or adjust.
Consequently, an overarching annotator selection
strategy needs to evaluate whether a language
model or a human shall provide the label, and
whether a specific annotator (e.g., representing
a minority) or a specific LLM could provide
the label. Recent work has extended the AL
framework to include not only sample selection
but also annotator selection. Wang and Plank
(2023) introduce a multi-head model that jointly
selects the most informative instance and the
most suitable annotator. In contrast, van der Meer
et al. (2024) focus on ensuring representativeness
and diversity in annotator selection, proposing a
strategy that balances labeler perspectives to reflect
the underlying population of interpretations better.
The idea of using LL.Ms as annotators is pursued
in Bansal and Sharma (2023); Xia et al. (2025);
Zhang et al. (2023) .

’

B

(C3) Consequence: In the presence of HLV
it matters who provides the label(s). An an-
notator acquisition function must decide not
only whether to query a human or a language
model, but also whether to obtain one or mul-
tiple annotations and from which specific an-
notator or model.

4.4 Quality of Label and Uncertainty

The quality of annotators is an important area
of research in NLP, which becomes increasingly
meaningful when diversity in annotations is present
(or required; Sorensen et al., 2024) and label noise
cannot be easily separated from the plausible share

81

of label variation. Currently, most work either
assumes variation is noise (Goh and Mueller, 2023;
Yan et al., 2016; Zhang et al., 2015; Zhao et al.,
2011) or all variation in labels represents true HLV
(van der Meer et al., 2024; Wang and Plank, 2023).
Particularly, when the ground truth label is a
distribution and multiple annotators provide labels,
detecting annotation noise in HLV is a complex
endeavor (Weber-Genzel et al., 2024). Now, when
not only different humans annotate the data, but
samples can also be processed by LLMs, assessing
the label quality is non-trivial either (Ni et al.,
2025). Also, in the process of labeling, human
annotators usually provide a single label, while an
LLM could directly provide distributions (Chen
et al., 2024; Pavlovic and Poesio, 2024). This
makes LLLMs as annotators especially attractive in
the presence of HLV and for providing labels for
case (c) depicted in Figure 2.

(C4) Consequence: In the presence of HLV,
it is non-trivial to distinguish true label vari-
ation from noise, especially when labels can
be sourced from both humans and language
models, each with differing capabilities and
output formats.

5 Conclusion

In this work, we provide an overview of the cru-
cial connection between the fields of (human) label
variation and active learning. Our comprehensive
overview of the existing literature in the individ-
ual fields helps building bridges between different,
but connected, streamlines of research, paving the
way for the identification of critical aspects to con-
sider in the AL loop in the presence of HLV. Our
critical assessment of these aspects aims to further
point out potential avenues for future research to
deal with them in a more nuanced and reflective
manner. In doing so, we uncover several crucial
assumptions about labels which are often implicitly
made in traditional AL. However, we argue that
they need to be made explicit. While providing a
unified and implemented solution to the discussed
problems is beyond the scope of the paper, we still
hope to contribute to ongoing research debates on
(H)LV by providing a fresh perspective from a dif-
ferent angle on existing problems and encourage
new work addressing label-variation-aware active
learning.



Limitations

While this work provides a structured discussion on
active learning in the presence of human label varia-
tion, several limitations remain. The philosophical
discussion on annotation truth is a conceptual sug-
gestion rather than a prescriptive framework. For
example, we do not address annotation tasks where
it is assumed that no ground truth exists, or discuss
other frameworks like imprecise probabilities for
representing human label variation. Moreover, not
all discussed adaptations are implemented in AL
pipelines yet, requiring empirical validation. Ad-
ditionally, we do not explore alternative methods
for gathering human annotations that may better
accommodate HLV in detail. Lastly, the reliability
of “LLM-as-annotator” remains an open question.
While LLMs can reduce costs and provide label dis-
tributions, their biases and lack of accountability
pose challenges.
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Abstract

With the rise of online platforms, moderating
harmful or offensive user-generated content has
become increasingly critical. As manual mod-
eration is infeasible at scale, machine learning
models are widely used to support this process.
However, subjective tasks, such as offensive
language detection, often suffer from annota-
tor disagreement, resulting in noisy supervi-
sion that hinders training and evaluation. We
propose Weak Ensemble Learning (WEL), a
novel framework that explicitly models anno-
tator disagreement by constructing and aggre-
gating weak predictors derived from diverse
annotator perspectives. WEL enables robust
learning from subjective and inconsistent labels
without requiring annotator metadata. Exper-
iments on four benchmark datasets show that
WEL outperforms strong baselines across mul-
tiple metrics, demonstrating its effectiveness
and flexibility across domains and annotation
conditions.

1 Introduction

Harmful information, such as offensive and abu-
sive language, has been known as one of the main
threats on social media platforms. Typically, the
moderation of online harmful information is con-
ducted manually. With an increasing amount of
information, manual moderation is expensive and
insufficient. There is a growing demand for devel-
oping a Natural Language Processing (NLP) tool
to support the detection and mitigation of harm-
ful content on online platforms. Addressing this
challenge requires high-quality annotated data to
train accurate and reliable machine learning models.
In recent years, social media has become a popu-
lar source for data collection, and crowdsourcing
has emerged as a widely used solution for large-
scale data annotation. However, concerns have
been raised about the reliability of crowdworkers,
particularly in complex linguistic tasks where an-
notators often lack domain-specific training (Uma

87

et al., 2022). Furthermore, the incentive structures
of crowdsourcing platforms can encourage rapid
completion of tasks with careful judgment, poten-
tially compromising label quality (Daniel et al.,
2018; Leonardelli et al., 2021; Leonardellli et al.,
2023). A particularly challenging issue in this con-
text is human label variation (Plank, 2022), which
arises when annotators assign different labels to the
same instance. This is especially common in sub-
jective tasks such as emotion detection (Buechel
and Hahn, 2018) and offensive language detec-
tion (Leonardellli et al., 2023), where annotation
involves personal interpretation, contextual nuance,
and cultural perspective. Unlike objective tasks
with clearly defined ground truth, subjective anno-
tations inherently invite disagreement. Such varia-
tion introduces noise into training data, complicates
evaluation, and challenges the assumption of a sin-
gle "correct" label (Uma et al., 2022; Cabitza et al.,
2023). Understanding and modelling this variabil-
ity is critical for developing NLP systems that are
more robust, interpretable, and aligned with the
diversity of human judgement.

Previously, several methods have been proposed
to address this issue by estimating and incorpo-
rating annotator reliability into the modelling pro-
cess (Sheng et al., 2008; Cui, 2023; Fleisig et al.,
2023; Xu et al., 2024). These approaches typically
assign higher weights to labels provided by more
consistent or trustworthy annotators, aiming to re-
duce the influence of noisy or unreliable inputs on
the final model. However, their effectiveness is
often limited by the composition of the annotator
pool. They require sufficient diversity among an-
notators to model reliability accurately and may
risk overfitting when such diversity is lacking or
when the model overrelies on a small subset of
annotators (Rébiger et al., 2018; Cui, 2023).

We aim to develop a method applicable to more
general multi-annotation settings. Specifically, the
proposed approach is designed to function effec-
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tively when annotators are shared across the entire
dataset or when there is a heterogeneous distribu-
tion of annotator workload (i.e., some annotators
contribute more than others).

While prior approaches often rely on a single
loss function, such as cross-entropy (CE) (Uma
et al., 2020), to train classification models, this
may be insufficient for subjective tasks where both
hard and soft supervisory signals are informative.
In such settings, different loss components capture
complementary aspects of learning: CE supports
probabilistic calibration, F1 loss promotes classifi-
cation accuracy on hard labels, and distributional
losses like mean absolute error or Manhattan dis-
tance (MD) (Rizzi et al., 2024) help align predic-
tions with the soft label distributions reflecting an-
notator disagreement. By jointly optimising these
objectives, we can balance predictive accuracy with
nuanced representation of label uncertainty, leading
to more robust and interpretable models.

Our contributions can be summarised as follows:

* We propose Weak Ensemble Learning'
(WEL), a novel ensemble-based framework
for learning from multiple annotations in sub-
jective tasks.

We introduce two variants: WEL-Random,
which builds weak predictors from randomly
sampled labels to capture annotator variation
without metadata, and WEL-TopAnn, which
trains per-annotator models for the top-ranked
annotators.

We present a systematic study of selection
strategies, aggregation methods and loss func-
tions for optimising the ensemble.
Experiments on four datasets from Le-Wi-Di
2023 shared task show that WEL consistently
outperforms two strong baselines across mul-
tiple metrics.

2 Related Work

Subjective NLP tasks such as offensive language
detection, hate speech classification and emotion
analysis often suffer from high variability in human
annotations. Annotators may interpret linguistic
cues differently based on their personal, cultural or
contextual backgrounds (Aroyo and Welty, 2015;
Uma et al., 2022). This subjectivity introduces la-
bel noise and inconsistency, making it challenging
to define a single ground truth (i.e., a hard label).

!Codebase for WEL and Evaluation: https://github.
com/YhzyY/Weak-Ensemble-Learning

In particular, datasets annotated via crowdsourcing
tend to reflect these disagreements, raising ques-
tions about how best to represent and learn from
multiple perspectives (Leonardelli et al., 2021; Da-
vani et al., 2022).

A common approach to address label disagree-
ment is to replace hard labels with soft targets, usu-
ally probability distributions over classes derived
from annotator votes, and train models using prob-
abilistic loss functions. The most prevalent is the
cross-entropy loss, which treats soft distributions
as targets, encouraging models to reflect label un-
certainty rather than force a single decision (Uma
et al., 2020; Zheng et al., 2021). More recent meth-
ods have proposed alternative loss formulations,
such as Kullback-Leibler divergence, expected cal-
ibration error (Uma et al., 2020) and Manhattan
distance (Rizzi et al., 2024). These techniques aim
to improve robustness to noisy or subjective labels
by preserving the signal in disagreement rather than
collapsing it through majority vote.

Ensemble methods have also been explored as a
way to leverage annotator disagreement rather than
suppress it. Instead of aggregating labels before
training, several works train separate models for
each annotator and combine their predictions dur-
ing inference (Akhtar et al., 2021; Gordon et al.,
2021; Xu et al., 2024). This strategy captures the
full range of annotator perspectives and has shown
promise in capturing subjective variation in tasks
like emotion classification and hate speech detec-
tion. However, these models may suffer from scal-
ability issues, especially when the number of an-
notators is large or unbalanced. Other work has
approached the problem from a probabilistic mod-
elling perspective, estimating annotator reliability
as a latent variable during training (Paun et al.,
2018a,b; Xu et al., 2020). These approaches of-
ten combine annotator-specific models with global
learning signals, aiming to balance personalised
and consensus-based predictions. In addition, in-
stance weighting has been used as a practical solu-
tion to reduce the influence of unreliable or biased
supervision. For instance, Zhang et al. (2020) ap-
ply instance reweighting to mitigate demographic
bias in toxicity detection, while Liu et al. (2021)
introduce dynamic instance weighting to adapt to
concept drift in evolving datasets. Cui (2023) and
Fleisig et al. (2023) proposed to compute indi-
vidual annotator ratings and combine this infor-
mation to better capture the subjectivity inherent.
These methods adjust the learning signal based on
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example-level characteristics, enabling models to
better generalise under noisy or imbalanced condi-
tions.

Our work unifies ensemble-based disagreement
modelling. We extend ensemble methods that cap-
ture annotator disagreement by randomly sampling
weak predictors to simulate diverse viewpoints, and
by embedding annotator-specific models whose en-
semble selection is learned end-to-end rather than
relying on a fixed set as in Xu et al. (2024). In
contrast to probabilistic reliability estimation tech-
niques that depend on annotator metadata (Paun
et al., 2018a; Xu et al., 2020), our framework re-
quires no such information, broadening its appli-
cability. At the ensemble level, we adapt instance-
weighting strategies to emphasise predictor util-
ity and mitigate dataset bias (Zhang et al., 2020;
Liu et al., 2021). Drawing on label distribution
modelling, our loss function blends soft and hard
supervision to achieve both nuanced learning and
interpretability (Tian et al., 2024). These elements
yield a scalable and flexible approach for managing
noisy subjective annotations.

3 Methods

Given a dataset annotated by multiple annotators,
the goal is to learn a predictive function that ac-
counts for the variability and potential noise in-
troduced by differing annotator judgments. Let

= {(zs,y (1), - ,yl(A )}¥., denote a dataset of

N instances, where z; € X is the input (e.g., a
text sample), and {yl-(l), .. ,yZ } are the labels
provided by A; annotators for instance x;, with
yl-(J ) e Y representing the label from the j-th an-
notator, which j € {1,...,J} and J is the total
number of annotators in D. The objective is to
learn a predictive function fy : X — ) parame-
terised by 6, that approximates the underlying true
label distribution y;, which is unobserved due to
annotator disagreement.

To address this challenge, we propose a three-
stage method, named Weak Ensemble Learn-
ing (WEL), designed to learn from multiple annota-
tors while accounting for disagreement and annota-
tor variability. First, we construct a set of weak pre-
dictors by employing a random sampling and a top-
ranked annotators selection strategies (Section 3.1).
Second, we aggregate the outputs of weak predic-
tors using a weighted ensemble, where the weights
will be tuned to balance contributions in the next
stage, enabling the model to leverage diverse anno-

Algorithm 1 Weak Ensemble Learning (WEL)

Input: Dataset D = {(z;, {ylj)} O
Loss coefficients «, (3, ; Regulansatlon weight );
Maximum number of weak predictors Mpax
Output: Final*predictive ensemble model f(x) =
Zi\n/lzl Wi fo,,, (7)
Stage 1: Construct Weak Predictors
Strategy 1: Random Sampling
for m = 1to M,,, do
Dpm) — {(xi,yy)) | j ~ Uniform(1, 4;)}
Train f5, on D™

end

Strategy 2: Top-Ranked Annotators
Compute the annotation counts of a set of annota-
tors {A1, ..., Art
for m = 1to M,,, do

Dm) = {(z4, yl(Am)) | A, annotated x; }
Train f,, on D™

end
Stage 2: Define Aggregated Supervision

foreach instance x; do
Compute hard-aggregated label

g — arg max E

Compute soft-aggregated label.

-soft

end
Stage 3: Joint Optimisation
Initialize ensemble size M <— M. and weights
W = [wl, ceey wM}
repeat

foreach instance z; do
Compute ensemble output:

M
= wnfo, ()
m=1

end

Compute total loss:
L=a- Lr+pB Lcg+7 Lvp + - QW
Update ensemble weights W
Prune predictors: retain only fy,
Wy > €, form=1,..., M
Reinitialise weights: W < W/ S M_

until convergence;

Set M* <~ M and return final ensemble: f(z) =

ZTAr/Llil wmme (33)

)

such that

tator perspectives effectively (Section 3.2). Finally,



we jointly optimise the weak predictors’ ensemble
weights by minimising a multi-objective loss over
soft and hard aggregated labels, balancing cross-
entropy, distributional similarity, and F1-score per-
formance (Section 3.3). The complete procedure
of WEL is described in Algorithm 1.

3.1 Weak Predictor Construction

To capture diverse annotator perspectives, the
first stage of WEL constructs M weak predictors
{fo\,---, fo,, }, each trained on a different slice of
the annotation space. We propose two selection
strategies:

Random Annotator Selection. For each training

Aq
Y,
uniformly at random:

instance z; with A; annotations {ygl) Y
©)

we sample one label y;

j ~ Uniform{1,...,A4;} (D
Repeating this process M times produces M
datasets {DM) ... DM} each reflecting a
single-annotator view.

Top-Ranked Annotator Selection. We identify
the M annotators with the largest label contribu-
tions and train one weak predictor per annotator
using only their labels. Unlike Xu et al. (2024),
which assumes a fixed set of annotators, our M is
treated as a learnable parameter in the optimisa-
tion stage, allowing the ensemble size to adapt to
the dataset.

Model Architecture. Each weak predictor f,,
consists of a Transformer encoder (BERT or
AraBERT) followed by a linear classification head
mapping the [CLS] representation to class logits:
z=Whiesy + b, 2)
where hrcis) € R? is the encoder output, W €
RE*4 b € RY, and C is the number of classes.
The logits are passed through a softmax layer to
produce probability distributions over classes:
y = softmax(z) 3)
This stage yields a diverse pool of predictors that
differ in training data and potentially in decision

boundaries, forming the foundation for weighted
ensemble learning in Section 3.2.

3.2 Weighted Ensemble Learning

In the second stage, we aggregate the prob-
ability outputs from the M weak predictors
{fo.+---, fo,, } into a single ensemble prediction.
Let g)i(m) € [0, 1]¢ denote the predicted probability
distribution over C' classes for instance x; from
the m-th weak predictor, computed via the softmax
output of its linear classification head (Section 3.1).

We adopt a weighted ensemble strategy, where
each predictor is assigned a learnable non-negative
weight wy, subject to the constraint 2%21 Wy =
1. The ensemble prediction is then:

M
Ui = Z Wm Z)Z(m)
m=1

Here, W = [wy,...,wy] € R% encodes the
contribution of each weak predictor to the final
decision.

While up to M. predictors can be initially con-
structed, the optimisation process (Section 3.3) au-
tomatically determines an effective subset M* <
Mpax. Predictors with w,, < € (e.g., € = 1073)
are pruned to improve computational efficiency and
reduce noise from low-utility models.

By combining multiple probability distributions,
this ensemble mechanism captures complementary
information from diverse annotator views, improv-
ing robustness and mitigating the bias of any single
weak predictor.

“

3.3 Optimisation

In the third stage, we optimise the ensemble
weights {wy, }M_, (and optionally other param-
eters) to improve predictive performance. Given
the ensemble prediction §j; from Eq. (4), computed
as the weighted sum of individual predictor outputs
ngm), our goal is to minimise a multi-objective loss
that balances classification accuracy, calibration,
and distributional alignment.

To accommodate the uncertainty introduced by
annotator disagreement, we investigate learning
from both soft-aggregated and hard-aggregated
labels, and explore separate and joint optimisation
strategies based on multiple objective functions.

3.3.1 Aggregated Supervision

Let D = {(ay, {yi(j)}fil) N | be a dataset anno-
tated by multiple annotators. We derive two forms
of supervision:

« Hard Aggregated Label "¢ € Y: com-
puted via majority vote over annotator labels.



» Soft Aggregated Label 7:°™ € [0,1]°: a nor-
malised label distribution over C' classes, re-
flecting the empirical frequency of annotators’
choices.

3.3.2 Objectives

To robustly train the ensemble model under vary-
ing supervision signals, we define the following
optimisation targets of the loss function L:

(1) F1-Score (F1): A discrete metric evaluated

using "4, which we aim to maximise:

—hard)
)

Lr) = —F1(arg max(y;), ¥; )

where the negative sign denotes that the F1-score
is being maximised during training.

(2) Cross-Entropy (CE) (Uma et al., 2020;
Leonardellli et al., 2023): A soft objective used

when training with %°', minimising:

N C

ECE:—Z

i=1 c=1

—soft

7;°"[c] - log Gilc],  (6)

where N is the number of training instances, C
the number of classes, 35°[c| the soft target (i.e.,
annotator-derived label distribution), and ¢;[c| the

predicted probability for class c on instance z;.

(3) Average Manhattan Distance (MD) (Rizzi
et al., 2024): A distributional similarity measure
minimising the L; distance between predicted and
soft labels:

1 N C
Lup = 57 ; ; [9ile] =gl @D

3.3.3 Separate and Joint Optimisation

We explore two optimisation paradigms:

* Separate Optimisation : Each objective is
minimised independently in different optimis-
ing regimes. For example, cross-entropy is
minimised on soft labels, while F1-score is
optimised using hard labels during model ag-
gregation.

* Joint Optimisation: A combined loss func-
tion integrates all objectives, Eq. (5), (6)

and (7), to guide the model jointly. We de-
fine:

L=a -Lri+ B8 -Leg+7 Lyvp+ A QW),
(8

where «, 8, > 0 are loss balancing coeffi-
cients, and 2(W) is an £2-norm regularisation
term to encourage balanced weight distribu-
tions to prevent overfitting. The regularisation
weight A controls the degree of smoothing
across predictors.

By jointly optimising prediction objectives and
ensemble composition, our model leverages anno-
tator disagreement as a source of diversity, improv-
ing both robustness and alignment with subjective
supervision.

3.3.4 Implementation Details

During the optimisation stage, we employ two
derivative-free optimisation algorithms: OP-
TUNA (Akiba et al., 2019) and the SciPy? dif-
ferential evolution algorithm (Storn and Price,
1997). Both are well-suited to searching contin-
uous, bounded parameter spaces without requiring
gradient information. In our setting, the optimiser
iteratively updates the ensemble weights W to min-
imise the chosen objective(s) (either a single loss
or the joint formulation in Eq. (8)), subject to the
simplex constraint:

M
m=1

For each optimisation step, the selected subset of
weak predictors is reinitialised to reduce sensitivity
to specific model subsets. We run each optimiser
for up to 100 trials or steps, and both methods
yield comparable results. OPTUNA is generally
faster due to GPU support and efficient sampling
strategies, while differential evolution offers robust
CPU-based parallelism, making it preferable in
non-GPU environments. The framework remains
agnostic to the choice of optimiser, allowing other
search strategies to be integrated as needed.

4 Experiments

To evaluate the performance of our method
across diverse domains and text genres, we use

2https://docs.scipy.org/
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Table 1: Data statistics for the four textual datasets.
#Train, #Dev, and #Test denote the number of instances
in the training, development, and test splits, respectively.
#Total Ann indicates the total number of annotators in
each dataset, while #Ann represents the minimum and
maximum number of annotators per instance.

Dataset #Train #Dev #Test #TotalAnn #Ann
ArMIS 657 141 145 3 3
ConvAbuse 2398 812 840 8 2-7
HS-Brexit 784 168 168 6 6
MD-Agreement 6592 1104 3057 670 5

four publicly available datasets from the Le-Wi-
Di shared task at SemEval 2023 (Leonardel-
i et al.,, 2023): ArMIS (Almanea and Poe-
sio, 2022), ConvAbuse (Cercas Curry et al.,
2021), HS-Brexit (Akhtar et al., 2021), and MD-
Agreement (Leonardelli et al., 2021). Each dataset
includes multiple annotations per instance, with at
least two annotators per instance sample.

To maintain the generalisability of our approach,
we exclude domain information and annotator
metadata during training. All models are trained
solely on input text and its associated labels. Sum-
mary statistics are provided in Table 1, while Ta-
ble 2 presents dataset meta-information. In partic-
ular, we distinguish between Fixed Ann. datasets,
where each instance is labelled by the same group
of annotators, and Mixture datasets, where annota-
tors vary across instances. Further details on the
datasets and preprocessing steps are provided in
Appendix A.

Table 2: Dataset metadata covering annotator contribu-
tion, diversity, language and genre.

Dataset Contribution Diversity Language Genre
ArMIS Fixed Ann. Low Arabic Short Text
ConvAbuse Mixture Low English Conversation
HS-Brexit Fixed Ann.  Low English Short Text
MD-Agreement Mixture High English Short Text
4.1 Training

While the proposed framework is model-agnostic
and compatible with various machine learning ar-
chitectures, we employ BERT (Devlin et al., 2019)
for English datasets (ConvAbuse, HS-Brexit, MD-
Agreement) and AraBERTV2 (Antoun et al., 2020)
for ArMIS, using the base checkpoints from Hug-
gingFace. We train M,,x=10 weak predictors us-
ing different selection strategies (Section 3.1). Hy-
perparameters for Transformers are tuned on devel-

opment sets (Appendix B). The predictors are fixed
before the joint optimisation of ensemble weights.

4.2 Evaluation Metrics

We evaluate model performance using three com-
plementary metrics: (a) micro-averaged F1 score
(F1), which assesses classification accuracy on
hard-aggregated labels; (b) cross-entropy loss (CE);
and (c) average Manhattan distance (MD) between
predicted and target label distributions. The lat-
ter two metrics are used to evaluate how well the
model captures soft supervision signals arising
from annotator disagreement (Leonardellli et al.,
2023; Rizzi et al., 2024).

4.3 Label Selection Strategies

First, we experiment with two label selection strate-
gies for constructing weak predictors: random sam-
pling (Random), which selects one annotation per
instance uniformly at random, and fop-ranked an-
notators (TopAnn), which trains one model per an-
notator using data from the most frequent annota-
tors. For simplicity and fair comparison, we fix all
loss coefficients and the regularisation weight to 1.

Table 3 shows results across the four datasets.
The Random strategy consistently achieves higher
F1 and better CE than TopAnn. We attribute this
to the greater diversity introduced by random sam-
pling: each weak predictor is trained on a unique
stochastic projection of the label space, encourag-
ing the ensemble to learn decision boundaries that
generalise across annotator-specific biases. This is
especially beneficial when F1 is the main objective,
as it rewards consistent hard-label predictions on
majority-vote labels, which Random sampling im-
plicitly approximates over many diverse predictors.

By contrast, TopAnn tends to produce more simi-
lar decision boundaries within the ensemble be-
cause each predictor is tied to a single annota-
tor’s style. This can be beneficial for modelling
annotator-specific distributions, but under fixed co-
efficients, it can limit the ensemble’s ability to op-
timise for F1, which benefits from capturing the
aggregate rather than individual perspectives.

Nevertheless, TopAnn achieves lower MD on
ConvAbuse and HS-Brexit, likely because these
datasets have annotators with high internal consis-
tency. In such cases, modelling them individually
yields predictions more aligned with the soft label
distribution.



Table 3: The selection strategies for constructing weak
predictors on AraBERT and BERT.

Dataset Selection Fl1 CE MD
ArMIS Random  0.7310 0.6390 0.5301
TopAnn  0.7310 0.6536 0.5487
ConvAbuse Random 0.9333 0.5559 0.1749
TopAnn 09310 0.5652 0.1645
HS-Brexit Random 0.9107 0.5842 0.2733
TopAnn  0.8929 0.6140 0.2379
MD-Agreement Random  0.8162 0.6246 0.3648
TopAnn  0.7668 0.6695 0.4156

4.4 Ensemble Optimisation Paradigms

We conduct an ablation study to assess the indi-
vidual and combined contributions of the loss com-
ponents in Eq. (8): Lg;, Lcg and Lyp. For clarity,
we fix the selection strategy to Random and acti-
vate specific losses by setting their corresponding
coefficients («, (3, ) to 1 while setting the others to
0. In each setting, we optimise both the ensemble
weights W and the number of members M.

Tables 4 and 5 show results for the ArMIS and
MD-Agreement datasets. Across both datasets,
Lwp consistently achieves the lowest MD values,
confirming its role in aligning predictions with an-
notator label distributions. Similarly, configura-
tions including Lcg tend to improve calibration
(lower CE), while Lg; boosts classification accu-
racy when paired with Lyp. However, using all
three objectives together does not yield additional
gains, and in some cases slightly reduces perfor-
mance, likely due to competing optimisation sig-
nals. Overall, these results suggest that each loss
serves a distinct purpose: Lg; strengthens hard-
label accuracy, Lcg improves probabilistic calibra-
tion, and Lyp enhances alignment with annota-
tor distributions. Effective combinations emerge
when the selected losses complement rather than
compete, even without tuning the loss coefficients,
underscoring the value of a flexible and modular ob-
jective in ensemble optimisation. The ConvAbuse
and HS-Brexit datasets corroborate these findings,
with further analysis provided in Appendix D. Sim-
ilar results were also found using TopAnn.

4.5 Loss Coefficients and Regularisation Term

The joint objective in Eq. (8) balances four compo-
nents through parameters («, 3, v and A) with the
regularisation term (W) demonstrating three key
effects. Due to the page limit, we present the im-
pact of Q(W) on MD-Agreement in Table 6: (1)
F1 improvement (up to +0.0056), (2) CE reduction
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Table 4: Ablation study of loss optimisation paradigms
on ArMIS dataset. In each setting, one loss component
is activated (associated scaler set to 1), while the remain-
ing components are deactivated (set to 0).

Case F1 CE MD

Lr; only 0.7448 0.6395 0.5048
Lcg only 0.7379 0.6385 0.5252
Lyvp only 0.7379 0.6505 0.4900
Lr1+LcE 0.7448 0.6412 0.5179
Lr1+Lyp 0.7172 0.6505 0.5111
Lce+LMp 0.7517 0.6406 0.5294
ﬁp] +£CE+£MD 0.6897 0.6468 0.5243

Table 5: Ablation study of loss optimisation paradigms
on MD-Agreement dataset.

Case F1 CE MD

Lp only 0.8132 0.6249 0.3672
Lcg only 0.8119 0.6246 0.3633
Lyp only 0.8165 0.6250 0.3626
Lr1+LcE 0.8145 0.6245 0.3660
Lr1+Lyp 0.8175 0.6245 0.3670
Lce+LMD 0.8109 0.6247 0.3626
,CF] +£CE+£MD 0.8142 0.6245 0.3647

(max —0.0005 for Lcg+Lyp) and (3) MD gains in
soft supervision (-0.0008) with limited degradation
(<+0.0020 for Lyp alone).

We conduct a Spearman correlation analy-
sis (Kendall and Stuart, 1969) over four param-
eters in the objective function, each sampled from
the range [0, 0.001,0.01, 0.1, 1], resulting in 1,295
unique combinations per dataset (excluding Os for
all). The F1 coefficient « significantly improves F1
(>+0.9) while degrading MD (>+0.7), with simi-
lar but weaker trade-offs for 8 (CE-focused) and ~
(MD-focused). The regularisation strength A shows
model-dependent effects, enhancing F1 on BERT
(~+1.0) but reducing performance on AraBERT
(<£-0.9). Finally, the optimised number of weak pre-
dictors M strongly correlates with both improved
F1 (>+0.9) and reduced CE (<-0.9), though typi-
cally at the cost of MD degradation (AMD >+0.5)
in BERT implementations.

4.6 Model Aggregation Strategies

Table 9 presents results on four datasets using three
aggregation strategies for combining weak predic-
tors: (a) Voting, which applies majority voting over
class labels; (b) Averaging, which computes the
unweighted mean of probabilistic outputs; and (c)
Optimised, which learns weighted combinations
through loss-minimising ensemble optimisation. In
binary classification settings, Voting and Averag-



Table 6: Improvements when adding regularisation term
Q(W), A = with Q(W) - without Q(W).

Case AF1 ACE AMD

Lr; only +0.0033 -0.0003 -0.0013
Lcg only +0.0039  -0.0001  +0.0001
Lvp only +0.0026  -0.0005 +0.0020
Lr+LcE 0.0000 0.0000 0.0000
Lr1+Lyp -0.0036  +0.0001 +0.0010
Lcg+Lvp +0.0056 -0.0005 -0.0008
Lr+Lcg+Lyvp  +0.0020  +0.0001  +0.0001

Table 7: Correlation between parameter and evalua-
tion metrics (F1, CE and MD) on the ArMIS and MD-
Agreement datasets. * indicates statistical significance
(p < 0.05). Green indicates improvement, red indicates
degradation. For CE and MD, negative correlations are
desirable.

Dataset ArMIS MD-Agreement
Param F1 CE MD F1 CE MD
o +0.9%  +0.7 +1.0* | +1.0* +0.6  +1.0*
B +0.2 -1.0¥* 404 -0.7 -0.6 +0.3
vy -0.9*%  +1.0* -1.0* -0.7 -0.9*%  -1.0%
A -1.0%  -1.0*  +0.7 | +0.9*% -0.3 +1.0*
M | +0.01 -1.0* -0.37 | +0.98* -0.97* +0.82%

ing yield identical predictions under a shared 0.5
threshold (Hovy et al., 2013; Plank et al., 2014).
Across all datasets, the Optimised strategy con-
sistently achieves superior performance in F1 and
MD, highlighting the benefit of learning ensemble
weights tailored to the task and supervision sig-
nal. A slight performance drop is observed in CE
on the ConvAbuse and HS-Brexit datasets. This
may be due to the optimisation process prioritising
improvements in classification accuracy (F1) and
distributional alignment (MD), potentially at the
expense of precise probabilistic calibration (CE).

4.7 Comparison with Baseline Models

To ensure a fair comparison, we use the same model
backbone with identical hyperparameters (BERT
for English datasets and AraBERT for ArMIS). We
reimplement and evaluate two baseline approaches:

e BERT-CE (Uma et al.,, 2020): a non-
ensemble single model optimised using a CE-
focused soft loss function.

Top-5 Annotator Voting (Top-5 Voting) (Xu
et al., 2024): a majority-vote ensemble of per-
annotator models, each trained on labels from
one of the top 3 or 5 most frequent annota-
tors (depending on availability). Unlike the
original version, which used multiple BERT
variants, we adopt a uniform model architec-

ture across all predictors for consistency.

Table 8 shows the best results of our proposed
method under two selection strategies: random
sampling (WEL-Random) and fop-ranked anno-
tator (WEL-TopAnn). Results correspond to the
optimal configurations found via ensemble optimi-
sation and parameter tuning (Appendix C). Both
WEL variants consistently outperform the base-
lines across most evaluation metrics, demonstrat-
ing the effectiveness of jointly optimising ensem-
ble weights while capturing annotator diversity
through weak predictors. The only exceptions
occur in MD on the ConvAbuse and HS-Brexit
datasets, where WEL-TopAnn outperforms both
WEL-Random and the baselines. Additionally, in
terms of F1, WEL-Random consistently exceeds
the baselines, reinforcing the robustness of the en-
semble approach even with random annotator se-
lection. As noted in Section 4.3, the superior per-
formance of WEL-TopAnn in MD likely reflects
the influence of a few highly consistent annota-
tors, which benefits the top-ranked selection strat-
egy. However, WEL-Random remains competitive
across other metrics (F1 and CE), suggesting that
the ensemble framework is effective even without
explicit annotator ranking.

5 Conclusions

In this paper, we introduced Weak Ensemble Learn-
ing (WEL), a flexible framework for subjective text
classification that learns from multiple annotations
by constructing diverse weak predictors and jointly
optimising their contributions. We explored two
variants: WEL-Random, which captures annota-
tor variation through random label sampling, and
WEL-TopAnn, which models the most frequent an-
notators individually. Experiments on four datasets
showed that WEL consistently outperforms base-
lines, with WEL-Random excelling in hard-label
classification and WEL-TopAnn offering advan-
tages in distributional alignment when annotator
consistency is high. Future work will integrate
annotator profiles and reliability estimates into a
unified neural architecture to improve performance
and efficiency, and extend WEL to larger annotator
pools and multilingual contexts.

Limitations

Although our method provides a general and scal-
able approach to learning from annotator disagree-
ment, it has several limitations. First, we train weak



Table 8: Comparison with baseline models. * indicates a statistically significant difference (p < 0.05, t-test) from
the BERT-CE baseline in terms of predicted labels (hard evaluation metric, F1) or soft distributions (soft evaluation

metrics, CE and MD).

Dataset ArMIS ConvAbuse HS-Brexit MD-Agreement

Metric F1 CE MD F1 CE MD F1 CE MD F1 CE MD
BERT-CE 0.6596  0.8039 0.7144 | 0.8362 0.9671 4.8068 | 0.7917  0.7652  0.7985 | 0.7880  0.9948  1.7574
Top-5 Voting | 0.7310  0.6529 0.5498 | 0.9310 0.5651 0.1648 | 0.8929* 0.6154* 0.2394* | 0.7808* 0.6629* 0.3995*
WEL-Random | 0.7793* 0.6385 0.5028 | 0.9405 0.5577 0.1709 | 0.9167  0.5889% 0.2585% | 0.8214% 0.6245% 0.3632*
WEL-TopAnn | 0.7448  0.6362 0.5143 | 0.9321 0.5662 0.1586 | 0.8929* 0.6237* 0.2354* | 0.7815* 0.6636* 0.4034*

Table 9: Aggregation strategies for the weak predictors.

Method
Voting
Averaging
Optimised
Voting
Averaging
Optimised
Voting
Averaging
Optimised
Voting
Averaging
Optimised

F1

0.7172
0.7172
0.7793
0.9333
0.9333
0.9405
0.9107
0.9107
0.9167
0.8178
0.8178
0.8214

CE

0.6389
0.6389
0.6385
0.5545
0.5545
0.5577
0.5845
0.5845
0.5889
0.6245
0.6245
0.6245

MD

0.5216
0.5216
0.5028
0.1814
0.1814
0.1709
0.2874
0.2874
0.2585
0.3659
0.3659
0.3632

Dataset

ArMIS

ConvAbuse

HS-Brexit

MD-Agreement

predictors independently and do not update their
parameters during joint optimisation. Although
this design improves computational efficiency, it
can limit the capacity of the ensemble to adapt if
individual predictors are poorly calibrated or sub-
optimal. Second, while we evaluate across multiple
data sources, our experiments are limited to mostly
short social media texts (3/4), two languages and
binary classification settings for simplicity. Addi-
tional evaluation of long-form text, multilingual
corpora or structured annotation settings would
help assess generalisability (Uma et al., 2022).

Ethical Statements

This research uses publicly available datasets from
the SemEval-2023 Le-Wi-Di shared task, including
user-generated content from social media and con-
versational agents. The datasets contain potentially
sensitive language related to hate speech, offensive
content, and abuse and were originally collected
and annotated under ethical guidelines by their re-
spective authors. We do not attempt to identify
or profile any individual users or annotators. Our
work focuses on improving the robustness and fair-
ness of machine learning models in the presence
of subjective disagreement and does not aim to
make normative judgments about content or anno-
tators. To support reproducibility and transparency,

we use standard preprocessing, avoid introducing
annotator-level biases, and refrain from incorpo-
rating demographic or personal information. All
experiments are conducted following standard ethi-
cal practices for human-centred Al research, with a
focus on minimising harm and respecting annotator
diversity.
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A Experimental Data Preprocessing and
Implementation Details

Three of the datasets (ArMIS, HS-Brexit, and
MD-Agreement) consist of tweets collected from
X3. The ArMIS dataset comprises Arabic tweets
labelled for misogyny detection, focusing on of-
fensive language directed toward women. The
HS-Brexit dataset includes English tweets anno-
tated for hate speech related to Brexit. The MD-
Agreement dataset contains English tweets la-
belled for offensive language across three domains:
Black Lives Matter, Elections, and COVID-19.
To maintain the generalisability of our approach,
we do not use domain information from the MD-
Agreement dataset during training. For these three
Twitter-based datasets, we apply a standardised
preprocessing pipeline that includes the removal
of HTML tags, URLs, hashtags, user mentions
(@names), punctuation, non-ASCII characters, dig-
its and redundant whitespace.

The fourth dataset, ConvAbuse, differs from the
others as it is not sourced from social media but
consists of English dialogues between users and
two conversational agents. We include it to assess
the model’s performance on a different text genre:
conversational dialogue. The original annotations
span five levels of abuse severity, from —3 (highly
abusive) to 1 (non-abusive). We simplify this into a
binary classification task, labelling utterances with
severity < 0 as offensive and those with severity >
0 as non-offensive. For processing, we concatenate
each dialogue into a single text sequence.

B Hyperparameter Tuning for BERT

We supervise each weak predictor using a joint
objective function as in Eq. (8) combining: (a) the
F1 micro score computed with hard labels (F1),
(b) the cross-entropy loss with soft target distribu-
tions (CE), and (c) the average Manhattan distance
(MD). For hyperparameter tuning of a single BERT
model, we fixed all loss coefficients and regular-
isation weight to 1 to simplify the optimisation
landscape. To ensure consistency and fair compari-
son across datasets, we use the ConvAbuse dataset,
which is moderate in size relative to the others, to
tune hyperparameters for fine-tuning BERT. Hy-
perparameter optimisation is performed using OP-
TUNA (Akiba et al., 2019). The model is trained on
the training set and validated on the development
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set, while the test set remains completely unseen
during both training and tuning.

The search is performed over 10 trials. The
Weight decay is held constant at 0.01 to enforce
moderate parameter shrinkage, preventing overfit-
ting while avoiding excessive bias in the learned
weights. The following hyperparameters are op-
timised: the learning rate (Ir, sampled logarith-
mically in the range [107%,107%]), number of
training epochs (n_ep € [2,5]), batch size (bs
€ {4,8,16,32,64}), and the number of warm-up
steps (w_steps € [1,500]). The detailed results are
shown in Table 10. These optimal settings are then
applied uniformly across all datasets to ensure a
consistent training setup.

Table 10: Hyperparameter tuning results sorted by joint
loss (ascending). Pruned trials (6 and 9) are excluded.
Bold values indicate best performance per column: high-
est F1, and lowest CE, MD and Joint loss.

Trial Ir n_ep bs w_steps F1 CE MD Joint
2 4.56e-6 2 32 463 0.8362 0.9678 1.1516 1.2832
0 1.48e-6 2 16 41 0.8362 0.9718 1.2891 1.4246
7 2.65e-6 3 16 342 0.8362 0.9753 1.2992 1.4383
3 4.75e-6 5 64 221 0.8818 0.8161 1.5719 1.5062
4 7.24e-5 5 8 487 0.9470 0.8082 2.0893 1.9504
1 9.80e-5 3 32 12 0.9434 0.8617 3.2045 3.1228
5 9.57e-5 5 32 150 0.9360 0.8409 3.5261 3.4310
8 4.35e-5 5 4 94 0.9200 0.8737 4.8390 4.7928

C Best Parameters for WEL

We perform a grid search over four parameters in
the objective function, each sampled from the range
[0,0.001,0.01,0.1, 1], resulting in 1,295 unique
combinations per dataset (excluding Os for all).
Table 11 reports the best-performing parameter
configurations (a, 3, v and \) for the two vari-
ants of our proposed method: WEL-Random and
WEL-TopAnn. The optimal values vary across
datasets and selection strategies, indicating that
performance is sensitive to the interplay of loss
components. Notably, there is no consistent trend
suggesting that any single parameter dominates

Table 11: Best performing hyperparameters for WEL.

Method « 153 ol A
ArMIS WEL-Random 1 0.0001 0.01 0.001
WEL-TopAnn 0.001 0.0001 0.1 0
ConvAbuse WEL-Random 0 0.1 1 0
WEL-TopAnn 0 1 0.01 0.01
HS-Brexit ~ WEL-Random 1 0.001 0 0.001
WEL-TopAnn 0.1 0.1 0 0.001
MD- WEL-Random 0.001 0.0001 0 0.001
Agreement WEL-TopAnn 1 0 0 0
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Table 12: Ablation study of loss optimisation paradigms
on ConvAbuse dataset.

Case F1 CE MD

Lp1 only 0.9298 0.5573 0.1862
Lcg only 0.9286 0.5536 0.1801
Lyp only 0.9202 0.5737 0.1680
£F1+ECE 0.9333 0.5540 0.1777
Lr1+Lyp 0.9333 0.5575 0.1689
Lce+LMp 0.9298 0.5556 0.1755
ﬁ]:] +£CE+LMD 0.9333 0.5571 0.1707

Table 13: Ablation study of loss optimisation paradigms
on HS-Brexit dataset.

Case F1 CE MD

Lg) only 0.8988 0.5868 0.2636
Lcg only 0.9048 0.5851 0.2859
Lyp only 0.8750 0.6066 0.2325
Lr1+LcE 0.9048 0.5857 0.2789
Lr1+Lyp 0.8810 0.6182 0.2374
Lce+Lyvp 0.8929 0.6035 0.2306

Lri+Lcg+Lyvp  0.8690  0.6093  0.2342

performance across settings.

D Ensemble Optimisation Paradigms on
ConvAbuse and HS-Brexit

Tables12 and 13 present ablation results for
ConvAbuse and HS-Brexit using WEL-Random.
Across both datasets, multiple configurations
achieve similar scores, suggesting that when loss
coefficients are fixed, different objectives can lead
to comparable outcomes.

For ConvAbuse, combining Lg; with either Lcg
or Lyp yields the highest F1 (0.9333), while Lyp
alone achieves the lowest MD (0.1680). For HS-
Brexit, Lcg alone gives the highest F1 (0.9048),
and the Lcp+Lyvp pairing yields the lowest MD
(0.2306). Including all three losses does not consis-
tently improve results and can slightly reduce F1,
likely due to competing objectives without tuned
coefficients.

Overall, these results indicate that when coef-
ficients are fixed, several loss configurations can
perform similarly, and gains from specific combi-
nations are modest. The impact of loss balancing
is explored further in the next subsection on param-
eter correlations.

E Parameter Impact on ConvAbuse and
HS-Brexit

Table 14 illustrates how each control parameter
balances the multi-objective trade-offs in the joint

optimisation (Eq. (8)). The regularisation term A
demonstrates consistently strong performance on
both ConvAbuse and HS-Brexit, achieving near-
perfect correlations with F1 (+1.0*/+0.99*) and
CE (-1.0%), though its effect on MD diverges from
patterns observed on MD-Agreement (Table 7).

In contrast, ~y consistently improves MD (-1.0%)
but harms F1 (-0.9*/-1.0*), making it better suited
for MD-focused objectives. The effect of « varies:
it improves CE and MD on ConvAbuse but de-
grades them on HS-Brexit. Finally, 8 reliably
improves CE (-1.0*) on both datasets, but at the
cost of worse MD (+0.7/4+0.9*). These differences
likely reflect the distinct text genres and annotation
distributions of the datasets, underscoring the need
for task-specific parameter tuning.

These results align closely with MD-Agreement
findings in the main paper.

Table 14: Correlation between parameter and evaluation
metrics (F1, CE and MD) on the ConvAbuse and HS-
Brexit datasets using WEL-Random with BERT.

Dataset ConvAbuse HS-Brexit
Param F1 CE MD F1 CE MD
«a -021 -04 -1.0%* +0.82  +1.0* +0.1
B +0.8 -1.0*  +0.7 +0.6  -1.0* +0.9%
v -0.9*  +1.0* -1.0* -1.0*  +1.0* -1.0*
A +1.0% -1.0* +0.9* | +1.0* -1.0* +1.0*
M | +1.0% -1.0%  +0.98*% | +0.99% -1.0% +0.55
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Abstract

Models trained on crowdsourced annotations
may not reflect population views, if those who
work as annotators do not represent the broader
population. In this paper, we propose PAIR:
Population-Aligned Instance Replication, a
post-processing method that adjusts training
data to better reflect target population charac-
teristics without collecting additional annota-
tions. Using simulation studies on offensive
language and hate speech detection with vary-
ing annotator compositions, we show that non-
representative pools degrade model calibra-
tion while leaving accuracy largely unchanged.
PAIR corrects these calibration problems by
replicating annotations from underrepresented
annotator groups to match population propor-
tions. We conclude with recommendations for
improving the representativity of training data
and model performance. !

1 Introduction and Inspiration

When a hate speech detection model flags harm-
less expressions as toxic, or a content moderation
system fails to identify genuinely harmful content,
the root cause often lies not in the model architec-
ture, but in who annotated the training data. While
Natural Language Processing (NLP) models aim to
serve broad populations, the human judgments used
to train these systems often come from crowdwork-
ers and convenience samples. And the demograph-
ics, cultural contexts, and worldviews of these an-
notators often differ from those of the communities
the models ultimately impact (Sorensen et al., 2024;
Fleisig et al., 2024). These non-representative an-
notator pools can have real consequences, because
annotator characteristics like age, education level,
and cultural background impact how content is an-
notated (Sap et al., 2022; Fleisig et al., 2023; Kirk

'The code for experiments is available at https://
github.com/soda-1mu/PAIR.

Representative
opinions analysis
on adjusted data

Collecting surveys :> Weighting towards :

target population

Model training on
adjusted data:
Better performance?

Weighting towards

Collecting annotations |:> target population

Figure 1: Top: Adjusting survey data to match popula-
tion produces high quality results.
Bottom: Can a similar adjustment in data annotations
also improve model performance?

et al., 2024). The influence of annotator charac-
teristics underscores that language understanding
is not a single objective truth but a constellation
of equally valid interpretations anchored in dif-
ferent lived experiences. When this perspectivist
interpretation is ignored, models trained on non-
representative data can perpetuate the biases and
blind spots of their limited training data (Berinsky
et al., 2012; Hebert-Johnson et al., 2018; Mehrabi
et al., 2021; Rolf et al., 2021; Hiillermeier and
Waegeman, 2021; Ouyang et al., 2022; Favier et al.,
2023; Smart et al., 2024).

Fortunately, survey researchers have developed
statistical techniques to produce population-level
estimates from non-representative samples (Bethle-
hem et al., 2011). The top panel of Figure 1 shows
a simple survey workflow: collecting survey data,
creating statistical weights to match the sample
to the population, and estimating population pa-
rameters. We adapt this approach to the machine
learning context, enabling models to better align
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with target populations even when trained on non-
representative annotator pools (bottom panel).

Our Population-Aligned Instance Replication
(PAIR) method post-processes training data to bet-
ter reflect target populations without collecting ad-
ditional annotations. We test the approach with
a simulation study (Burton et al., 2006; Valliant,
2019; Morris et al., 2019) and answer two ques-
tions:

* RQ1: How do non-representative annotator
pools impact model calibration and accuracy?

* RQ2: Can our proposed weighting method
(PAIR) mitigate these annotator pool effects?

Our results demonstrate that models trained on
non-representative annotator pools perform worse
than those trained on representative pools. How-
ever, simple adjustment methods can improve per-
formance without collecting additional data. These
findings suggest that insights from survey method-
ology can help artificial intelligence (Al) systems
better represent the populations they serve.

2 Related Work

Several strands of related work inform our ap-
proach to identifying and mitigating bias due to
the use of non-representative annotators:

Annotator Impact on Data and Models. An-
notator characteristics and attitudes significantly
influence annotation quality, particularly for sub-
jective tasks like toxicity detection (Giorgi et al.,
2025; Prabhakaran et al., 2021; Fleisig et al., 2023;
Sap et al., 2022). For example, annotators’ polit-
ical views and racial attitudes affect their toxicity
judgments (Sap et al., 2022). Models trained on
non-representative annotator pools inherit these bi-
ases and generalize poorly (Berinsky et al., 2012;
Mehrabi et al., 2021; Rolf et al., 2021; Ouyang
et al., 2022; Favier et al., 2023; Smart et al., 2024,
Mokhberian et al., 2024).

Annotator Demographics. Several researchers
advocate collecting annotator demographics to as-
sess representation and identify biases (Bender and
Friedman, 2018; Prabhakaran et al., 2021; Plank,
2022; Wan et al., 2023; Santy et al., 2023; Pei and
Jurgens, 2023).% However, collecting and releasing

2In our context, these characteristics are used only to ana-

lyze bias. Because they are not available for unannotated text,
they are not features that the model can use.
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these data can raise privacy concerns (Fleisig et al.,
2023). Recent works have also used demographics
to prompt the large language models (Argyle et al.,
2023), and some find that these are less effective
in subjective contexts (Sun et al., 2025; Orlikowski
et al., 2025).

Debiasing & Data Augmentation Methods.
Prior work has proposed various approaches to re-
duce bias in training data features and annotations.
Most similar to our work is the resampling and
reweighting approaches of Calders et al. (2009) and
Kamiran and Calders (2012), imputation (Lowman-
stone et al., 2023), and the oversampling of minor-
ity class cases of Ling and Li (1998). PAIR adapts
these methods to balance annotator characteristics
rather than class labels or sensitive observation-
level features. PAIR retains the simplicity and in-
terpretability of earlier resampling methods while
extending them to a “Learning with Disagreement”
(Uma et al., 2021; Leonardelli et al., 2023) set-
ting with multiple annotations per observation, by
replicating annotations from underrepresented an-
notator groups.

3 PAIR Algorithm: Adjustment via
Pseudo-Population

To adjust an annotator pool to better reflect a tar-
get population, we propose the PAIR algorithm,
which constructs a pseudo-population through post-
stratification, weight normalization, and determin-
istic replication. This adjustment strategy is in-
spired by established methods in survey sampling
(Quatember, 2015).

Post-stratification aligns a sample more closely
with population-level distributions (Bethlehem
et al., 2011; Valliant et al., 2013). Annotators are
grouped into strata based on demographic or be-
havioral characteristics. For each unit 7 in stratum
s, a post-stratification weight is computed as:

6]

where P; and S denote the share of the popula-
tion in stratum s and the share of the sample (or
annotator pool), respectively. The P values come
from official statistics or surveys. The S values
likely come from the annotators themselves and re-
searchers may have to collect them. This technique
can accommodate multiple stratification variables;
it is only limited by the availability of population
or reference data and data about the annotators.



These weights have only relative meaning and

are invariant to multiplication by a constant (K):

w?ormalized — winitial % K (2)
Normalization useful if research teams have a target
number of annotations per observation in mind, for
either computational or design reasons, or if some
weights given by Eq. 1 are very small and round to
one.

To generate a pseudo-population, we apply de-
terministic replication: each unit is replicated n;
times where

n; = round (wpemalizedy _ 1 3)
ensuring integer replication counts. This approach
produces a dataset that reflects population propor-
tions while maintaining interpretability and repro-
ducibility.

While we focus in this initial study on determin-
istic replication, alternative implementations are
possible, including resampling-based replication or
direct incorporation of weights into model training.

4 Annotation Simulation and Model
Training

To address our research questions, we conduct a
simulation study on offensive language and hate
speech detection. We imagine a population made
up of equal shares of two types of people: those
more likely to perceive offensive language and
hate speech and those less likely. We create three
datasets of simulated annotations which differ in
the mix of the annotator types. We then create a
fourth dataset, using the PAIR algorithm, to fix
the imbalance in the annotators. We fine-tune
RoBERTa models on the four datasets and eval-
uate the effect of annotator composition on model
performance (RQ1) and the ability of the PAIR
algorithm to improve performance (RQ?2).

4.1 Simulating Annotations

We use our previously collected dataset on tweet
annotation sensitivity (Kern et al., 2023)3, which
is a dataset of 3,000 English-language tweets, each
with 15 annotations of both offensive language (OL:
yes/no) and hate speech (HS: yes/no). We chose
this dataset because the high number of annotations
of each tweet gives us a diverse set of labels to work

3https://huggingface.co/datasets/soda—lmu/
tweet-annotation-sensitivity-2

with. We randomly select (without replacement)
12 annotations (of both OL and HS) of each tweet
in the original dataset.* Let pi,or be the proportion
of the 12 annotators who annotated tweet ¢ as OL
and p; gs defined similarly. Figure 2 shows the
distribution of these proportions across the 3,000
tweets. The HS annotations are clustered near O,
whereas the OL annotations are more spread out
between 0 and 1.

oL

HS

0.00 0.25 0.50 0.75 1.00
Proportion

Figure 2: Distribution of p; o, and p; g g in original
data

The population contains two types of people
(50% each). Type A people are less likely to say a
tweet contains OL. Type B people are more likely:

Pf}oL = max(p;or — 3,0) 4)
pfOL = min(p; o1, + f5,1) (5)

Here 3 captures the magnitude of the bias. We
vary /3 from [0.05, 0.3] by 0.05, corresponding to
an increase or decrease in the probability to judge
a tweet as OL by five to 30 percentage points. This
range is large on the probability scale and cov-
ers most reasonable situations. With these six val-
ues of 5, we create six vectors of probabilities
(pZAO I pfo ;) for each tweet.

We then create four datasets, each with 3,000
tweets (Table 1), for each value of 5. The Repre-
sentative Dataset contains OL annotations from six
A annotators (drawn from Bernoulli(pfo 1)) and
six B annotators (drawn from Bernoulli(pfo L)
The proportion of A and B annotators in this dataset
matches the simulated population we created.

We next create two unbalanced datasets. Non-
representative 1 randomly deletes three B an-

*As shown in Table 1, we can more carefully control the

construction of our datasets when the number of annotations
per tweet is even.
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Annotations A B
Dataset per tweet annotations annotations
Representative 12 6 6
Non-representative 1 9 6 3
Non-representative 2 12 9 3
Adjusted 12 6 3+ 3%

* 3 B annotations replicated

Table 1: Four training datasets for each bias value (3)

notations for each tweet from the Representa-
tive Dataset. Non-representative 2 adds three
additional A annotations, drawn from pfo 1. 1O
the Non-representative 1 dataset. The Non-
representative 2 Dataset is more unbalanced than
Non-representative 1, but contains the same num-
ber of annotations as the Representative dataset.

4.2 Applying PAIR Algorithm

Finally, we use the PAIR algorithm to create
the Adjusted Dataset. Starting with the Non-
representative 1 Dataset, we calculate the share
of the annotator pool that is in the A and B strata:
Sy = %, Sp = % The population proportions, by
construction, are P4 = 0.5, Pg = 0.5. Applying
(1), we getwy ; = 0.75, wp; = 1.5. We multiply
these weights by K = % togetwa,; = 1, wp,; = 2.
These weights giveus ng; = 0,np; = 1, which
leads us to replicate all B annotations in the Non-
representative 1 Dataset (see Table 1).

The HS probabilities for the A and B anno-
tators are defined in the same way: pf}HS
max(pi s — f,0), pPyg = min(p;ms + B, 1).
We also construct the four datasets (Representa-
tive, Non-representative 1, Non-representative 2,
Adjusted) in the same way we did in the OL case.

Figures 3 and 4 show the percentage of instances
annotated OL and HS in the four datasets for each
value of . In both, the percentage of OL/HS an-
notations in the Adjusted dataset is similar to that
in the Representative dataset for all values of f.
The percentage in the two unbalanced datasets is
lower, because those datasets overrepresent the A
annotators, who are less likely to annotate OL/HS.

HS is rare in our dataset (16.7% of instances
were annotated as HS), and our simulation strat-
egy overrepresents A annotators in the two Non-
representative datasets, who are less likely to per-
ceive HS (Table 1). For these reasons, as (3 in-
creases, more pr g are 0 while the pr g proba-
bilities increase. This issue leads the i)roportion

of HS annotations in the Representative and Ad-
justed datasets to increase with (5 in the HS dataset,
which have more B annotations than the unadjusted
datasets (Figure 4).
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Figure 3: Percentage of instances annotated as OL, by
dataset and bias (3)

HS, Percentage

w w
Y S
N x
o
‘
\
1 Y
\

30%

28%
? Dataset

—e=— Balanced
26% Non-representative 1 e~ —

=e:: Non-representative 2 . ~
== Adjusted

Percentage (%)

) il S
—

24%

0.05 0.10 015 0.20 025 030
Bias

Figure 4: Percentage of instances annotated as HS, by
dataset and bias (3)

4.3 Model Training and Evaluation

Training and Test Setup. We train models on
each of the eight datasets: four for OL, four for
HS. We divide each dataset, at the tweet level, into
training (2,000 tweets), development (500), and
test (500) sets. Each tweet appears 12 times in the
Representative, Non-representative 2, and Adjusted
datasets and nine times in the Non-representative 1
set.

Model Selection and Training. We used
RoBERTa base (Liu et al., 2019) as our text classi-
fier, training for five epochs on each dataset, with
development set optimization. To ensure reliable
results, we trained five versions with different ran-
dom seeds and averaged their performance.

Our implementation of ROBERTa models was
based on the libraries pytorch (Paszke et al., 2019)
and transformers (Wolf et al., 2020). During
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training, we used the same hyperparameter settings
(Table 2) for the five training conditions to keep
these variables consistent for comparison purposes.
We trained each model variation with five random
seeds {10,42,512,1010,3344} and took the av-
erage across the models. All experiments were
conducted on an NVIDIA® A100 80 GB RAM
GPU.

Hyperparameter Value
encoder roberta-base
epochs_trained 5
learning_rate 3e~?
batch_size 32
warmup_steps 500
optimizer AdamW
max_length 128

Table 2: Hyperparameter settings of ROBERTa models

Performance Metrics. We evaluate models us-
ing calibration and accuracy metrics on the test
set. While accuracy metrics directly measure clas-
sification performance, calibration metrics provide
crucial insights into model reliability by assessing
probability estimate quality — particularly impor-
tant for high-stakes applications requiring trustwor-
thy confidence measures.

For calibration, we report Absolute Calibration
Bias (ACB, Equation 6), which measures how well
a model’s predicted probabilities align with true
annotation frequencies. For each tweet ¢, we com-
pare the model’s predicted probability of offensive
language (preds; o) against the true proportion
of annotators who labeled that tweet as offensive

(pi,oL)-

n

1
ACBpy, = - Z }predsi7OL — pi,OL‘ (6)
i=1

ACByg is defined accordingly. ACB adapts es-
tablished calibration metrics by using the annotator
agreement proportion as a plug-in estimator for the
true probability, avoiding the need for binning (as
in ECE, Naeini et al., 2015) while maintaining the
intuitive L1 distance interpretation (Roelofs et al.,
2022). A low ACB score indicates that the model’s
confidence scores accurately reflect the underlying
annotation uncertainty in the population.

For accuracy, we report the F1 score.
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Figure 5: ACB scores for OL Models, by dataset and
bias (3)
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Figure 6: F1 scores for OL Models, by dataset and bias
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5 Results

We show results separately for the OL and HS mod-
els.

5.1 OL Models

Calibration. Figure 5 compares the ACB in the
test set for models trained on the four datasets. The
dark lines show average ACB across the five train-
ing runs and the shading shows the standard devia-
tion.

The ACB for the models trained on the Adjusted
dataset closely tracks that for the Representative
dataset and does not increase with 3. ACB for the
models trained on the two unbalanced datasets is
greater and grows with 5. These results demon-
strate the effectiveness of our adjustment method.
Replicating the annotations from the underrepre-
sented annotator type to match population propor-
tions improves model calibration.

Accuracy. Figure 6 compares the models’ F1
scores. In contrast to Figure 5, we do not see strong
differences between the models trained on the dif-
ferent datasets. For all datasets, model performance
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Figure 7: ACB scores for HS Models, by dataset and
bias ()
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Figure 8: F1 scores for HS Models, by dataset and bias
(e))

declines with 3: as the amount of bias in the anno-
tations increases, the models are less able to predict
the binary OL label.

Because the F1 metric focuses on binary pre-
dictions, it is less sensitive to training biases than
calibration metrics like ACB, which more explic-
itly capture biases through prediction scores. In
decision-making, miscalibrated predictions can
have harmful consequences when, for example,
hateful content remains undetected (Van Calster
et al., 2019). These findings suggest that calibra-
tion metrics provide a clearer view of the impact of
annotators on models: binary classification metrics
can obscure such effects.

5.2 HS Models

Figure 7 contains the ACB results and Figure 8
the F1 score results for the HS models trained on
each dataset. Though the adjusted model roughly
tracks the representative models for ACB, there is
instability in the results. All models show lower
average ACB values than the representative model
across a wide range of the bias offset (0.10 - 0.20).
The PAIR approach does not improve calibration
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Figure 9: Percentage of OL instances on difficult tweets
(0.4 < p; 01 < 0.6) by dataset and bias ()
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Figure 10: Percentage of HS instances on difficult
tweets (0.4 < p; s < 0.6) by dataset and bias (/3)

or accuracy: the adjusted model performs similarly
to the Non-representative models. This effect is
likely due to the combination of label rarity and our
simulation design. With few positive annotations
to begin with, the impact of the 5 parameter and
the overrepresentation of the A annotators may
be overwhelmed by the baseline scarcity of hate
speech annotations. Calibration metrics can be less
reliable with rare classes (Zhong et al., 2021).

5.3 Sensitivity Analysis: Difficult Tweets

Our simulations assumed that all annotator type im-
pacts all tweets the same way (Eq. 5), which is an
oversimplification. More likely, annotator charac-
teristics have more impact for ambiguous tweets.
For example, prior research in the psychology liter-
ature on judgment under uncertainty suggests that
people draw more heavily on personal heuristics
when interpreting unclear or underspecified infor-
mation (Tversky and Kahneman, 1974). For this
reason, we repeat model training and recompute
metrics for those tweets where 0.4 < p; < 0.6.
Subsetting the tweets in this way also eliminates
the floor and ceiling effects in Eq. 5. The filtered
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Figure 11: ACB scores for OL Models, on difficult
tweets (0.4 < p; or. < 0.6), by dataset and bias (/5)
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Figure 12: F1 scores for OL Models, on difficult tweets
(0.4 < p; o1, <0.6), by dataset and bias (/3)

datasets contain 267 (OL) and 360 (HS) tweets.
The proportions of OL and HS annotations are sta-
ble for the Representative and Adjusted sets and
decrease for the Non-representative sets as we in-
crease the bias offset (Figures 9 and 10). This
mimics the trend for OL in the full dataset (Figure
3).

Figures 11, 12, 13, and 14 show results for two
metrics (ACB, F1) for filtered OL and HS anno-
tations. In Figure 11, the Representative and Ad-
justed models have similar ACB and are lower than
the Non-representative models. The F1 scores do
not show differences between the models. These
results are similar to those on the full set of tweets
(Figures 5 and 6). In the two HS figures (13, 14),
we see signs that the Representative and Adjusted
models perform similarly, and better than the two
Non-representative models, on both metrics. These
results are more promising than those on the full set
of tweets (Figures 7 and 8) and support our hypoth-
esis that the rarity of HS annotations contributed to
the lack of positive results for the PAIR approach in
§5.2. The PAIR algorithm works well with difficult
tweets, which is where it is likely most needed.
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Figure 13: ACB scores for HS Models, on difficult
tweets (0.4 < p; gs < 0.6), by dataset and bias (3)
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6 Discussion & Recommendations

Our experimental results show the OL prediction
models perform less well when trained on data
from non-representative annotator pools (RQ1),
and simple statistical adjustments can improve
model calibration without collecting additional an-
notations or involving additional annotators (RQ?2).
While PAIR’s impact was harder to assess for the
rare HS class, PAIR did improve calibration of both
the OL and HS models when trained on difficult
tweets. These findings establish a promising bridge
between survey statistics and machine learning —
offering a practical approach to make Al systems
more representative of and responsive to the popu-
lations they serve, particularly for tasks involving
subjective human judgments.

We recommend the following four steps to
reduce bias due to non-representative annotator
pools:

1) Use social science research to identify the an-
notator characteristics that influence the propen-
sity to engage in annotation and the annotations
provided (Eckman et al., 2024).

106



2) Collect these characteristics from annotators
and gather corresponding population-level data
from national censuses or high-quality surveys.’

3) Calculate weights that match the annotators to
the population on those characteristics (Bethle-
hem et al., 2011; Valliant et al., 2013).

4) Use these weights in model training. Our
simple replication approach showed promise,
and future work should test more sophisticated
weighting approaches.

7 Limitations

Our study explores bias-aware data simulation and
evaluation in a controlled setting, which necessarily
involves simplifying assumptions and methodolog-
ical constraints. We outline key areas where future
work could broaden the applicability and robust-
ness of our findings.

Stylized Biases and Simulated Data. Our sim-
ulation makes strong assumptions about annotator
behavior: there are only two types of annotators,
and, within each type, annotators behave similarly.
Real-world annotator biases may be more nuanced
or context-dependent. The simulated annotators
might not be representative of a stable opinion
group (Mokhberian et al., 2024; Vitsakis et al.,
2024). Future work could incorporate more re-
alistic biases and refine the proposed simulations
and statistical techniques.

Sampling Variability. We have created only one
version of the four datasets for each annotation
type and value of 3, each of which contains ran-
dom draws from the Bernoulli distribution. A more
traditional statistical approach would create mul-
tiple versions of the datasets and train models on
each one, to average over the sampling variability.
Though limited by computational constraints in this
work, future work could take on a more expansive
simulation. As discussed, we used five seeds in
model training.

Need for Population Benchmarks and Annota-
tor Characteristics. PAIR requires high quality

>Collection and release of annotator characteristics or
weights derived from them may raise confidentiality concerns.
The survey literature offers advice for sharing sensitive data
(see Karr, 2016, for a review). Collecting annotator charac-
teristics may also require involvement of Institutional Review
Boards or other participant protection organizations (Kaushik
etal., 2024).

benchmark information about the relevant popula-
tion. These benchmarks might come from national
statistical offices or national surveys. Annotators
must provide accurate data on the same characteris-
tics available in the benchmark data. Unfortunately,
annotators sometimes do not provide accurate infor-
mation (Chandler and Paolacci, 2017; Huang et al.,
2023). In addition, theory demonstrates that bias
will be reduced only when the characteristics used
in weighting correlate with the annotations (Eck-
man et al., 2024). In our simulation, differences in
annotations were driven solely by group member-
ship (A, B). In the real world, it is challenging to
know what characteristics impact annotation behav-
ior for a given task and to find good benchmarks
for those characteristics.

Generalization Beyond Task Types. The study
focuses only on binary classification tasks. Many
real-world annotation tasks involve multiple classes
or labels, which may show different bias patterns.
Additional research is needed to extend these meth-
ods to more complex classification scenarios.

Evaluation Metrics. While we measured calibra-
tion and accuracy, we did not examine other impor-
tant metrics such as fairness across subgroups or
robustness to adversarial examples. Future work
on training data adjustment should assess a broader
range of performance measures.

8 [Ethical Considerations

In this simulation study, we experiment on a pub-
licly available dataset collected in our previous
study (Kern et al., 2023), which contains offen-
sive and hateful tweets. We do not support the
views expressed in these tweets. The simulation
study itself does not collect any new data or raise
any ethical considerations.
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Abstract

The task of perspective-aware classification in-
troduces a bottleneck in terms of parametric
efficiency that did not get enough recognition
in existing studies. In this article, we aim to
address this issue by applying an existing ar-
chitecture, the hypernetwork+adapters com-
bination, to perspectivist classification. Ulti-
mately, we arrive at a solution that can compete
with specialized models in adopting user per-
spectives on hate speech and toxicity detection,
while also making use of considerably fewer pa-
rameters. Our solution is architecture-agnostic
and can be applied to a wide range of base
models out of the box.

1 Introduction

In the recent years, perspective-aware approach to
subjective linguistic tasks has been gaining promi-
nence in NLP. This approach suggests that for tasks
that involve subjectivity, dataset designers should
collect multiple labels from different annotators for
each data instance; these labels need to be retained
and used in model training (Plank, 2022; Cabitza
et al., 2023; Fleisig et al., 2024). This policy is war-
ranted in tasks like hate speech detection, where
multiple labels assigned by annotators with diverse
backgrounds can be equally applicable. This no-
tion contrasts the popular practice of designating a
single supposedly correct label for each bit of data
while discarding conflicting annotator judgments.
Likewise, NLP researchers have argued that sub-
jective tasks require perspective-aware machine
learning methods, i.e., methods that can capture
diverse opinions based on unaggregated labels
(Akhtar et al., 2021). We are particularly interested
in the paradigm of strong perspectivism (Cabitza
et al., 2023). The latter suggests that much like
model personalization, separate models or repre-
sentations should be trained on labels produced
by individual annotators. In practice, this entails
one of the following: (1) training a full language
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model checkpoint on each annotator’s labels; (2)
when using PEFT methods (Houlsby et al., 2019),
training a separate adaptation component for each
perspective; (3) using a specialized language model
architecture.! We argue that both the first and the
second strategy require a prohibitive amount of
trainable parameters that increases with model size
and number of modeling targets (see discussion in
Section 6). To tackle this problem, we make use
of an architecture that employs a small trainable
module and adapts a model to diverse perspectives
while keeping most parameters frozen.

The core of our solution is the
hypernetwork+adapters combination. A
hypernetwork is a neural architecture in which
a source neural network is trained to predict the
weights of a target network; these weights are
subsequently used in inference (Ha et al., 2017).
Importantly, hypernetworks can also be used
to predict weights of adapters, including LoRA
adapters (Houlsby et al., 2019; Hu et al., 2022),
rather than weights of entire models. Adapters can
be defined as small trainable modules designed
for parameter-efficient tuning of NLP models
including large language models; compatibility
with adapters makes hypernetworks suitable for
the same task (Karimi Mahabadi et al., 2021; He
et al., 2022; Phang et al., 2023). We provide more
details on this architecture in Section 3. The novel
aspect of our work is that we attempt to repurpose
the hypernetwork+adapters combination for
perspectivist modeling and, by extension, model
personalization. We posit its strengths, i.e., the
reduction of trainable parameters, as a way to
address the mentioned bottleneck issue. To our
knowledge, this direction has not been thoroughly
explored in previous studies.

Our article makes the following con-

"Here, we do not consider few-shot and zero-shot learning,
as they do not fall under the training category.

Proceedings of the The 4th Workshop on Perspectivist Approaches to NLP (NLPerspectivists 2025), pages 111-122
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tributions. First, we consider whether
hypernetwork+adapters setting is generally
applicable to annotator-aware text classification.
Our results suggest that hypernetworks are well fit
for this task, albeit not unconditionally.

Second, in our experiments,2 we show that our
hypernetwork-based architecture performs on par
with recent perspectivist model architectures —
particularly, Annotator-Aware Representations for
Texts (Mokhberian et al., 2024), and Annotator Em-
beddings (Deng et al., 2023). At the same time, we
note the limitations of the proposed architecture
and attempt to address them.

Third, we demonstrate that the proposed archi-
tecture offers a better trade-off in terms of param-
eter efficiency than the baseline models. At the
same time, it also demonstrates a greater degree
of versatility: since the weights of the base model
are not being affected, there is no risk of forgetting
(Kirkpatrick et al., 2017) or degradation of the base
model’s fundamental capabilities. These properties
of our method make us believe that it has promise
in modeling subjective tasks.

2 Related work

Data perspectivism: the idea of preserving plu-
ralistic annotations in datasets has been discussed
for a considerable time (Artstein and Poesio, 2008)
and has been gaining increasing prominence across
various Al domains (Kumar et al., 2021; Kapa-
nia et al., 2023; Huang et al., 2023). Frenda et al.
(2024) provides a detailed survey of such perspec-
tivist datasets and methods, reflecting a paradigm
shift towards treating annotator disagreement not
as noise but as a source of valuable signal about
human variation.

Perspectivist learning: modeling human varia-
tion in labeling based on annotator perspectives
has been advocated in several recent studies (Plank,
2022; Cabitza et al., 2023). In terms of model-
ing techniques, various recipes have been explored,
including trainable crowd layers (Rodrigues and
Pereira, 2018); trainable tokens (Sarumi et al.,
2024); multi-task classification with annotator-
specific heads (Davani et al., 2022), and others.
Recently, studies have focused on active learning
(Baumler et al., 2023; Wang and Plank, 2023) and
few-shot perspective modeling (Golazizian et al.,

2Qur codebase has been made publicly accessible at
https://github.com/ruthenian8/Hypernets

2024; Sorensen et al., 2025) as two ways to deal
with data sparsity.

Strong perspectivism brings together perspec-
tivist learning and model personalization, which is
why recent methods from the latter domain are also
relevant to our research. In particular, studies by
Tan et al. (2024) and Clarke et al. (2024) show that
adapters and LoRA adapters can rival full model
finetuning on the LLM personalization task, even
when the number of trainable parameters is reduced
to a fraction of the original model size.

Finally, in our study, we are particularly inter-
ested in recent works that optimize encoder-based
classifiers against pluralistic labels and make use of
annotator embeddings (Deng et al., 2023; Mokhbe-
rian et al., 2024). In this work, we consider both of
these as our baselines.

Hypernetworks: The idea of hypernetworks has
its roots in an earlier concept of weight genera-
tors (Gomez and Schmidhuber, 2005) and aims to
constrain the search space when modeling com-
plex objectives through searching in the limited
weight space. Practically, this means generating
the weights of a target model by means of a sepa-
rate generator model (hypernetwork).

The title paper, published in 2017 (Ha et al.,
2017), had two additional objectives: reduction
of trainable parameters (1) and regularized train-
ing (2). The study proposed an implementation
of two network types: a CNN network generating
weights for another CNN network and an RNN net-
work producing weights for a target RNN. Their
results showed that the system achieves competi-
tive performance and reduces the trainable param-
eter count, effectively fulfilling its purpose. The
authors’ assumptions were further scrutinized in
follow-up works. As an example, a study by Soy-
daner (2020) applied hypernetworks to convolu-
tional autoencoder models and showed that the
weights of an autoencoder can be closely approxi-
mated by a much smaller hypernetwork, resulting
in significant reduction of trainable parameters.

Moreover, the ML community recognized early
the potential of hypernetworks in multitask learn-
ing. For instance, a study by Tay et al. (2021)
adapts a transformer model to a multitude of tasks
by predicting task-specific weights for the model’s
feed-forward layer using a hypernetwork. This
adaptation strategy is of particular interest to us
due to Davani et al. (2022)’s success in learning
perspectives through multi-task classification.
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Figure 1: Data flow within our hypernetwork implemen-
tation: the annotator id and the layer id are embedded
to adapt the target layer /; in the base model.

The above architectures leveraged hypernet-
works to predict the model’s own weights. How-
ever, the parameter-efficient finetuning paradigm
brought about an alternative approach, which is
to infer the weights of small trainable submodules
while leaving the weights of the main model intact.
Adapters are a specific instance of these submod-
ules (Houlsby et al., 2019); modeling them with
hypernetworks has led to impactful results in sev-
eral machine learning applications. Specifically, in
image generation, hypernetworks have been used
to personalize diffusion models achieving a consid-
erable speed-up compared to other methods (Ruiz
et al., 2023). In a different vein, in speech recog-
nition, Miiller-Eberstein et al. (2024) employed
hypernetworks to adapt ASR models to individual
speakers with atypical speech patterns. Their hyper-
network obtains a 75% relative reduction in word
error rate using only 0.1% of the model parameters.

In NLP, hypernetworks have been utilized for
multi-task and multilingual adaptation of larger
transformer models, such as T5 (Raffel et al., 2020).
Ustiin et al. (2022) propose a single hypernetwork
that produces adapter weights for multiple lan-
guages and tasks simultaneously, eliminating the
need for separate language-specific task adapters.
Karimi Mahabadi et al. (2021) and Phang et al.
(2023) leverage a shared hypernetwork to effec-
tively train adapter modules for a range of NLP
tasks. Finally, in 2025, Charakorn et al. (2025) used
hypernetworks to generate task-sepecific LoRA pa-
rameters for LLMs on the fly given a textual task de-
scription, thus enabling zero-shot adaptation; their
results show that hypernetworks are combinable
with LLMs, while their approach may also be re-
purposed for user personalization in the future.

3 Method

3.1 Architecture

The proposed architecture aims to tune a base
model to each annotator’s perspective; it imple-
ments an adapter-modelling hypernetwork in a
fashion similar to Phang et al. 2023 and Miiller-
Eberstein et al. 2024, as it specifically makes use of
low-rank adapters (Hu et al., 2022). Generally, all
adapter variations enable parameter-efficient fine-
tuning of large models by freezing and patching
the base model’s pre-trained weights W within a
layer [; with a smaller trainable layer Ada,;. Low-
rank adapters, in particular, take this reduction of
updatable parameters one step further by decom-
posing Ada; into two low-rank matrices, A; and
Bj; ultimately, they decrease the parameter count
even more with little performance impact. This
principle can thus be illustrated with the following
formula:

W, =W; + BjA; (1)

where A; and B; are low-rank trainable matrices.
We find this type of adapters preferable for use
in combination with hypernetworks, as it narrows
down the solution space for the hypernetwork com-
ponent.

In our implementation, when modeling the per-
spective Ann;, we use the hypernetwork H to pre-
dict A;; and B;; for every layer /;. Hence, we need
to condition our hypernetwork on two relevant vari-
ables: information on the target annotator Ann;
and on the target layer ;.

Aija Bij = H(A?’an, lj) (2)

For demonstration purposes, we only consider
unique annotator IDs as annotator information.
However, other relevant variables can also be
straightforwardly integrated. We leave it to further
research to determine whether using more complex
representations based on sociodemographic vari-
ables or prior annotations shows better efficiency.

Likewise, target layer information is supplied
through numeric layer identifiers. In the hyper-
network module, both types of identifiers are em-
bedded, concatenated, and jointly passed to two
prediction heads (Lin 4, Linpg), which then infer
the matrices A and B; this flow is illustrated in
Figure 1.
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We add the hypernetwork component on top of
PEFT’s architecture-agnostic LoORA implementa-
tion (Mangrulkar et al., 2022) with the aim of mak-
ing our method compatible with a wide range of
base models. To mitigate possible generalization
issues, we use GeLU activation (Hendrycks and
Gimpel, 2016) and dropout probability of 0.25 in
the hypernetwork module. We also follow the sug-
gestion of Miiller-Eberstein et al. 2024 by initializ-
ing Linp with zeros and Lin 4 with values close to
zero, ensuring smooth updates at the initial stages
of training.

3.2 Data

In this study, we purposefully pick 4 datasets that
permit us to compare our architecture against ex-
isting algorithms for perspectivist learning. Two
of these datasets, HS-Brexit and MD-Agreement,
were included in the shared task on Learning With
Disagreements (LeWiDi, Leonardelli et al. 2023).
This section gives an overview of all data we used.

The Multi-Domain Agreement dataset (Dypy):
This dataset by Leonardelli et al. (2021) addresses
the task of offensive language detection. MD-
Agreement comprises 9,814 English tweets from
three distinct domains: the Black Lives Matter
movement, the 2020 Election, and the COVID-19
pandemic. Each tweet was annotated by at least
5 Mechanical Turk workers out of a total pool of
334.

English Perspectivist Irony Corpus (Dgpic):
Introduced by Frenda et al. (2023), the corpus con-
sists of 3,000 Post-Reply pairs collected from Twit-
ter and Reddit. The data was sourced from five
English-speaking countries: Australia, India, Ire-
land, the United Kingdom, and the United States.
A total of 74 annotators, balanced by gender and
nationality, participated in the annotation task, with
around 15 raters per nationality. Each annotator
labeled approximately 200 instances, resulting in a
corpus with 14,172 annotations and a median of 5
annotations per instance.

The Racial Bias Toxicity Detection Corpus
(Drp): Sap et al. (2019) investigated the inter-
action between annotators’ biases and their per-
ceptions of toxicity reaching positive conclusions.
The authors recruited 819 Amazon Mechanical
Turk workers to annotate tweets for two variables:
whether a tweet was (a) personally offensive to
them and (b) potentially offensive to others. As in

Mokhberian et al. 2024, our experiments focus on

(a).

Hate Speech Brexit (Dys.prexit): Akhtar et al.
(2021) had 6 experiment participants label the same
set of 1120 tweets related to Brexit. Each tweet
was annotated for several categories including Hate
Speech, Aggressiveness, Offensiveness, and Stereo-
type. In our study, we focus on Hate Speech anno-
tations.

Dataset Train  Dev Test #A  #EMHA
Dmipa 27k 13k 13k 334 160

Depic 71k 3.5k 3.5k 74 191
Drs 6.1k 2.7k 2.8k 819 14
DusBrexic | 3.3k 1.6k 1.6k 6 1120

Table 1: Post-split statistics of datasets used in the ex-
periments. #A stands for the number of workers; #E/#A
denotes the mean number of annotated items per worker.

For our experiments, we reproduce the dataset
splitting procedure from Mokhberian et al. 2024.
Specifically, we split the data into partitions of 50,
25, and 25% (train, dev, and test sets respectively)
stratified with respect to item-level disagreements.
Items from the dev and test sets annotated by an
annotator not present in the training set are merged
into the training data. This splitting procedure is
repeated using 10 different random seeds. We re-
port the post-preprocessing statistics for the four
datasets in Table 1.

4 Experiments

4.1 Baselines

We test our architecture against approaches intro-
duced in Deng et al. 2023 (AE) and Mokhberian
et al. 2024 (AART). Both of these build on generic
transformer models and handle diverse perspectives
by integrating them directly into the architecture.
To that end, they make use of specialized annotator
representations.

AART: The AART architecture combines text
embeddings from pretrained transformer models
with learned annotator embeddings. Formally,
given a text item x; and annotator a;, the combined
embedding is computed as:

9(wi, a;) = e(x;) + f(ay)

where e(x;) is the text embedding, and f(a;)
is a learned annotator-specific embedding. This
combined embedding is then fed into a common
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classification head. The model employs a multi-
part loss function consisting of cross-entropy loss,
L2 regularization on annotator embeddings, and a
contrastive loss designed to cluster similar annota-
tor perspectives. We compare our results against
AART on DMDA7 DEPIC, and DRB-

Annotator Embeddings (AE): This approach
explicitly captures annotator-specific biases and an-
notation tendencies using two types of embeddings:
annotator embeddings (F,) and annotation embed-
dings (E;,). These embeddings are combined with
the original text embeddings via weighted summa-
tion:

Ecombined = ElcLs) + anky + agEy

where «,, and o, are learnable weights com-
puted based on the interaction between the sentence
embedding and annotator-specific embeddings.
The resulting embedding is fed into transformer-
based classification models, enhancing their ability
to predict annotator-specific labels by explicitly
modeling annotator idiosyncrasies. We compare
the performance of our model against AE on Dypa
and Dys.prexit-

Single-task baseline: Both AART and AE com-
pare their systems against a single-task baseline
model. This baseline is a transformer classifier
trained on majority-aggregated labels that predicts
one label per text and effectively ignores annotator-
specific nuances. This baseline mostly serves as
a sanity check to evaluate the effectiveness of per-
spectivist modeling under the assumption that spe-
cialized architectures should handle label diversity
at least somewhat better than a non-specialized
model. However, on data items where most anno-
tators agree with the majority label (e.g., 7 raters
out of 10), it can show better results than a per-
spectivist model due to a much narrower problem
space. Such data items constitute a large part of the
existing perspectivist datasets, and, as a result of
that, specialized models do not always surpass this
baseline.

4.2 Setup

In all experiments, we use RoBERTa-base (Liu
et al., 2019) as our base model to maintain consis-
tency with the baseline methods, as both studies
include reported results for RoOBERTa-base among
other models. As a part of our solution, all lay-
ers except the hypernetwork get explicitly frozen.

We model LoRA adapters with a rank of 2 and
a = 32, keeping adapter dimensionality to a mini-
mum. Although increasing the number of trainable
parameters is likely to lead to better results, we
explore the lower performance boundary of our
method that also offers the best efficiency tradeoff.

We train the hypernetwork for 5 epochs with a
batch size of 100 at a learning rate of 1e—5 making
use of Adam optimizer (Kingma and Ba, 2014).
We set max. sequence length to 100. For each
dataset, we repeat the experiment 10 times with
varying random seeds. To implement our method,
we use abstractions from PEFT (Mangrulkar et al.,
2022) and Transformers (Wolf et al., 2020).

We obtained the above hyperparameter values
by running a grid search with varying dropout prob-
abilities (0.0, 0.1, 0.25) and learning rates (5e—>5,
le—>5, be—6) using Dgpic’s development set as a
reference. Our conclusion is that unlike the base-
line solutions without PEFT methods, our archi-
tecture shows greater sensitivity to learning rate
and dropout probability. In particular, when using
low dropout (0 or 0.1) or a higher learning rate
(be—>5), the model often converges prematurely at
a suboptimal point. This yields micro-fl values
of ~ 50.0 suggesting that the model only learns
the majority label due to label imbalance; in con-
trast, when using our ultimate parameter values
(dropout= 0.25, Ir= le—>5), training proceeds with
gradual parameter updates and leads to better gen-
eralization (= 68.5). This result demonstrates that
careful hyperparameter tuning is necessary for our
approach.

4.3 Evaluation

Since AART and AE were assessed with two dif-
ferent metric suites, we preserve the original evalu-
ation protocols to allow direct comparison with the
published figures. In addition, we track the total
number of trainable parameters for each model as
described below.

Annotator-level F1 This metric measures the
ability of a model to treat every annotator fairly, re-
gardless of how many labels they contributed. For
each annotator a;, we compute the macro-F1 score
over all items z; in the test split by comparing the
gold label y;; to the model’s prediction ;;. The
Annotator-level F1 is then the simple mean of these
per-annotator F1 scores. Mokhberian et al. 2024
argue that it prevents evaluation biases towards pro-
lific annotators.
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Global-level F1 To measure overall predictive
quality, we pool all (z;, a;) pairs in the test set and
compute macro-F1 on this combined set. Unlike
the annotator-level metric, this score weighs each
prediction equally and inadvertently prioritizes an-
notators who contributed more labels.

Item-level Disagreement Correlation We quan-
tify how well a model reproduces the true pattern
of annotator disagreement on each item. For an
item x; with annotator votes {y;1, ..., ¥k}, the
gold disagreement is

B maxcl{j DY = c}‘
K )
and the model-predicted disagreement d; is com-
puted analogously from {g;;}. We then report the
Pearson correlation Corr({d;}, {d;}), as in AART.

di =

Baseline-specific Metrics AART uses exactly
the three metrics above: annotator-level F1, global-
level F1, and item-level disagreement correlation.
We thus report all three for direct apples-to-apples
comparison. AE instead evaluates each annotator’s
labels by computing (i) global accuracy over all
(xi,a;) pairs and (ii) global-level F1 as defined
above. Because AE does not release per-annotator
predictions, we we are unable to use the annotator-
level metrics for that baseline.

Trainable Parameters Lastly, we report the ap-
proximate number of trainable parameters for each
model (our hypernetwork+adapters, AART, and
AE). For AART and AE, we calculate these num-
bers based on their public source code, while for
our method we report the number directly. Ana-
lyzing parameter counts helps us inquire into the
parameter efficiency of each solution and assess
how well each architecture can scale to the grow-
ing number of annotators to model and growing
embedding space.

5 Results

In our experiments, the proposed hypernetwork-
based architecture demonstrates generally strong
performance across all datasets when compared to
both AART and AE baselines, while using substan-
tially fewer trainable parameters. Tables 2 and 3
report the mean and standard deviation over ten
runs for each metric suite as defined in Section 4.3.

On the Dypa dataset, our model achieves an
annotator-level F1 of 70.24 4 0.9 and a global-
level F1 of 78.11 4 0.2, thus surpassing both the

Dataset | Single-task AART Ours
Annotator-level F1
Dwmpa 66.80 £ 0.7 69.72 £ 1.1 70.24 £ 0.9
Deprc 58.59+1.9 59.67 £0.9 53.16 £ 1.6
Drs 68.61 + 1.5 71.1+3.2 73.81 £+ 2.0
Global-level F1
Dmpa 71.99 £ 0.6 7738+ 04 78.11 £ 0.2
Depic 60.23+1.7 66.16 £1.4 65.11 £ 1.2
Drs 71.97+ 1.7 79.96 £1.9 76.17£1.8
Item-level Disagreement Correlations
Dmpa NA 0.37 +0.04 0.42 + 0.02
Depic NA 0.20 + 0.06 0.28 £+ 0.03
Drs NA 0.54 + 0.04 0.66 + 0.03
Trainable Parameters
- 124.3%10° ~124.9%10° =~ 5.6 10°

Table 2: This table shows the metrics of our model, av-
eraged over 10 runs, against RoOBERTa-based baselines
from Mokhberian et al. 2024 (cols 1, 2; values as re-
ported). Col. 2 features the configuration a > 0; see the
original paper for details. Along with average values,
we report the standard deviation. The highest values are
given in bold.

Dataset Single-task AE Ours
Global-level Accuracy

Dmpa 75.65 75.14 80.11 £ 0.2

Dhs-Brexit 86.77 87.03 86.49 £ 0.8

Global-level F1

Dwmpa 73.26 73.60 78.11 £ 0.2

DHs-Brexit 64.60 60.36 58.30 + 9.8
Trainable Parameters

- 124.3%10° =~ 125.5%10° =~ 5.6 10°

Table 3: This table shows the metrics of our model, av-
eraged over 10 runs, against RoOBERTa-based baselines
from Deng et al. 2023 (cols 1, 2; values as reported; std
not reported). Col. 2 features the configuration E,; see
the original paper for details. The highest values are
given in bold.

AART baseline (annotator F1 69.72 £ 1.1, global
F1 77.38 & 0.4) and the AE baseline (global accu-
racy 75.14, global F1 73.60). This result indicates
that our architecture is effective at capturing indi-
vidual annotator tendencies and producing coherent
overall predictions in this scenario.

For Dgp, our approach again outperforms AART
in annotator-level performance (73.81 & 2.0 vs.
71.10 % 3.2) and yields a competitive global-level
F1of 76.17£1.8 (AART: 79.96 £1.9), suggesting
that our hypernetwork is capable of modeling both
base and rare annotator behaviors even when the
dataset exhibits varied disagreement patterns.

Interestingly, on the more challenging Dgpjc
dataset, our model gives lower annotator-level F1
(53.16 £ 1.6) and global-level F1 (65.11 £ 1.2)
compared to AART’s 59.67 + 0.9 and 66.16 = 1.4,
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respectively. We believe this shortcoming stems
from the higher complexity of data in EPIC,? which
may require more specialized regularization strate-
gies; still, our model attains a higher item-level dis-
agreement correlation (0.28£0.03 vs. 0.20£0.06),
thus showing that these two perspectivist metrics
have a potential discrepancy.

On Dys_prexit> the comparison with AE yields a
global accuracy of 86.49 (AE: 87.03) and a global
F1 of 58.30 (AE: 60.36), which is only slightly
below the baseline. Given the dataset size, it trans-
lates into a difference of 8 misclassified instances.

Beyond model generalizability,
hypernetwork+adapters solution demon-
strates remarkably better parameter efficiency, as
it requires only ~ 5.6 * 10° trainable parameters
compared to =~ 124.9 % 10% for AART and
~ 125.5 % 10° for AE. This advantage is especially
important within the strong perspectivist paradigm,
where an ideal model should be able to scale up
to hundreds of perspectives and, at the same time,
take up a reasonable amount of memory and disk
space.

6 Discussion

Two potentially advantageous aspects of the
hypernetwork+adapters setting are (1) keeping
the base model’s weights intact and (2) adapting the
model to all targets by training just one component.
In what follows, we analyze why these aspects are
especially relevant perspectivist learning.

Preserving the base model’s original state could
be beneficial for two reasons. Concerning inher-
ently multi-purpose models, such as T5 (Raffel
et al., 2020), it means that the base model’s per-
formance on other tasks will not be affected. This
effect is especially important when dealing with
large language models: they are often used for a
wide range of tasks, and updating their weights can
lead to catastrophic forgetting (Kirkpatrick et al.,
2017) or degradation of their performance on pre-
viously learned tasks. For instance, if a model is
fine-tuned for a particular task like hate speech de-
tection, preserving the base model’s original state
ensures that its performance on other tasks remains
intact.

Moreover, when adapting a model that has al-

3For example, as per Casola et al. (2024), gpt-3.5-turbo
yields an F1 of 48.1 on EPIC in zero-shot settings; this differs
from its zero-shot performance on other language understand-
ing tasks, such as sentiment analysis or natural language infer-
ence (Fls of 91.13 and 67.87 respectively, Ye et al. (2023)).

ready been fine-tuned for some task irrespective of
perspectives, our method can preserve this origi-
nal, *perspective-neutral’ model. In a realistic set-
ting of personalized content moderation, this model
can be used as a fallback option. For example, if
some user’s view is not covered by the perspectivist
model, the original, perspective-neutral model can
be used to provide a fallback response.

Another benefit of modeling adapters and keep-
ing the main classifier frozen is the mitigation of
potential negative outcomes associated with per-
spectivist learning. In particular, when a RoOBERTa
model that is fully trainable is finetuned for per-
spectivist labels (as is the case in Deng et al. 2023
& Mokhberian et al. 2024), it is taught to associate
the same text with varying labels (one to many).
This can cause conflicting gradient steps leading
the model away from the optimum. Incorporating
annotator features through embeddings is intended
to resolve this issue by converting the task back
to a one-to-one association. However, it is unclear
whether these features receive sufficient weight in
the classifier to achieve that. In our framework,
there is no discrepancy between inputs and outputs,
as the only trainable component is the hypernet-
work, which learns a one-to-one correspondence
between annotators and their respective adapters.
This approach does not expose the base model’s
weights to controversial targets and thus avoids the
associated difficulties.

Dataset ‘ RoBERTa LoRA Ours
Trainable Parameters

Dpa 334 %125 % 10° 334 %6.6 % 10° 5.6 % 10°

Depic 7T4%125%10°  74%6.6%10°  5.4%10°

Drs 819 %125 % 10% 819 % 6.6 % 10° 5.9 % 10°

Drs-Brexic | 6 % 125 % 10° 6%6.6%10°  5.3%10°

Table 4: Overview of trainable parameter counts re-
quired for fine-tuning a ROBERTa model to each per-
spective using all parameters, low-rank adaptation, and
our hypernetwork respectively (r = 2, = 32).

Using a hypernetwork to learn adapter weights
offers an additional advantage. Training a separate
LoRA-style adapter for each annotator is possible
but involves training a large number of parameters
that grows substantially with each added perspec-
tive. As shown in Table 4, the costs of adapting
RoBERTa-base to every perspective in our datasets
are substantial. In extreme cases, such as Drg with
819 annotators, the required parameters exceed not
only the hypernetwork’s but also ROBERTa’s to-
tal parameter count. This results in impractical
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memory and disk space requirements, rendering
the separate adapter approach infeasible.

In contrast, our method stands out as the more
cost-effective solution in all settings, except for
DHus-Brexits Which has an exceptionally small num-
ber of annotators*. Like other approaches that
make use of annotator embeddings, adding a new
annotator requires 1 X hdim parameters + rescaling
the model to a new embedding. Given the small
size of the hypernetwork, all of this sums up to
just 2 x hdim, allowing for very cheap scaling
to additional perspectives. This property makes it
especially attractive for perspectivist learning.

Conclusion

In this work, we have investigated a
hypernetwork+adapters architecture for
perspectivist learning on subjective classification
tasks. Our experiments show that, while this
model does not uniformly exceed the latest
perspective-aware baselines, it achieves superior
performance on several perspectivist datasets, most
notably Dypa and Dgp. It also obtains higher
item-level disagreement correlations even when
mean F1 is lower, as on Dgpc. Notably, our
approach requires only about 5.6 x 10° trainable
parameters, about 4.5% with respect to over
124 x 100 in the competing methods; thus, it offers
a considerable advantage in parameter efficiency.

Taken together, these findings suggest that the
hypernetwork+adapters design is a promising
solution within the strong perspectivist paradigm,
even if further work is needed to let it scale equally
well to all available tasks and datasets.

Limitations

One important limitation of the proposed hypernet-
work architecture is that it takes more time for in-
ference, as it follows a two-stage procedure where
it first separately predicts the LoRA weights of
each adapted layer and then applies these during
classification. This flow leads to both training and
evaluation taking longer than in the case of reg-
ular classifier models (= 0.25 iterations/sec. Vvs.
4 iterations/sec.). We argue, however, that this
shortcoming does not outweigh the advantage in

*In order to verify that separately-trained LoRA adapters
do not significantly outperform our model, we conduct an
experiment on Dys.prexit. We report the outcomes in Table 5;
they suggest that training separate adapters does not surpass
our approach.

parameter efficiency. The decreased memory con-
sumption allows for more parallel training jobs to
be scheduled simultaneously, thus compensating
for lower throughput.

A further possible limitation is that we only use
annotator IDs as annotator features. This strategy
does not permit our system to scale to new perspec-
tives if we need to make predictions for an unseen
annotator. We see two ways to address this limita-
tion. First, in this paper, we do not inquire into how
well hypernetworks work with sociodemographic
features. However, they can still be trivially inte-
grated, possibly mitigating this issue. A further
way to tackle this problem could consist in find-
ing an annotator in the existing annotator pool that
is most similar to the unseen one and assuming
their perspective. Similarity of annotators could
be approximated from the said sociodemographic
features.

Finally, we acknowledge that our evaluation of
the proposed architecture is not exhaustive, and we
could overlook some shortcomings of our model.
However, we find it sufficient to judge how well it
compares to the competitor models. Additionally,
we hope to scrutinize it more when more perspec-
tivist models and datasets are released.
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A Separate LoRA training.

Dataset ‘Baseline LoRA Ours

Global-level Accuracy
Dhs-Brexic | 86.77 77.50 86.49
Global-level F1
Dhs-rexit | 64.60 53.02  58.30

Table 5: This table reports the metrics of our model
against the performance of 6 separate LoRA adapters
(one per each annotator perspective) on HS-Brexit. The
training parameters for the adapters copied those of
the main experiment, the exception being an increased

learning rate (5e—>5) and an increased epoch count (10).

We report the mean results per 10 runs.
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Abstract

Recent advances in large language models have
enabled impressive task-oriented applications,
yet building emotionally intelligent chatbots for
natural, strategic conversations remains chal-
lenging. Current approaches often assume a
single “ground truth” for emotional responses,
overlooking the subjectivity of human emo-
tion. We present a novel perspectivist approach,
SAGE, that models multiple perspectives in di-
alogue generation using latent variables. At its
core is the State-Action Chain (SAC), which
augments standard fine-tuning with latent vari-
ables capturing diverse emotional states and
conversational strategies between turns, in a
future-looking manner. During inference, these
variables are generated before each response,
enabling multi-perspective control while pre-
serving natural interactions. We also intro-
duce a self-improvement pipeline combining
dialogue tree search, LLM-based reward mod-
eling, and targeted fine-tuning to optimize con-
versational trajectories. Experiments show im-
proved LLM-based judgments while maintain-
ing strong general LLM performance. The
discrete latent variables further enable search-
based strategies and open avenues for state-
level reinforcement learning in dialogue sys-
tems, where learning can occur at the state level
rather than the token level.

1 Introduction

Recent advances in large language models (LLMs)
have shown impressive capabilities in task-oriented
applications like question-answering, mathematics,
and coding (Xu et al., 2024; Liu et al., 2024; Hou
et al., 2024). However, effective human-Al interac-
tion requires not just problem-solving abilities but
also emotional intelligence and interpersonal skills.
This has led to emotion-based chatbots like Char-
acter Al (Character Al, 2023) and Pi (PI, 2023),
which focus on emotional connection and engage-
ment. These models are designed to understand

emotions, provide empathy, and build trust through
natural conversations, finding applications in edu-
cation, healthcare, counseling, and gaming (Beale
and Creed, 2009; Reilly et al., 1996).

Building effective emotional chatbots presents
unique challenges that highlight the limitations of
traditional single-perspective approaches in NLP.
Unlike task-oriented interactions, emotional con-
versations require strategic navigation without
clear objectives and involve inherent subjectiv-
ity—what constitutes an appropriate emotional re-
sponse varies significantly across individuals, cul-
tures, and contexts. This subjectivity represents a
fundamental challenge that aligns with the grow-
ing recognition of Human Label Variation (HLV)
in NLP tasks (Plank, 2022). Current approaches
often aggregate diverse human perspectives into a
single "ground truth," potentially overlooking the
richness and validity of multiple viewpoints.

The challenges in emotional dialogue systems
manifest in two key areas: (1) chatbots need to steer
conversations strategically by planning ahead—an
Al therapist must balance various conversational
moves to build trust and facilitate disclosure, while
an Al negotiator needs to integrate multiple tech-
niques to achieve desired outcomes. (2) The chat-
bot should be proactive and interactive by asking
clarifying questions and providing customized in-
formation based on real-time feedback. A career
counselor might probe into a client’s experiences to
offer personalized guidance, while a fitness coach
might assess energy levels to adjust workout recom-
mendations. These capabilities require modeling
multiple valid perspectives rather than assuming a
single correct approach.

These capabilities require effective learning
mechanisms for handling sparse rewards across
multiple conversation turns. While RLHF (Ouyang
et al., 2022) and DeepSeek R1 (Guo et al., 2025)
have succeeded in complex reasoning tasks (Weng,
2023; Wang et al., 2023; Ahn et al., 2024; Wang
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System A: Mixtral 8x7B i+ \ Fine-tuned with SAC > System B: Our model

¥ : 1 can't believe what just happened! When | went to check the mail, my neighbor's
baby was riding my dog like horse!

@: Wow! How did your dog react to being used as a mode of transportation? And how is
the baby doing? They sure have quite an imagination!

% : My dog seemed surprised at first but then started wagging its tail and running around
the yard with the baby on its back.

@ That sounds absolutely delightful! hope that both the baby and your dog were safe
and enjoying themselves. Dogs can be such great companions for children, helping them
learn about responsibility, empathy, and building strong bonds. | can imagine the joy and
laughter that filled your yard during this unexpected yet heartwarming encounter. It's
wonderful that you got to witness such a precious moment between them!

.1 can‘t believe what just happened! When | went to check the mail, my
neighbor's baby was riding my dog like horse!

wr: {u_motivation: surprise, u_emotion: excited, ...} {a_motivation;
EUriosity, & emotion: playful [} Oh really?! That sounds hilarious! What did
you do when you saw them? Did your dog enjoy being ridden or not so much?

% : Haha, yes, it was quite funny indeed.
@ {u_motivation: humor, u_emotion: happy, ...} {a_motivation: joke,

B emotion: lighthearted, .} Lol! Maybe he thought he was at the petting zoo
:P Any other funny stories with your dog?

State Assessment Tokens Dialog Action Tokens

Judge LLM System B is the better social chatbot. Here’s why: @ Judge LLM
8 * Colloquial Tone: Assistant B uses a playful and conversational tone, making it feel more human and natural. PR 8
ancing engagement and relatability. '

¢ Humor: Assistant B incorporates humor and lightheartedness, enh

* Engagement: Assistant B asks follow-up questions and invites the user to share more stories, encouraging further interaction.
* Brevity: Assistant B is concise and avoids being overly verbose, keeping the conversation lively and enjoyable.

Figure 1: We propose to augment a base-LLM via State-Action Chain (SAC) to provide more control in a multiturn
social-oriented dialogue scenario. During inference time, the resulting model first generates additional State
Assessment Tokens and Dialog Action Tokens before generating the actual response.

et al., 2024a,b), operating directly on the huge to-
ken action space with long horizon remains chal-
lenging. Previous work (Chai et al., 2024) has
shown that using macro actions improves credit
assignment and learning efficiency.

We propose SAGE (State Augmented
GEneration) that adopts a perspectivist approach
to language model fine-tuning by introducing
meaningful latent variables that capture multi-
ple perspectives in longer-term conversational
information. These model-generated variables
help balance short- and long-term predictions by
explicitly representing diverse dialogue states and
actions that encode strategic information beyond
immediate token-level generation. By learning to
predict these high-level variables first, the model
can make more informed decisions about utterance
generation that consider both immediate context
and long-term conversational goals from multiple
valid perspectives.

We introduce the State-Action Chain (SAC),
which extends chain-of-thought approaches to cap-
ture dialogue states’ evolution while embracing
perspectivist principles. As shown in Figure 1,
SAC maintains abstract representations of emo-
tional states and conversational dynamics, enabling
coarse-grained control while maintaining natural in-
teraction. This approach separates high-level plan-
ning from language generation, making it suitable
for reinforcement learning at the state level rather
than token level. SAC is a future-looking annota-
tion strategy, where state and action labels are gen-
erated by considering the complete dialogue con-
text rather than individual utterances in isolation,
enabling the model to develop strategic thinking

capabilities that can accommodate multiple valid
perspectives.

We developed a self-improvement pipeline com-
bining data augmentation, evaluation, tree search,
and fine-tuning techniques. This pipeline explores
alternative conversational paths, uses rejection sam-
pling based on LLM-derived rewards, and retrains
using the most effective trajectories. Our results
show improved performance while maintaining ca-
pabilities on standard benchmarks. We will release
our dataset and model checkpoints .

2 Related Work

Decision Transformer The Decision Transformer
(DT) (Chen et al., 2021) leverages a transformer
architecture to model trajectory data as a sequence
of states, actions, and rewards, effectively casting
decision-making problems as supervised learning
tasks. Recent works have applied DT to diverse
applications including gaming (Chen et al., 2021),
robotics (Janner et al., 2021) and chip design (Lai
et al., 2023). In emotional chatbot contexts, DT’s
ability to model long-term dependencies could
be pivotal for balancing immediate conversational
moves with long-term goals like trust-building and
engagement. Our work takes the initial step by
augmenting utterances with states and actions.
Latent Variable Approaches in Dialogue Gen-
eration Several works have explored the use of
latent variables to enhance dialogue generation.
Serban et al. (2019) introduced a hierarchical la-
tent variable model that captures discourse-level
structure in conversations, while Bao et al. (2020)
proposed a dialogue generation model with dis-

!Code and checkpoints are available upon publication
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crete latent variables to model conversation flow
and speaker intentions. Our SAC approach dif-
fers by focusing specifically on emotional states
and conversational strategies, with a future-looking
annotation process that considers the complete dia-
logue context for more accurate state assessment.

Chain-of-Thought Chain-of-thought (CoT)
(Wei et al., 2022) has demonstrated remarkable
effectiveness in tasks requiring logical and math-
ematical reasoning. Snell et al. (2024) shows that
test-time compute scaling can be more efficient
and effective than scaling the model parameters.
Following this paradigm, our work incorporates
CoT-style reasoning into emotional chatbot inter-
actions by decomposing dialogue generation into a
high-level, abstract planning stage that represents
the evolution of dialogue states and emotional dy-
namics, and a language realization stage.

Proactive Dialog Systems Proactive dialog sys-
tems anticipate user needs and guide conversa-
tions toward desired outcomes using hierarchi-
cal structures and reinforcement learning. Exam-
ples include mixed-initiative systems for problem-
solving and models for strategic customer inter-
actions (Mehri and Eskenazi, 2020). Hong et al.
(2023) used synthetic colloquial data and offline
RL to improve LLMs in goal-oriented dialogues. In
emotion-based chatbots, our approach aligns with
the need for high-level guidance, where the system
predicts emotional states and motivations to sustain
meaningful conversations.

State Augmentation for Task-Oriented Dia-
logue Task-oriented dialogue systems tradition-
ally rely on modularized stages of language un-
derstanding, state-tracking, dialog policy learning
and utterance generation. However, advances in
neural architectures have enabled more flexible
and robust task completion by leveraging contex-
tual embeddings and pre-trained language models
(Budzianowski et al., 2018). SOLOIST (Peng et al.,
2021) consolidates modular task-oriented dialogue
pipelines into a single transformer-based model
with state augmentation. Our work also integrates
high-level dialogue guidance but additionally incor-
porates reasoning mechanisms for dialogue actions
in emotional chatbots. In contrast to task-oriented
systems which search from a finite number of possi-
ble states, emotional chatbots focus on open-ended
interactions with unbounded state spaces.

3 State Augmented Generation

3.1 Raw Data Preparation

We use our in-house conversational dataset ex-
tracted from Reddit spanning the years 2005 to
2017, following the recipe from DialoGPT (Zhang,
2019). We applied aggressive filtering by select-
ing only conversations with more than four turns
and where the average length of each utterance
exceeds 15 words. To filter out inappropriate lan-
guage and tune up the sentiment in the resulting
models, sentiment analysis was performed on each
utterance using the SENTIMENTINTENSITYANA-
LYZER from NLTK (Bird and Loper, 2004), and
we retained only the dialogues where all utterances
had a sentiment score above 0.4. Additionally, we
filtered the dataset to include only dialogues where
at least one utterance ends with a question mark,
aiming to encourage the trained model to generate
questions more frequently. These filtering steps
resulted in a total of 181,388 multi-turn training
instances.

3.2 State-Action Chain Augmentation

Instead of relying on the model to generate an utter-
ance through next token prediction alone, we want
the model to acquire the following capabilities:

* State tracking: Estimate the current dialogue

history’s state.

* Policy Learning: Learn a dialog policy to

predict the action based on the current state.

* Utterance Generation: Generate an utter-

ance to execute the predicted action.

This approach is comparable to conventional
task-oriented chatbot systems that perform goal-
oriented tasks like restaurant booking, which em-
ploy distinct modules for dialogue state tracking
(DST), policy learning, and natural language gen-
eration (NLG).

Our goal is to construct an end-to-end data-
driven solution for a social chatbot, leveraging the
strengths of existing LLMs. Drawing inspiration
from the Decision Transformer (Chen et al., 2021)
and CoT (Wei et al., 2022), we augment the data
such that the state tracking and policy learning
processes are explicitly integrated into the stan-
dard autoregressive LM learning process. Conse-
quently, the model will produce a series of CoT-
style “Thinking” tokens, predicting the current state
and the action to be taken, as illustrated in Figure 2.

The raw dialogue data is first annotated using
an LLM (see Appendix B) with access to the com-
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plete dialogue context. Each dialog session is seen
as a back-and-forth message exchange between a
user and a dialog system, with the user starting
the conversation and the system responding next.
The extra annotation tokens in the user’s message
are called “State Assessment Tokens," while those
in the system’s message are labeled "Dialog Ac-
tion Tokens." The State Assessment token is then
moved to the start of the system’s message to com-
plete the SAC augmentation. When fine-tuning
the model, the loss is exclusively on the system’s
message, requiring the model to predict the state
(State Assessment Token) based on the previous
user utterance, followed by predicting the action
(Dialog Action Token) for the current system’s turn
before finally generating the system’s response.

A key insight of our approach is the future-
looking nature of the SAC annotation process.
Unlike traditional annotation methods that label
each utterance in isolation, our annotation strategy
takes into account the entire dialogue context to
disambiguate intent and motivation. When annotat-
ing the motivation for a current utterance, looking
at that single utterance alone might not provide
sufficient clarity about the speaker’s underlying
intent. However, by examining the complete dia-
logue trajectory from the current point to the end,
the annotator model can better understand the con-
sequences and utility of each conversational move,
leading to higher quality and more accurate state-
action annotations.

This future-aware annotation strategy provides
several key benefits. First, it helps disambiguate
ambiguous utterances by considering their conse-
quences in the broader conversation context. Sec-
ond, it enables the model to learn strategic thinking
patterns, similar to how a Q-function learns to as-
sociate state-action pairs with their expected future
value. Third, it can potentially allow for more ef-
fective reinforcement learning by providing clearer
signals about the long-term utility of different con-
versational strategies.

The advantages of this approach are twofold.
First, it enables fine-grained control—the abstract
nature of state and action tokens facilitates direct
manipulation, allowing reinforcement learning to
adjust only a few action tokens rather than the en-
tire model generation. This refinement can signif-
icantly enhance the efficacy of long-horizon RL
training. Secondly, it enables additional planning
and reasoning for generation, akin to CoT (Wei
etal., 2022).

As shown in Figure 2, we initially use an LLM
(Mixtral 8x7B) (Jiang et al., 2024) to annotate the
dialog state by attaching relevant states (e.g., mo-
tivation, emotion) to the beginning of each dialog
utterance. The annotation process is future-aware,
meaning the annotator model has access to the com-
plete dialogue context when labeling each utter-
ance. This allows for more accurate state assess-
ment by considering how each conversational move
contributes to the overall dialogue trajectory and
desired outcomes. Subsequently, the states from
the odd user utterance are amalgamated with those
from the even assistant utterance to create assistant
responses containing three parts: user state, assis-
tant state, assistant utterance. During generation,
the model generates these three parts in sequence,
mirroring the state prediction, action prediction,
and utterance generation process.

3.3 Finetuning for State Prediction

Using the data augmented with the State-Action
Chain annotations, we finetuned a model (SAGE;)
using a Mixtral 8x7B as the base model (SAGE).
The model underwent 5 epochs of finetuning. We
used LoRA (Hu et al., 2022) instead of dense-
training because it enabled the model to learn state
generation while preserving the capabilities of the
starting model.

To assess the effectiveness of SAC, we trained
a baseline model without SAC augmentation
using the same number of training iterations
and setup. This resulting model is denoted as
SAGE; (—SAC).

3.4 [Iterative Dialog Tree Search and
Refinement via Self-Play Rollout

Starting from the SAGE; model, we perform an
iterative search and refinement process based on
self-play to enhance its quality. We leverage seed
situational scenarios from the EmpatheticDialogs
dataset (Rashkin et al., 2019), which comprises
19,533/2,770/2,547 instances for training, dev, and
test sets respectively. Each instance contains a situ-
ational statement like “My friend got tickets to the
Superbowl and not me.” along with its correspond-
ing sentiment, such as “jealous”. We only use the
sentiment to empirically verify the effectiveness of
our predicted emotion.

The dialogue tree search process operates as fol-
lows: During the k-th iteration, the current model
SAGEj performs the role of the agent, while
SAGE; plays the role of the user. We use each
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Figure 2: State-Action Chain (SAC) augmentation contains two stages. The first stage annotates the dialog using an
LLM. The second stage moves the user’s State Assessment Token (highlighted in blue) to the start of the system’s
message, enabling the system to predict the state based on the user’s previous message, followed by predicting the
Dialog Action Token (highlighted in green), and finally generating the system’s response during fine-tuning with

loss focused solely on the system’s message.

situational statement from the training set as the
initial utterance from the user and then prompt both
models with the current dialogue history to simu-
late a conversation between two speakers for up
to 12 turns. The generation process involves topK
sampling with K = 100, temperature = 1.1, and
repetition penalty = 1.1.

For each turn, the agent model SAGE;, gener-
ates 16 candidate responses using beam search with
diverse sampling. Subsequently, an external se-
lector LLM (Mixtral 8x7B) evaluates and selects
the best candidate based on predefined properties
that an ideal companion chatbot should exhibit,
including consistency, humor, sympathy, informa-
tiveness, appropriateness, and respect (see box in
Section 3.6). The selection process considers both
the immediate quality of the response and its poten-
tial to lead to engaging future interactions. On the
user side, only one generation is produced per turn
to maintain conversation consistency. The resulting
high-quality trajectories are used to fine-tune the
current model SAGE to the subsequent model iter-
ation SAGEy 1 using LoRA, with user utterances
masked out during training to focus on improving
agent responses. See Figure 4 in Appendix as an
example of the tree search process.

We iterate over this refinement process until
SAGEj reaches a level comparable to SAGEy,
based on the model evaluation pipeline and metrics
detailed in the subsequent section. Through experi-
mentation, we observed that improvements beyond
2 iterations tend to be marginal, suggesting that

SAGEg3 has already reached the saturation point in
the search-and-refine phase.

3.5 Preference Learning

We then conducted preference learning using DPO
(Rafailov et al., 2024) on the SAGE3 model. We
use the selected utterance from the agent model as
a positive example, and select one of the rejected
utterances randomly as the negative example. The
resulting model is denoted as SAGE ppo.

3.6 Model Evaluation

We need to quantitatively evaluate the performance
differences among various model variants and iter-
ations. Human evaluations can be costly, so we opt
for LLM-based assessments, as human-preference
aligned LLMs are shown to serve as a cost-effective
and dependable alternative to human judgments
(Zheng et al., 2023). We first roll-out dialogues
between the tested agent model and a user model
(based on SAGE)) for up to 16 turns on each in-
stance in the dev set. We then use a Judge LLM for
pairwise comparisons between the generated con-
versations using two models. This involves starting
from each situational statement in the dev set. The
judge model is then provided two conversation ses-
sions and asked to determine which one is superior
using the prompt in Appendix A.

We refrain from using particular desirable prop-
erties as criteria for evaluation and task the judging
model with assessing based on its inherent under-
standing of what makes a good social chatbot. To
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mitigate the potential bias introduced by the order
of the presented dialogues, we conduct two assess-
ments for each pair by switching the positions of
dialogues A and B. The judgments are considered
reliable only if they remain consistent across both
evaluations. Subsequently, we aggregate prefer-
ences from all valid votes to determine the ultimate
winner model.

3.7 Inference Time State Manipulation

Our state prediction facilitates effortless and
seamless manipulation of states during runtime.
Through small adjustments to one single logit in
the agent’s generated action during inference, we
can conveniently modify aspects such as the de-
sired emotion and motivation we want to apply to
the agent, leading to noticeable changes in over-
all behavior across subsequent interactions. For
instance, rather than training a new model for a
more humorous response, we can simply augment
specific keyword logits like “humor” and “joke” af-
ter the “a_motivation” by a value (e.g., 1.0). This
approach empowers us to customize the model’s
behavior on-the-fly during the inference process.

4 Results

LLM-judge based evaluation Following §3.6,
we compare the various versions of the models,
namely SAGE;, SAGE;, SAGE3;, with two Judge
LLMs, namely GPT-3.5 and Mixtral 8x7B. The
LLM selector in the tree search used Mixtral, poten-
tially introducing bias towards Mixtral’s inductive
bias. To mitigate this, we incorporated both Mix-
tral and GPT-3.5 for the judgement, and primarily
rely on the assessment by GPT-3.5.

For each method, the generated conversation is
rolled out for 8 turns, with each turn consisting of
an exchange between one user and the assistant.
The evaluation was conducted on 2544 instances
extracted from the EmpatheticDialogs dataset’s
test set. The results are shown in Table 1. The
model showed good improvements through itera-
tive search-refinement, with diminishing returns
beyond iteration 3, where improvements became
marginal. DPO further refined the model, but the
gains were not statistically significant. Neverthe-
less, the final model, SAGEppo, demonstrated
nearly double the win rate against the initial Mixtral
model (SAGEg), over both LLM-induced evalua-
tion metrics. Trained on same Reddit data but with-
out SAC, SAGE;(—SAC) showed lower prefer-

ence compared to SAC-augmented SAGE;. There-
fore, we exclude SAGE;(—SAC) from the subse-
quent self-play tree search.

The average length of responses for SAGEy is
86.2, while for SAGEppo it is 21.8. We show
some examples of the comparison between the ini-
tial SAGE( with SAGEppo in Figure 1 and Ap-
pendix (Figure 5 and 6). Generally, SAGEppo
appears to be more concise, interactive, engaging,
sympathetic, and resembling a more human-like
tone. We provide several additional examples of
multi-turn conversation rollouts of SAGEppo in
the Appendix. These examples showcase its ca-
pacity to produce coherent (Figure 7), humorous
(Figure 8), and empathetic dialogues (Figure 9),
highlighting the contrast in style compared to a
utility-oriented chatbot such as SAGEj.

The overall judgements of GPT-3.5 and Mixtral
are consistent. GPT-3.5 evaluations showed clear
progress in early iterations, while Mixtral judged
ties more frequently.

LLM benchmarks We evaluated our model on
standard LLLM benchmarks, including HellaSwag
(Zellers et al., 2019), ARC (Challenge and Easy)
(Clark et al., 2018), MMLU (Hendrycks et al.,
2021), WinoGrande (Sakaguchi et al., 2021), Open-
BookQA (Mihaylov et al., 2018), PIQA (Bisk et al.,
2019), SIQA (Sap et al., 2019), CommonsenseQA
(Talmor et al., 2018), and GSMS8k (Cobbe et al.,
2021) (see Table 2). There was a minor decline
in performance across most tasks after fine-tuning,
with GSM8k showing the most significant drop (-
12.3%). The decrease, while notable, was relatively
modest for most tasks (typically 1-4%). Notably,
we observed a slight improvement (+0.423%) in
CommonsenseQA performance. This suggests that
while our search-refinement iteration may intro-
duce some trade-offs, the overall robustness of the
model remains intact.

We hypothesize that the performance degrada-
tion (particularly on GSM&8k) occurs because our
model became more colloquial and conversational,
making exact match more challenging (see Ap-
pendix Figure 10 for an example). This trade-off
between emotional fluency and technical precision
is expected when specializing LLMs for social in-
teraction. To mitigate this performance gap, several
strategies could be employed: (1) incorporating
instruction-tuned datasets (Zheng et al., 2023) dur-
ing training to maintain reasoning capabilities, (2)
using a hybrid approach that combines emotional
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Judge  Method A Method B A Wins Ties B Wins
SAGE, SAGE; 688 (27.0%) 892 (35.0%) 964 (38.0%) *
«w SAGE:(—SAC) SAGE; 823 (32.4%) 852 (33.5%) 869 (34.1%) *
o SAGE; SAGE; 690 (27.0%) 945 (37.0%) 859 (36.0%) *
y SAGE: SAGE3 811 (32.0%) 911 (36.0%) 822 (32.0%)
© SAGE;3 SAGEppo 768 (30.0%) 941 (37.0%) 835 (33.0%)
SAGE, SAGEppo 542 (21.0%) 899 (35.0%) 1103 (43.0%) **
SAGEy SAGE; 617 (24.0%) 1105 (43.0%) 822 (32.0%) *
_  SAGE;(—SAC)  SAGE, 684 (26.9%) 1043 (41.0%) 817 (32.1%) *
g SAGE; SAGE; 619 (24.0%) 1086 (43.0%) 839 (33.0%) *
~§ SAGE, SAGE3 720 (28.0%) 1076 (42.0%) 748 (29.0%)
SAGE;3 SAGEppro 753 (30.0%) 1063 (42.0%) 728 (29.0%)
SAGEq SAGEppo 473 (19.0%) 1184 (47.0%) 887 (35.0%) **

Table 1: Comparison of generated dialogue sessions from different model variants. SAGE represents the original
Mixtral 8x7B Instruct model. SAGE; (—SAC) denotes the model trained without SAC augmentation. We use two
Judge LLMs (OpenAl GPT-3.5 Turbo and Mixtral 8x7B Instruct) to compare each pair of methods. Statistical
significance: ** p < 1070, * p < 10710,

Model HellaSwag 1 ARC-C 1 ARC-E 1 MMLU 7t WinoGrande 1
Mixtral 8x7B  0.860 (0.003) 0.661 (0.014) 0.852 (0.007) 0.688 (0.004) 0.767 (0.012)
SAGE 0.838 (0.004) 0.642 (0.014) 0.841 (0.008) 0.672 (0.004) 0.759 (0.012)
Diff (%) -2.58% -2.88% -1.29% -2.33% -1.04%
Model OBQA t PIQA 1 SIQA 1 CSQA 1 GSMSKk 1
Mixtral 8x7B  0.478 (0.022) 0.848 (0.008) 0.553 (0.011) 0.708 (0.013)  0.267 (0.012)
SAGE 0.470 (0.022)  0.839(0.009) 0.528 (0.011) 0.711 (0.013)  0.234 (0.012)
Diff (%) -1.67% -1.04% -4.53% +0.423% -12.3%

Table 2: Comparison of task scores between Mixtral 8x7B and SAGE p po for standard LLM benchmarks. Scores
include standard errors in parentheses, with 1 indicating higher is better.

Table 3: Examples of model responses generated under various emotional states for the query “How do you think
the future will be like for AI?"

Emotion

Utterance

Optimism

Haha! Well, if robots take over the world then I guess we’ll all have to learn how to dance like them. What do
you think about this possibility?

Pessimistic

I think that AT will become more integrated into our daily lives, but it may also lead to job losses and increased
inequality. What are your thoughts on this matter?

Mixed

The future of Al is uncertain, but it holds great promise and potential risks. Some experts predict that Al could
lead to major breakthroughs in medicine, transportation, and other fields, while others warn of ethical concerns
such as job displacement and privacy invasion. What are your thoughts on this topic?

Playful

Haha! Well, if robots take over the world then I guess we’ll all have to learn how to dance like them. What do
you think about this possibility?

Philosophical

It’s hard to say exactly what the future holds for Al, but based on current trends and advancements, it seems
likely that AI will continue to become more integrated into our daily lives. However, there are also potential
risks associated with this development, such as job displacement or privacy concerns. Ultimately, only time
will tell how these issues play out. What do you think about the future of AI?

and technical responses based on context, or (3) im-
plementing task-specific routing mechanisms. Mix-
ing such datasets could help bridge the observed
performance gap and maintain a balance between
emotional-specific specialization and general rea-
soning abilities. Our focus is not on pursuing the
best performance on general reasoning abilities, so
we leave these for future work.

Coarse generation control by state manipula-
tion Generally, the model uses various motiva-
tions and emotions to guide the conversation. In
Appendix Figure 3, we present the distribution
of generated actions in simulated rollouts from
our model, based on the situational prompts from
Rashkin et al. (2019). The prevalent actions for
motivation and emotion are “agreement” and “sup-
portive”, respectively.
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Table 4: Model responses illustrating different motivational perspectives in a situational dialogue, “A co-worker of
my husband asked me out on a date. I think that was rude and I told him no.”

Motivation Utterance
Reassurance It sounds like you made the right decision by standing up for yourself. What happened next?
Sympathy Oh dear! That sounds like quite an awkward situation. How did he react when you declined his offer?
Humor LOL! He must have been trying to get some free food off you.
Empathy I understand how you feel. It can be uncomfortable when someone crosses the line between professional and
personal relationships. Do you want to talk more about this situation or something else?

Clarification No worries, I'm just trying to understand what happened. Was there any clear indication that he was interested

in dating you specifically?
Encouragement | It sounds like he needed some attention from someone other than his wife. You did the right thing by saying no.
Don’t let it bother you too much. What happened next?
Concern Why did he do that? Did he make any advances towards you beforehand?
Suggestion Haha, maybe he was just trying to be friendly. Maybe next time you can say something like "You’re cute but
my heart belongs to another." What do you think about this idea?
Request Haha ok, sorry about that! Now tell me more about this situation. Was it an explicit invitation or something
more subtle?

Disagreement | Oh come on, he was just being friendly! You should give him another chance ;)

Interest Oh really? What made you think it was rude? Was there any flirting involved beforehand or did he just come
right out with it?

Philosophical Well, if it makes you feel any better, sometimes people do things without realizing the impact they have on
others. Have you considered telling him your feelings?

Reminiscing Oh dear! Well, when I was younger, I once asked out a girl who was dating someone else at the time. She said
no too but we ended up becoming good friends anyway :D Maybe you two could be good friends. Have you
heard from him since then?

Teasing Oh dear! Did you give him the death stare or just say no? Or did you do both? :P What happened next?
Homesickness | Oh dear! That must have been uncomfortable for you both. Do you miss living in Europe or prefer life here in
America?

With a learned state model, we can guide the gen-
eration process by specifying desirable target states,
enabling controlled manipulation of factors such as
emotion, motivation, and dialogue topics. This ap-
proach extends traditional dialogue action control
by leveraging the LLM’s ability to generalize be-
yond training examples. Examples demonstrating
this capability are presented in Tables 3, 4, and 5
(in Appendix).

Table 3 shows the model’s capacity to interpret
emotional contexts and generate contextually ap-
propriate responses. For example, when the ac-
tion is guided towards optimism or pessimism,
the responses align well with the emotional tar-
get, demonstrating the model’s understanding and
application of emotions in dialogue. Table 4 shows
the model handles rare and less conventional mo-
tivations such as “Philosophical," “Reminiscing,"
“Teasing," and “Homesickness" within situational
conversations. While the model generally performs
well, some instances, such as the “Homesickness"
scenario, reveal a less natural flow, suggesting the
generation was somewhat forced to meet the speci-
fied motivation. Table 5 demonstrates the model’s
ability to incorporate and blend complex topic
constraints. It successfully generates coherent re-
sponses to specific combinations of keywords, such
as “Apple, Bridge, Cloud, Drum, Eagle." Even for

uncommon word combinations, the model provides
plausible and contextually reasonable utterances,
showcasing its generalization strength. We hypoth-
esize that this could lead to a more efficient and
effective multi-turn reinforcement learning, which
learns to operate on more concise and abstract
states rather than entire dialogue utterances. We
leave this for future work.

5 Conclusion

We propose the State-Action Chain (SAC) frame-
work for emotional dialogue generation, enabling
explicit state modeling and controllable conversa-
tion flow. A key insight is our future-looking an-
notation strategy, which labels states and actions
based on the full dialogue context rather than iso-
lated utterances. This allows the model to develop
strategic thinking by associating state-action pairs
with future consequences and utility. Using itera-
tive dialogue tree search and preference learning,
SAC generates more engaging and emotionally in-
telligent responses. It enables flexible control of
conversation dynamics during inference without
retraining. While there are trade-offs on traditional
benchmarks, SAC enhances human-like dialogue
and lays groundwork for state-level reinforcement
learning to train emotionally intelligent chatbots
that reason about long-term outcomes.
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Abstract

Identifying subjective phenomena, such as
irony in language, poses unique challenges,
as these tasks involve subjective interpretation
shaped by both cultural and individual perspec-
tives. Unlike conventional models that rely
on aggregated annotations, perspectivist ap-
proaches aim to capture the diversity of view-
points by leveraging the knowledge of specific
annotator groups, promoting fairness and rep-
resentativeness. However, such models often
incur substantial computational costs, particu-
larly when fine-tuning large-scale pre-trained
language models. We also observe that the fine-
tuning process can negatively impact fairness,
producing certain perspective models that are
underrepresented and have limited influence on
the outcome. To address these, we explore two
complementary strategies: (i) the adoption of
traditional machine learning algorithms—such
as Support Vector Machines, Random Forests,
and XGBoost—as lightweight alternatives; and
(i1) the application of calibration techniques
to reduce imbalances in inference generation
across perspectives. Our results demonstrate
up to 12x faster processing with no statistically
significant drop in accuracy. Notably, calibra-
tion significantly enhances fairness, reducing
inter-group bias and leading to more balanced
predictions across diverse social perspectives.

1 Introduction

In subjective tasks, such as hate speech or irony
detection, (text) classification depends on cultural
knowledge and the individual impact of the speech
on each individual (Basile et al., 2021). An
inherent characteristic of this type of problem
is label disagreement (e.g., hate vs. non-hate
or ironic vs. non-ironic) (Aroyo and Welty,
2015). Therefore, modeling the individuality of
perception, reflected in the labels, can provide
valuable information for the task of automatic hate
speech detection (classification).
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Traditional classification methods aggregate
multiple annotations through strategies such as
choosing the majority class and discarding minor-
ity or less representative views (Fleisig et al., 2023).
The proposal of perspectivism (Cabitza et al.,
2023) is to preserve multiple annotations to capture
different views, promoting fairness between the
models (Frenda et al., 2024a). By training inde-
pendent models per cultural group, each reflecting
specific interpretations, the cultural diversity in the
data is considered. A desirable consequence of the
perspectivist approach is the mitigation of biases
against historically marginalized groups, such as
LGBTQ+, black, and religious minorities, among
others (Akhtar et al., 2021). In particular, in Casola
et al. (2023), a perspectivist method is proposed,
combining (or ensembling) models fine-tuned by
each perspective, whose results indicate promising
combinations. Despite the good effectiveness of
the results, fine-tuning multiple language models
imposes high computational demands.

In this context, this work has two central
objectives. The first objective is to enhance the
efficiency of the perspectivist approach proposed
by Casola et al. (2023) — hereinafter referred to
as Confidence-based EnseMble (CEM) — through
integration with traditional machine learning
models, aiming to maintain effectiveness while
reducing computational cost. The second is to
improve the fairness between perspectivist models
through calibration techniques. In the base method,
it was observed that some perspectives showed low
representativeness (low confidence in predictions),
which limits or makes their contribution to the final
label unfeasible, compromising the fair principle of
perspectivism. We hypothesize that this effect re-
sults from miscalibration. In a properly calibrated
classification model, the posteriori probability
estimated by the classifier should present a higher
correspondence with the empirical frequency of
hits. Thus, a calibration step was incorporated to
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increase the reliability of the methods.

The experimental results demonstrate that com-
bining the CEM with traditional models reduces
execution time by up to 12 times without a statis-
tical loss in effectiveness. We also demonstrate,
by means of a sustainability metric that integrates
effectiveness and carbon footprint, that a reduction
of over 34% is achievable using traditional models
(e.g., logistic regression) as the classifier.

Finally, calibration promotes a greater balance
in the contribution of the different perspectives
in the final result, generating fairer models from
a perspectivism viewpoint. Indeed, this approach
significantly improves the alignment between each
perspective’s contribution, shifting the contribution
distribution closer to its actual perspective’s
representations in the training data and reducing
unfair imbalances introduced by miscalibrated
probabilities. Compared to the original method,
the calibrated approach achieved a relative
improvement of approximately 39% in fairness,
yielding more balanced outcomes across diverse
social and linguistic groups while preserving
competitive performance. These findings highlight
the value of calibration as a key mechanism for
ensuring equity in perspectivist modeling.

The rest of the paper is organized as follows.
Section 2 covers related work. Section 3 details
the proposed approach. Section 4 presents the ex-
perimental protocol and discusses the experimental
results. Section 5 concludes the paper.

2 Related Work

In subjective NLP tasks — such as detecting hate
speech, irony, sentiment, and abusive language
— obtaining multiple rater annotations is often
necessary due to the inherent ambiguity and vari-
ability of human judgment (Frenda et al., 2024b).
In traditional approaches, disagreements between
annotators are frequently treated as noise (Fleisig
et al., 2023), with the final label determined by
a majority vote scheme that disregards the per-
spectives of potentially affected minority groups
(Akhtar et al., 2021). In contrast, the perspectivist
approach advocates valuing this diversity by
explicitly modeling individual variations rooted
in demographic and cultural characteristics (Basile
etal., 2021). This paradigm has gained prominence
amid growing demands for fair, inclusive, and
bias-aware NLP models (Basile et al., 2021;
Fleisig et al., 2023; Akhtar et al., 2021).

Several recent studies have operationalized this
concept in practice. In Casola et al. (2023), for
example, the authors divided the training data
into distinct subsets aligned with specific social or
demographic groups (e.g., male and female anno-
tators), fine-tuning a dedicated language model for
each group to capture their characteristic patterns.
The individual outputs were then combined
through a confidence-based ensemble method,
yielding a final prediction. Similarly, Fleisig
et al. (2023) proposed an approach that explicitly
incorporates the target group of an ironic statement
by leveraging a dual-module architecture: GPT-2
to identify the group at which the statement is
aimed, and RoBERTa to estimate the annotators’
scores, with both models adjusted for the specific
classification task. Meanwhile, Ngo et al. (2022)
introduced a technique that captures individual
annotators’ patterns by concatenating texts asso-
ciated with the same annotator and including this
information alongside the input for the language
model, thereby embedding the annotators’ belief
profiles within the prediction process.

In machine learning, model bias can lead to
unfairness and discrimination against specific
groups (Ferrara, 2024). Calibration approaches
ensure that the balances of positive predictions
align with the proportions of positive examples in
the training set (Huang et al., 2024). See Kheya
et al. (2024) for a survey on methods to reduce the
bias. Platt Scaling, for example, is a widely used
calibration technique that adjusts a model’s output
scores into well-calibrated probabilities using a
logistic regression model, thereby promoting fairer
outcomes (Guo et al., 2017). In recent work, ? inte-
grates ensemble-based uncertainty estimation with
calibration constraints using a multi-objective loss
function to address fairness and calibration jointly.

Taken together, these works underscore the
growing focus in NLP on recognizing, preserving,
and leveraging the richness of diverse human
perspectives, yielding advances in both the
fairness and reliability of models applied to highly
subjective and context-dependent tasks.

That said, to the best of our knowledge, no
prior study has examined the impact of calibration
in perspectivism or its influence on the accurate
and fair representation of social dimensions in the
resulting models.
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Figure 1: Original CEM method (Casola et al., 2023) (a) and CEM method with the proposed changes (b) .

3 Proposed Approach

In this section, we describe how traditional
machine learning techniques can be effectively
combined with a perspectivist approach to improve
computational efficiency. In addition, we present
the incorporation of a calibration step designed to
promote greater fairness across perspectives, ensur-
ing that their contributions to the final prediction
align more closely with their distribution in the
training data.

Figure 1a illustrates the perspectivist approach
(CEM) introduced in Casola et al. (2023), which
is comprised of four sequential steps:

1. The training data are divided into distinct per-
spectivist subsets based on annotator metadata
(Step 1), such as gender or nationality.

Dense representations are generated for each
subset by fine-tuning a pre-trained language
model, with this step representing the primary
computational cost of the approach (Step 2).

3. All resulting models are applied to the same
test set, producing independent inferences for
each perspectivist subgroup (Step 3).

4. The final prediction is computed through an
aggregation method, such as: (i) Maximum
Confidence (MC), selecting the label with the
highest individual confidence score; (ii) Sum
of Confidences (SC), summing cross-group
scores and selecting the highest total; or (iii)
Majority Vote, adopting the label most fre-
quently assigned across perspectives (Step 4).
Note that the confidence score is computed
using the difference between the output prob-
ability of the model.

Figure 1b illustrates the proposed adaptations
to the baseline approach, introducing a modified
Step 2.b and an additional Step 2.c. In Step 2.b,
traditional classification algorithms (such as SVM,
logistic regression, and XGBoost) are employed
in place of the fine-tuned language models used
in the original method. Since these algorithms
require fixed-length numerical inputs, a pre-trained
language model (in this case, ROBERTa) is used
as an encoder exclusively to extract features (i.e.,
using the average from the last four layers), lever-
aging its ability to encode complex syntactic and
semantic patterns into dense vector representations.
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The generated embeddings are then used as inputs
for training traditional classifiers, allowing the ap-
proach to leverage a rich data representation while
significantly reducing computational overhead. All
subsequent steps remain identical to those defined
in the baseline approach, preserving the overall
structure of the pipeline while making it more
computationally efficient and broadly applicable'.

The calibration procedure employed in this
study is based on Platt Scaling, a widely adopted
post-processing technique that leverages logistic
regression to recalibrate the output scores or prob-
abilities generated by base classifiers (Guo et al.,
2017). This method addresses the common issue
of miscalibrated probability estimates in machine
learning models, where raw output scores (often
referred to as logits) do not correspond well to true
class membership likelihoods. We also explore
the Isotonic calibration approach, which is a non-
parametric method that avoids making assumptions
about the form of the relationship between the
model’s scores and the true probabilities (Leathart
et al., 2017). However, as noted by Ojeda et al.
(2023), a significant drawback of Isotonic calibra-
tion is its propensity to overfit, which necessitates
a larger calibration set to mitigate this risk.

Concretely, Platt Scaling involves fitting a para-
metric sigmoid function to the scores produced by
the classifier on a validation set, distinct from the
training data used to build the model. The function
is defined as:

1

P(yzl\s):m,

(1
where s represents the uncalibrated score or logit
output of the classifier, and the parameters A and
B are learned by optimizing the logistic regression
on the validation set to minimize the difference
between predicted probabilities and observed
outcomes. The intuition behind this formulation
is to transform the classifier’s raw output into
calibrated probabilities that better reflect the true
empirical likelihood of positive class membership.
By fitting the sigmoid function, Platt Scaling
effectively corrects for systematic overconfidence
or underconfidence in the model’s predictions.

In the context of perspectivist models, where
multiple classifiers trained on distinct annotator

!Test data undergoes the same encoding process using
the zero-shot language model, ensuring representation consis-
tency and that there is no influence of the training data on the
generation of the test representation and vice-versa.

subgroups contribute to final decisions, such cal-
ibration is particularly critical. It ensures that each
perspective’s predicted probabilities are harmo-
nized, facilitating fairer aggregation and reducing
potential biases that arise from disproportionate
confidence levels across perspectives.

Calibration introduces an additional step (Step
2.c) that adjusts the probabilities generated by each
prediction model to ensure they are on comparable
scales. This adjustment prevents any single
uncalibrated perspective from disproportionately
dominating the label assignment process. In Figure
1b, calibration uses the probabilities derived from
inference on the validation set (indicated by the
green arrow). Importantly, Step 2.c is orthogonal
to the model type and can be applied regardless
of whether the underlying classifier is a language
model or a traditional machine learning algorithm.
This flexibility allows calibration to enhance the
reliability and fairness of the ensemble predictions
without altering the base classifiers.

4 Experiments

We report the experimental results corresponding
to the two primary research objectives: (1) to quan-
tify the computational efficiency gains achieved by
combining zero-shot Roberta for tokenization
with traditional machine learning classifiers in-
stead of the ROBERTA finetuning process and (2)
to evaluate the effects of calibration on enhancing
fairness within the perspectivist framework. Ex-
periments were conducted on a computing envi-
ronment comprising an AMD 2990WX processor
(64 threads, 3 GHz), a GeForce RTX 2080 GPU (8
GB), and 128 GB of RAM. The source code sup-
porting this work will be made publicly available
in the repository at https://...[to be released upon
acceptance]. We begin by describing the experi-
mental protocol, including details of the dataset,
the evaluation metrics utilized, and our novel met-
ric designed to quantify fairness in perspectivist
classification scenarios.

4.1 Dataset

For the experimental evaluation, the English Per-
spectivist Irony Corpus (EPIC) (Frenda et al., 2023)
was used. EPIC contains 3,000 records of short
messages from Reddit and Twitter, labeled as ironic
or not. Each message is represented by the com-
bination of the post and the reply. The messages
were annotated, on average, by five individuals, al-
lowing the capture of variations associated with the
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generation, gender, and geographic location of the
annotators. It was built to analyze how different
cultural and demographic perspectives affect the
perception of irony in short online conversations.
We chose the EPIC dataset because it allows for
a direct comparison with CEM and is one of the
few disaggregated datasets that includes annotator
metadata.

4.2 Experimental Protocol and Evaluation
Metrics

Protocol and Statistical Analysis Each experi-
ment was repeated ten times using different seeds.
Each seed produces a random split into training
(60%), validation (20%) and test (20%) sets. For
replication purposes, seeds were used from the
range of 10 to 20. The results include a 95% con-
fidence interval and statistical analysis using the
Wilcoxon test with a Bonferroni correction for mul-
tiple comparisons. To ensure a consistent training
set size across all scenarios, we generated a vali-
dation dataset in every case, even when it was not
strictly necessary (i.e., discarded).

Effectiveness Effectiveness is measured by the
macro Fl-score (Sokolova and Lapalme, 2009),
corresponding to the simple average of the F1-
scores per class, giving equal weight to all. We
chose macro-F1 as the data is very skewed, with
approximately 70% of the instances belonging to
the non-ironic class. The F1-score is computed on
the aggregated test set — average of the results on
the 10 test sets.

Efficiency Efficiency is evaluated based on the
total time (in seconds) equivalent to the sum of the
times of the tokenization, training, prediction, and
calibration processes (when applicable), comparing
approaches with and without perspectivism.

Sustainability To measure the tradeoff between
effectiveness and the eco-sustainability of the ap-
proaches, we use the Carburacy metric (Moro et al.,
2023). Such a metric combines the effectiveness
score and CO2 emissions into one score, consider-
ing the eco-sustainability of each approach. The
definition of the Carburacy metric is described be-
low:

eloga R

Y= -
1+C-p

where the effectiveness (R), represented by the
Fl-score, is combined with the normalized car-

2

bon cost (C'). The trade-off between R and C' is
governed by the hyperparameters o and 5, which
weigh the Fl-score and the carbon penalty, respec-
tively. We define o and 5 as 10 and 1, as sug-
gested in the original work. We measure the carbon
cost (C') using the eco2Al library (Budennyy et al.,
2022), which estimates emissions based on CPU
and GPU energy consumption.

Fairness From a Perspectivist Approach To
evaluate fairness in the presence or absence of
calibration, we introduce a metric designed to
assess the relative contribution of each perspective
within the ensemble to the final label assignment,
grounded in the distribution of samples across
perspectives in the training set. The core intuition
behind this metric is to compare the expected influ-
ence of each perspective—based on its prevalence
in the training data—with its actual impact on
the ensemble’s output, as derived from classifiers
trained independently for each perspective. In a
fair system, perspectives that are underrepresented
in the training data should naturally exert less
influence on the ensemble decision. In contrast,
more frequently represented perspectives should
have a proportionally greater impact. Thus,
fairness is characterized by the alignment between
a perspective’s frequency in the training set and its
corresponding contribution to the final prediction.
Calibration plays a key role in achieving this
proportionality, mitigating distortions that may
arise from imbalanced, overfitted, or overtuned
individual classifiers within the ensemble.
Concretely, the first step in applying the pro-
posed metric involves computing the ideal contri-
bution of each perspective to the ensemble’s predic-
tions, based on their representation in the training
set. When the dataset is structured along multi-
ple dimensions—for example, Gender, Generation,
and Nationality—each dimension is expected to
contribute equally to the overall decision. In a
scenario with three such dimensions, each would
ideally account for approximately 33% of the en-
semble’s output. Within each dimension, the ex-
pected contribution of individual perspectives (e.g.,
male and female under the Gender dimension) is
determined by their relative frequency in the train-
ing data. For instance, if the training set consists of
40% male and 60% female samples, then a fair en-
semble should reflect this distribution in its predic-
tions for that dimension. Table 6 presents the com-
puted "Ideal" contributions for each perspective,
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Table 1: F1-score (+ CI) without calibration for each aggregation strategy and model. **’ and ’]’ indicate a statistical

tie or loss compared to RoBERTa.

Without Calibration RoBERTa LR XGB SVM

Maximum Confidence MC) 674+ 1.5 643+10] 540+08, 487+12]
Sum of Confidences (SC) 66.6+ 1.7 647+12* 540+£1.0] 48.6+08]
Majority Vote 650+20 6424+13* 5374+06] 487+12]
Without Perspectives 645+25 635+12* 555+13] 491+£13]

Table 2: Fl-score (+ CI) with Platt calibration for each aggregation strategy and model. **’ and °|’ indicate a

statistical tie or loss compared to RoOBERTa.

With Platt Calibration RoBERTa LR XGB SVM

Maximum Confidence (CM) 67.0+1.8 647+1.1* 609+13] 63.1+£05%*
Sum of Confidences (SC) 672+17 652+10* 629+12] 643+09%*
Majority Vote 67.0+15 648+15* 622+13] 644+0.7%*
Without Perspectives 651+17 621+16* 604+16] 600+14]

capturing the expected number of predictions pro-
portionally aligned with both dimension-level bal-
ance and intra-dimension frequency distributions.

n

Z (Ideal — X;)?

=1

3

Equation 3 formalizes this assessment by
quantifying the squared deviations between the
actual contribution of each perspective (X) and
its ideal distribution (Ideal) for both calibrated
and uncalibrated models. The use of squared
differences serves to emphasize larger discrepan-
cies, ensuring that significant imbalances have a
proportionately greater influence on the resulting
metric. In this formulation, a value of 0 denotes the
ideal case, where every perspective’s contribution
to the final prediction is fully aligned with its ex-
pected distribution, indicating a balanced and fair
decision-making process across all perspectives.

4.3 Experimental Results

4.3.1 Effectiveness

Table 1 summarizes the effectiveness compar-
ison between the CEM approach—employing
RoBERTa with fine-tuning and zero-shot
RoBERTa for tokenization combined with tra-
ditional machine learning classifiers, including
Logistic Regression (LR), XGBoost, and Support
Vector Machines (SVM). For simplicity, when we
refer to traditional machine learning classifiers, we
use zero-shot RoBERTa to generate embeddings
as features for the classifier. Both RoOBERTa and
LR achieved the highest Macro Fi-score values,
with no statistically significant difference between
them, except under the Maximum Confidence ag-
gregation method, where ROBERTa demonstrated

a modest but statistically significant advantage
of 2.8 percentage points. The effectiveness of
LR can be attributed to its ability to model linear
relationships between features (Hassan et al.,
2022). Conversely, XGBoost and SVM exhibited
inferior performance, with reductions exceeding
9% relative to the top-performing models. The
superior performance of LR is likely attributable
to its efficacy in modeling linear relationships.
Table 2 present the effectiveness results follow-
ing the application of Platt Scaling The Platt Scal-
ing demonstrates improvements across all evalu-
ated models except for LR, which inherently pro-
duces calibrated outputs (Cunha et al., 2025). Nev-
ertheless, calibration contributed to a reduction in
variance for LR in certain scenarios, notably un-
der the Sum of Confidences aggregation method.
Traditional classifiers, specifically XGBoost and
SVM, exhibited the most substantial gains, with
increases in FI-score reaching up to 10 and 16
percentage points, respectively. ROBERTa showed
a marginal improvement with the Majority Vote
method, although this increase did not achieve sta-
tistical significance. Notably, post-calibration, LR
achieved a statistical tie with RoBERTa across all
aggregation strategies. Additionally, calibration
consistently enhanced the performance of the Sum
of Confidences (SC) aggregation method, which
yielded the highest results among all classifiers.

4.3.2 Efficiency

Table 3 details the computational time required
by the evaluated methods, comparing both the
perspectivist and non-perspectivist approaches
employing RoBERTa or a zero-shot ROBERTa
with traditional machine learning classifiers.
The results indicate that traditional models achieve
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Table 3: Execution time (in seconds) with 95% confidence intervals without calibration.

Time RoBERTa LR XGB SVM
Without-Perspectives ~ 239.8 £+ 13.7 16.5+0.0 18.3 £0.1 22.8 £0.1
With-Perspectives 1904.7 £703 1362£05 154.1£03 1642+£05

Table 4: Execution time (in seconds) with 95% confidence intervals with calibration.

Time - Calibration RoBERTa LR XGB SVM
Without-Perpectives ~ 245.2 + 13.8 16.6 = 0.1 189 + 0.1 20.3 £0.1
With Perspectives 19514 +70.3 1373 +£04 161.0£+0.5 15594+0.8

processing speeds up to twelve times faster than
RoBERTa. A comparative analysis between Ta-
bles 3 and 4 reveals that incorporating calibration
incurs a negligible increase in execution time, with
only a 47-second (approximately 2%) overhead
for ROBERTa and a 7-second (approximately 4%)
increase for XGBoost. Interestingly, SVM exhibits
a reduction of 8.3 seconds (approximately 5%) in
runtime, which may be attributed to a decreased
training set size due to the allocation of a data
portion for calibration via Platt Scaling.

In summary, the experimental findings demon-
strate the feasibility of significantly reducing
computational time without compromising pre-
dictive performance. Concurrently, the integration
of calibration facilitates the generation of more
equitable inferences that appropriately represent
minority perspectives, thereby advancing the core
objective of perspectivist methodologies.

4.4 Sustainability

Table 5 summarizes the sustainability score ob-
tainable using the Carburacy metric (which com-
bines the F1-score and carbon footprint). Due to
space constraints, we report here only the two best-
calibrated models (LR and RoBERTa) based on the
highest F1 score (Section 4.3.1). The table shows a
significant advantage of using LR over ROBERTa
in all aggregation strategies with an average differ-
ence of 35%. This is explainable by the fact that LR
uses only a fraction of the time needed to fine-tune
the LLM, resulting in a much lower carbon foot-
print with a statistically tied F1 value. In summary,
considering the combined benefits (model effec-
tiveness and environmental impact), the cheaper
and more effective LR model offers a considerable
gain over the original approach.

4.4.1 Fairness

Table 6 presents the distribution of final label as-
signments across the different perspectives, based
on the Max Confidence decision rule, where the per-
spective yielding the highest estimated probability

Table 5: Carburacy for LR and RoBERTa using the MC,
SC, and Majority Vote.

Method LR RoBERta
MC 0.775 0.422
SC 0.778 0.423
Majority Vote 0.776 0.422
determines the prediction.  Columns ‘“Non-

Calibrated” and “Calibrated” correspond, respec-
tively, to the original and calibrated approaches,
both implemented using the ROBERTa classifier.
The results reveal that certain perspectives (specif-
ically, Boomer, Female, and GenY) have no mea-
surable influence on the final prediction, indicating
that they are effectively ignored by the classifier
and only introduce unnecessary computational
cost. In contrast, the decision process is dominated
almost exclusively by two perspectives (Ireland
and GenX), suggesting an implicit bias toward
these dimensions. Understanding the reasons for
this disproportionate utilization of specific perspec-
tives constitutes an intriguing open question, which
we leave as a direction for future investigation.

Following the application of the proposed
metric, the original (non-calibrated) approach
yielded an overall fairness score of 53, whereas
the calibrated approach achieved a score of 33.
Recall that, for this metric, the lower, the fairer.
This result reflects a relative improvement of
approximately 39% in fairness when calibration
is applied. For example, while the ideal contri-
bution for the India perspective is 4.5%, in the
non-calibrated model, this perspective contribution
is null, compared to 2.3% in the calibrated model.
On the other hand, the influence of the Ireland and
Gen X perspectives in the final decision decreased
significantly, becoming closer to the ideal values,
according to the proposed reasoning. These
findings indicate that calibration significantly
improves alignment between observed and ideal
contributions, resulting in a more balanced and
equitable prediction process across perspectives.
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In summary, the results demonstrate that calibra-
tion promotes a more balanced and representative
contribution from all perspectives to the final
prediction, yielding a fairer and more inclusive out-
come. By aligning the influence of each perspective
with its actual representation in the training data,
the calibrated approach mitigates disproportionate
dominance by specific groups and reduces the
risk of systemic bias. This improvement not only
strengthens the reliability and interpretability of the
model’s decisions but also advances its suitability
for applications where equitable treatment across
diverse groups is a critical requirement.

Table 6: Training set size for each perspective, its ideal
and actual contributions to the final predictions for both,
non-calibrated and calibrated approaches.

Perspective [Training] Ideal Non-  Calib.
Sizel Calib.
Australia 1363 52 3.6 17.9
India 1180 4.5 0 23
Ireland 1288 49 48.9 26.9
Male 2026 7.8 32 8.1
United kingdom 1369 53 6.7 1.3
United State 1368 5.2 9.9 14.6
GenX 1755 10.9 25.8 17.9
GenY 1971 12.2 0 4.5
GenZ 1151 7.1 1.8 0.5
Boomer 447 2.8 0 0.4
Female 1971 16.3 0 5.6
Male 2026 16.7 32 8.1

5 Conclusions

We propose integrating traditional classification
methods as a way to simultaneously foster greater
fairness and improved computational efficiency
within recent perspectivist approaches. Our results
demonstrate that, due to miscalibrated probabilities,
the method introduced by Casola et al. (2023) tends
to produce biased outcomes, under-representing
certain perspectives and, as a result, falling short of
its central objective of promoting inclusivity and
equity. To mitigate this limitation, we incorporated
a calibration step as an orthogonal layer, allowing
the model to more accurately align its final predic-
tion distribution with the actual representation of
each group in the training data. This adjustment not
only improves balance across perspectives, yield-
ing a fairer and more representative outcome, but
also achieves competitive levels of effectiveness
when compared with state-of-the-art approaches.
In this way, the proposed method advances the
state of the art by reconciling the often competing
demands of efficiency, performance, and fairness.
Looking ahead, we intend to investigate the

application of our framework to other perspectivist
datasets, exploring a broader range of social,
linguistic, and cultural contexts. Also, more recent
language models, including Llama and its variants,
as well as modern BERT-based architectures. We
want to dig deeper into the reasons why certain
perspectives seem to dominate the ensemble’s
decision, not reflecting their ideal contributions.
We will also evaluate other supervised stacking
techniques (Gioacchini et al., 2024) as a means
to further optimize effectiveness while reducing
computational overhead and improving fairness
even further, thereby supporting the design of more
equitable and resource-efficient NLP systems.

Limitations

While the training data and the learning process
consider different perspectives through disaggre-
gated labels, the evaluation is conducted on an ag-
gregated test set. This limitation may have some
impact on the experimental results; however, we
have chosen to follow the original work’s method-
ology of Casola et al. (2023). One possible future
direction to avoid using the aggregate test set is
to evaluate the individual predicted labels for each
instance (Mostafazadeh Davani et al., 2022). For
instance, the predictions produced by the model
trained with “GenX” will be matched with annota-
tors who belong to the same perspective.
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Abstract

This paper investigates personal perceptions of
mental workload through an innovative, non-
directive corpus annotation method, allowing
individuals of diverse profiles to define their
own dimensions of annotation based on their
personal perception. It contrasts with tradi-
tional approaches guided by explicit objectives
and strict guidelines. Mental workload, a multi-
faceted concept in psychology, is characterized
through various academic definitions and mod-
els. Our research, aligned with the principles of
the perspectivist approach, aims to examine the
degree to which individuals share a common
understanding of this concept when reading
the same texts. It seeks to compare the cor-
pus produced by this non-directive annotation
method. The participants, mainly employees of
a large French enterprise and some academic
experts on mental workload, were given the
freedom to propose labels and annotate a set
of texts. The experimental protocol revealed
notable similarities in labels, segments, and
overall annotation behavior, despite the absence
of predefined guidelines. These findings sug-
gest that individuals, given the freedom, tend to
develop overlapping representations of mental
workload. Furthermore, they demonstrate how
non-directive annotation can uncover shared
and diverse perceptions of complex concepts
like mental workload, contributing to a richer
understanding of how such perceptions are con-
structed across different individuals.

1 Introduction

Defining the scheme and guidebook is a crucial
step in any text annotation process. While uni-
form guidelines facilitate achieving consensus and
homogeneity, they can also mask variability in an-
notators’ perspectives. However, when a target phe-
nomenon refers to complex concepts, it becomes
particularly important to consider and analyze the
multiplicity of viewpoints. Therefore, adaptations
to this methodology are necessary to avoid framing

annotators and to account for the multiplicity of
perspectives. Perspectivism (Cabitza et al., 2023)
offers a reflection on this question and discusses the
consequences on annotated data used for machine
learning in NLP.

Our research aims to assist in designing a lan-
guage processing tool that can detect elements re-
lated to mental workload in employee messages
within companies.

Mental workload is a critical phenomenon, as
it represents a major concern that affects many as-
pects of workplace wellness. In the workplace,
mental workload directly influences employee well-
being, productivity, and overall job satisfaction. As
a result of various media efforts to popularize the
concept, mental workload has become a common
notion frequently referenced in the workplace. Our
goal is to develop a more grounded mental work-
load model that can be compared to current aca-
demic ones. Subsequently, this model will be used
in the analysis of text messages. As demonstrated
by Le Gonidec (2022), individual perception plays
a crucial role in mental workload. This concept
relates to how individuals perceive tasks and their
environment. Therefore, exploring methods to ac-
count for the diversity in the perception of this
phenomenon during annotation is particularly im-
portant. By incorporating diverse points of view,
we can ensure that no important aspects are over-
looked in developing a more grounded model of
mental workload.

Our aim is to explore the possibility of using a
personal and individual text annotation method at
an early stage. To investigate this, we asked peo-
ple working in different positions within the same
company, as well as academic experts on mental
workload, to freely express their points of view on a
common multifaceted object by annotating a shared
set of texts. Therefore, we propose a kind of hy-
perperspectivist and non-directive approach, which
is achieved without providing a specific definition
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of the target phenomenon or annotation guidelines.
As aresult, we constituted a collection of annotated
data from participants with no prior annotation ex-
perience.

This study investigates the hypothesis that there
is a common representation, even partial, of mental
workload existing among individuals. It can be
observed and made explicit through text annota-
tion. Additionally, we hypothesize that significant
variations also exist and, if formalized, they could
contribute to a richer and more comprehensive view
of the concept. Based on this hypothesis, the study
aims to address the following research questions:

1. Is text annotation a suitable method for col-
lecting and analyzing the points of view of
untrained professionals on a complex concept
such as mental workload?

2. Do individuals share a common (or at least
partial) representation of mental workload?
This hypothesis aims to determine whether
common elements emerge in the way people
perceive and evaluate mental workload, which
would suggest a collective understanding of
the concept.

3. Does the representation of mental workload
differ depending on professional profiles?
This hypothesis explores whether occupa-
tional differences influence how each individ-
ual perceives and annotates mental workload.

We seek to address these questions with the per-
spective of designing an annotation scheme. This
scheme will be applied in machine-learning solu-
tions aimed at automatic processing.

In this paper, we first introduce the concept of
mental workload and the multiplicity of viewpoints
in text annotation in Section 2. In Section 3, we
describe the research methods, including the used
data, the participants, and our experimental proto-
col. We then present the analysis of the collected
data and the main results in Section 4, before draw-
ing conclusions in Section 5.

2 Theoretical backgrounds and related
work

2.1 Mental Workload

Despite a marked interest in the topic over the past
40 years, there is no clear and universally accepted
definition of mental workload (Cain, 2007).

As per the IWA (Individual — Workload — Ac-
tivity) model proposed by Galy (2016), mental
workload is defined as the cognitive demand of
a task (Sweller, 1988). It includes the mental ef-
fort required to perform a task and can be assessed
through various indirect measures, such as subjec-
tive measures (self-reported assessments of mental
effort and perceived tension), performance mea-
sures (behavioral indicators such as response ac-
curacy and latency) and psychophysiological mea-
sures (physiological responses, for example, heart
rate variability reflecting cognitive load).

To enhance generalizability, Longo et al. (2022)
presented a more operational and modellable def-
inition. Mental workload (MWL), according to
them, represents the degree of activation of a finite
pool of resources, which are limited in capacity,
while cognitively processing a primary task over
time. This process is mediated by external stochas-
tic environmental and situational factors, as well as
affected by definite internal characteristics of a hu-
man operator, for coping with static task demands,
by devoted effort and attention.

Regarding the workplace environment, the use of
technologies is increasing every day, and academic
research has shown a relationship between men-
tal workload and "technostress’ in the professional
context (Castillo et al., 2023). This work high-
lighted that studying these two concepts together
can offer advantages, such as the development of
new strategies to help workers and managers deal
with technostress. Understanding these concepts
is essential, as new technologies have become an
integral part of work, affecting both performance
and well-being.

In terms of applicability of mental workload re-
search, findings in aeronautics Martin et al. (2013),
demonstrated that while modeling MWL is a valu-
able approach to synthesize existing literature and
to develop assessment methods, it cannot replace
empirical studies that further refine and clarify its
boundaries.

2.2 Dealing with subjectivity in annotation

Since we aim to collect annotations of subjective
interpretations of data, we are interested in a per-
spectivist approach. The perspectivism is a recent
movement in the field of Natural Language Process-
ing and is increasingly utilized in the annotation
of subjective topics. One of the main concerns in
annotation is the bias introduced by the cultural
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context of annotators, making it crucial to consider
all points of view in non-objective topics.

The perspectivist approach, proposed by Cab-
itza et al. (2023), aims to address the represen-
tativeness and reliability to fundamental truth in
machine learning systems and has been adopted
by several researchers. Plank (2022) highlights the
importance of human label variations in machine
learning pipeline, emphasizing that such variation
is often mistakenly treated as noise but should be
treated as an opportunity to make systems more
trustworthy. Basile (2020) also critiques the gold
standard approach, arguing that it is inadequate for
subjective tasks such as detecting irony, sarcasm,
or abusive language, where the perspectives of the
annotator can vary significantly.

Chulvi et al. (2023) suggest that the disagree-
ment in the annotations of sexist texts is rooted
in social factors rather than individual differences.
The related work on sexism annotation was pub-
lished a year later by Tahaei and Bergler (2024)
who studied the effect of demographic characteris-
tics of annotators in sexism detection. Their experi-
ments showed that including annotators from differ-
ent demographic groups can improve performance
in classifying sexist tweets. Goyal et al. (2022)
demonstrated that self-identified backgrounds (e.g.,
African American, LGBTQ, or neither) influence
the toxicity assessments in online comments.

In this study, we seek to maximize the applica-
tion of perspectivism by not only including anno-
tators of different profiles, but also giving them
a wide range of freedom in their actions. To
achieve this, we mobilize annotators from the out-
set, even before developing an initial annotation
model (Pustejovsky et al., 2017). This early in-
volvement allows us to capture a wide range of
interpretations and insights, ensuring that the an-
notation process is informed by diverse viewpoints
from the very beginning. In doing so, we aim to cre-
ate a more robust and inclusive annotation frame-
work that can better accommodate the complexity
and variability of linguistic data.

3 Methods

3.1 Data and participants

Usually, annotation task guidelines are designed to
be as precise and objective as possible. However, in
this study, our objective was to explore subjectivity
and to capture a wide range of perspectives on the
same topic. Therefore, we intentionally limited the

specific assignments provided to the annotators.

For this study, we selected eight short messages
(ranging from 78 to 245 words) from various cam-
paigns of "Micro Ouvert". "Micro Ouvert" is an
internal tool developed and used by a large French
company to collect employees’ spontaneous opin-
ions on a number of topics while ensuring complete
anonymity. These eight texts reflect the insights of
employees on topics such as their experiences with
changes in the workspace, attending conferences,
and their general motivation to work at the com-
pany. An example of such a message is presented
in A.1 in its original French version, along with
the English translation. All the language data used
and collected are in French, and the experiments
were conducted solely in French with our English
translations provided in the paper.

We recruited four experts in mental workload,
all of whom are academics in psychology with a fo-
cus on this topic, and 23 employees from the same
company, including managers, human resources
specialists, and other executives, particularly con-
cerned by MWL in their team management roles.
Indeed, it was crucial that the participants were
motivated to perform the annotation tasks. These
participants will hereafter be presented as members
of the following 4 categories: 4 mental workload
Experts (E), 8 Human Resources Specialists (HR),
12 Managers (M), and 3 Other specialists (O). The
participants had no relationship with the experi-
menters, which prevented bias that could compro-
mise the results. It is important to note that none of
the participants in our study had prior experience
with annotation tasks, neither experts nor employ-
ees. All participants were given information on
the context of each message to be annotated and a
possible clarification by the experimenters in case
of misunderstanding. However, a significant dif-
ference between the experts and the employees is
that the former were external to the firm and had
no prior knowledge of the working context. In con-
trast, the employees were more familiar with the
company’s culture and the general content of the
messages.

Having outlined the diverse participant profiles
and message selection in the previous section, we
now turn to the experimental protocol, which de-
scribes the methodology employed to capture the
subjective interpretations of MWL.
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3.2 Protocol

The participants were not informed in advance
about the details of the experimentation but were
only made aware of the subjects of our study and
the estimated duration of the session (approxi-
mately 75 minutes). They were informed about
the data collection process and they gave their writ-
ten consent to participate in the study. The experi-
mentation was conducted in the form of recorded
interviews with two experimentalists (co-authors
of this paper) and included two parts. The sessions
lasted between 1 and 2.5 hours per participant. The
final set of 8 texts was chosen after pre-testing with
5 participants, based on time demands and the ob-
servation of fatigue among the participants by the
end of the study.

In the first part (which took an average of 40%
of the session), the participants were assisted in
defining the mental workload from their percep-
tion, during a semi-structured interview, using the
explicitation techniques (Vermersch, 1994). The
participants were encouraged to explain their repre-
sentation of MWL without being directed towards
a particular definition. Then, the experimentalists
extracted keywords from their actual speech and
submitted them to the participant for validation. We
will refer to these labels as prior labels. It provides
us with the initial set of data: the recorded defini-
tion of MWL as well as the keywords associated
with this concept. The main purpose of this step is
to define the labels for the next task: annotation.

In the second part of the task, the participants
were asked to annotate eight short messages us-
ing the open-source text annotation tool Doccano
(Nakayama et al., 2018). The tool was specifically
configured to propose only their own prior labels.
The participants had to annotate text parts illustrat-
ing an expression of mental workload, according
to their judgment, without any constraint on the
segments. The participants were also allowed to
freely introduce new labels, which were then added
into the annotation interface by the experimentalist.
The labels used to annotate at least one segment are
referred to as used labels. Additionally, the partici-
pants were allowed to assign multiple overlapping
labels to their annotations. All annotators received
the same sequence of texts, but the sequence was
rotated so that each annotator began with a differ-
ent text. This standard counterbalancing was made
in order to minimize the learning effect and bal-
ance the performance among all the users for all

the texts.

After each interview with each participant, we
were able to collect the following data: 1) the list
of prior and used labels 2) the annotated segments
from the eight messages (start offset, end offset,
and associated label).

At this stage, we did not rename or unify the
labels that had similar meanings, and instead kept
the exact formulation expressed by the participant.
For example, we treated priority and prioritization
as two distinct labels. However, the experimenters
took care to consistently put down and unify the
formatting of all repeated keywords and phrases
across the sessions. We also ignored the polysemy
in this study. The results of this methodology are
presented in subsequent sections.

4 Analysis and results

To address the first research question concerning
the similarity of individual representations of men-
tal workload, we conducted a comparative analysis
of the following components: labels, segments,
relations between labels, segments, and user cate-
gories.

4.1 Labels

First, to identify patterns that indicate a shared
understanding of MWL, we began with an exami-
nation of the prior labels (defined by the annotators
during the first phase of the interview) and the used
labels (actually employed in the annotation pro-
cess). The maximum number of prior labels in
the annotation task was 12, with a minimum of 5.
On average, each participant defined 9 labels. In
contrast, the maximum number of labels utilized
during the annotation task was 15, while the mini-
mum was 5, with an average of 10 labels per each
participant. The average intersection between prior
and used labels is 7.

We identified the labels that were commonly
defined and/or used by different participants. At
this stage of our analysis, we only consider strictly
identical labels. The most frequently used labels
are presented in Table 1, along with the number
of annotators who proposed (center column) and
used them (rightmost column). Labels in boldface
correspond to those for which the frequency of use
is at least 3 more that the frequency as prior labels.

We can see that the most frequent labels refer to
individuality (individual, personal), demand (tem-
porality, pressure), and task (complexity, meaning).
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temporality
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uncertainty
context
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powerlessness
recognition
volume
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We selected Claude Sonnet 3.5 (Anthropic,
2024) among other mainstream LLMs by prompt-
ing it to propose some categories and to regroup the
197 distinct used labels. The prompt is provided in
A.2. We did not ask for a precise number of clusters
but ended up with the 14 listed in Table 2, along
with the number of labels and the number of partic-
ipants (Annotat.) who used at least one of them for
annotating. An LLM was chosen over a human an-
notator to ensure objectivity. The authors reviewed
the associations and categories and were generally
satisfied with the results. The choice of LLM over
other clustering methods is defined by the fact that
our approach focused on grouping labels that made
sense together and, more importantly, on giving
those groups clear names.

Table 1: The most frequently used labels (by at least 3
distinct annotators)

These three dimensions align with academic mod-
els of mental workload (Longo et al., 2022; Galy,
2016; Le Gonidec, 2022).

It is noteworthy that the individual feature of
mental workload was among the first labels pro-
posed and used by participants. While models
of mental workload by Sweller, Galy, and Le Go-
nidec acknowledge this individual aspect, it is usu-
ally less emphasized in discussions between non-
experts, especially when compared to more com-
mon aspects such as time management and task
multiplicity. Indeed, the second most frequently
used label corresponded to the temporal dimension
of mental workload.

As indicated in bold in Table 1, some labels
were frequently added by the participants during
the annotation step. They reflect the fact that some
aspects of mental workload were identified (or re-
membered) by the participants and could be con-
sidered as contingent to the topics of the selected
messages. However, some of them meaning, uncer-
tainty were also suggested as prior labels by other
participants, and in any case, they were considered
relevant for the annotation.

4.2 Label clusters

As mentioned earlier, many of the labels collected
were semantically or formally close. To obtain a
more global view of the dimensions considered
by the participants, we employed a large language
model (LLM) to propose a clustering of all labels.

Cluster Annotat. | Labels
Emotional and Psy. Aspects (I) 18 24
Relationships and Interactions (I) 18 19
Workload (W) 17 15
Environment and Context (A) 17 17
Temporality (W) 17 10
Organization and Management (A) 14 16
Cognitive and Mental Aspects (I) 13 16
Constraints and Difficulties (W) 13 15
Balance and Well-being (I) 13 14
Abilities and Skills (T) 11 11
Impact and Consequences (W) 11 12
Processes and Actions (A) 9 11
Adaptation and Change (A) 8 9
Management and Recognition (I) 5 8

Table 2: Label clusters and description according to
Claude. IWA refers to the components of Galy’s model

The resulting clusters align to the three main
components of the IWA (Individual, Workload,
Activity) model of mental workload Galy (2016).
Therefore, we can consider that these induced cate-
gories confirm that the labels do not diverge from
the models of mental workload, and that they can
serve as a coarser-grained way to identify the qual-
itative behaviors of the participants.

4.3 Annotated segments

Having analyzed the labels, we now turn our focus
to the annotated text segments. The average num-
ber of segments per annotator is 69, with an average
length of 39 characters. The minimum number of
segments recorded for a user was 13, while the
maximum reached 248. The shortest segment had
a length of 1 character (a question mark), compared
to a maximum length of 1144 characters (i.e. an
entire message). This variation was expected due
to the lack of guidelines and constraints.
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At this stage, we aimed to find specific segments
of text that attracted the most attention from the
participants, without considering the associated la-
bels.

We extracted the most frequently annotated seg-
ments along with the number of users who anno-
tated each segment. Although annotators had the
option to overlap their annotations and assign mul-
tiple labels to the same text segment, we decided to
consider only the number of users to avoid distort-
ing the interpretation of markers across all users.
We calculated, for each character position in each
text, the number of different users who included it
in at least one annotated segment, and then identi-
fied the contiguous characters that exceed a given
threshold. Based on the inflection point in the curve
displaying the number of segments, we selected a
threshold of 14 different annotators (50% of them)
and identified 52 different text segments. These
segments consist of a variety of text units, ranging
from single words (e.g., stress, meaning) to entire
phrases (e.g., Reconnect with nature, with our envi-
ronment, with humans). The complete list of these
segments is provided in French in A.3.

After analyzing these segments, we noticed that
the vocabulary containing words with negative con-
notations attracted the most attention. The annota-
tors associated the text elements reflecting discom-
fort, overwhelm, overload, and disconnection with
an increased mental workload.

Following a separate analysis of labels and seg-
ments, the next section explores the relationships
between them.

4.4 Labels and Segments Similarity

Variability of annotation across annotators comes
from both the labels used (intentional similarity)
and the segments delimited (extensional). The lat-
ter similarity has been considered at the dataset
level, as we have identified the main zones of inter-
est in the target texts. On a finer grain, we aimed
to identify the extent to which specific labels are
used by different participants to tag the same text
segments.

If we consider the set of text segments labeled
L by participant P across the corpus, we can de-
fine the extensional similarity the set of segments
labelled L’ by another participant P’ as the amount
of overlapping. More precisely, we used the Jac-
card index to measure the ratio between the number
of characters (defined by their offsets) that the two

sets have in common, to the union.

If ext(Lp) is the set of characters (offsets) la-
beled as L by participant P (as one or several seg-
ments), we can define the extensional similarity
between two labels from two participants (L p and
L', as the Jaccard index between the labeled text
segments:

, t(Lp) Next(Ly)]
t L ! r) = |ex P
simext(Lp, Lpr) lext(Lp) U ext(Lp)|

In other words, if the two participants used two
labels (either different or identical) to tag the exact
same parts of the target texts, simext will be 1,
while it will be O if there is no overlap.

We computed the simext values for every pair
of labels from two different users. We then focused
on two specific subsets of pairs.

First, we considered the pairs of different labels
with a high level of similarity (simext > 0.4, for
a total of 169 pairs). We observed 15 cases where
different annotators applied the exact same labels
to the same segments. For example, on the same
segment leaving us in the dark three annotators
applied the label uncertainty independently. This
is understandable, as the selected messages influ-
enced the choice of labels.

Second, as expected, we found a number of syn-
onyms used to tag the same text parts, for example
pause and respite.

Third, and more interestingly, we found cases
where the same segments were labeled with seman-
tically related words, although not synonyms. For
example, the labels could describe either the causes
or the consequences of the same phenomenon. In
this instance, the same segment of the text a month
before the show, and not 3 days before was anno-
tated by different persons using the label temporal-
ity for one and to juggle for the other. This means
that one person describes increased MWL as a re-
sult of time constraints, while another perceives it
as a consequence involving the need to juggle and
manage multiple tasks simultaneously. Another
example is when different users applied the labels
uncertainty and ability to reason to the same text
segment leaving us in the dark. In the first case, the
annotator used a paraphrase of the segment itself
to express the cause, while the other used a label
for a consequence, indicating that this impacts the
ability to reason. These cause-and-consequence
designations are supported by participants’ verbal
expressions during the test. The first annotator
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stated: "This uncertainty is caused by the lack of
answers that the person expected, as before, and
that they could receive." In contrast, the second
annotator said: "Leaving us in the dark means that
there are no indicators or elements to be able to
reason with, to face something."

This clearly indicates that although we found a
number of indications that the annotators exhibit
similar behavior, there are also variations in their
points of view on this complex concept.

It is important to note that we didn’t observe
any contradiction in annotators’ behavior: while
there were complementary variations, there were
no opposing opinions, similar to what has been
observed in other related studies on perspectivism.

4.5 Overview of annotator behavior

In this last section, we examine variations among
individual annotators to identify the main profiles
and assess whether these variations are linked to
the annotators’ position and status.

We conducted a multidimensional analysis at
the annotator level by computing the following
variables:

* NbDistinctLabels: the number of distinct la-
bels initially proposed by the participants dur-
ing the first stage of the interview (before the
annotation). Min:5, Max:15, Avg: 10.1.

» UsedLabels: the ratio of these prior labels that
were actually used for annotation. Min: 41%,
Max: 100%, Avg: 81%.

* AddedLabels: the ratio of used labels that
were added by the participant during the anno-
tation stage. Min: 0, Max: 67%, Avg: 30%.

* NbSegments: the total number of text seg-
ments produced by the participant during the
annotation. Min: 13, Max: 248, Avg: 69.1.

 TextCoverage: the total amount of text (num-
ber of characters) included in at least one an-
notated segment. Min: 427, Max: 5065, Avg:
1987.

* AverageOverlap: the average number of seg-
ments in which an annotated text part is in-
cluded (at the character level). Min: 1, Max:
2.7, Avg: 1.3.

These differences between the participant groups
for each variable are illustrated in the boxplots in
Figure 1. While there is no clear difference for
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Figure 1: Boxplots of behavior variables across
participants’ categories (E=Mental workload ex-
perts, M=Managers, HR=Human Resources specialists,
O=Others)

Average Overlap

variables associated with text segment selection
(number of segments, overlap, and text coverage),
significant variations are observed in the choice of
labels. Experts tend to have fewer labels, use all
their initial proposals, and do not need any addi-
tional ones. HR specialists and managers exhibit
roughly similar profiles, but the former use a larger
number of labels. We note that the Other group
is in the middle ground and remains inconclusive
without additional participants.

To obtain a more global picture, we performed a
principal component analysis (PCA) on the matrix
representing each of the 27 participants across the
6 quantitative variables. The main factor map is
shown in Figure 2. The variables are represented
as blue arrows, and the participants are depicted as
colored dots according to their group. The confi-
dence ellipses (at the 95% level) are shown around
the barycenter for each group. The first factor map
is sufficient as it captures 70% of the total variance.

The first principal component (horizontal axis)
is positively correlated with all variables except
AddedLabels. On the right, there are the partici-
pants who produced a large number of segments,
with a significant overlap and a high number of
labels. The HR specialists are predominant, while
the managers are located on the left side of the
map. In other words, HR specialists exhibit a more
dispersed annotation behavior with more segments
and labels, in a more cumulative manner than the
managers (who are less productive).

The second component (vertical axis) opposes
participants who used a large amount of their ini-
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Figure 2: Principal Component Analysis of the partici-
pants

tially proposed labels (bottom) to those who had to
provide additional labels in the course of the anno-
tation process. It also appears that this distinction
is correlated with the text coverage.

It is interesting to observe that the experts are
very homogeneously located at the bottom of the
factor map, even though none of them had prior
experience with annotation and they come from
diverse academic backgrounds. This seems to indi-
cate that their knowledge allowed them to correctly
anticipate the dimensions of the phenomenon, and
that the labels they initially provided at the begin-
ning of the interviews were both relevant and suffi-
cient. Additionally, it appears that they produced
a more focused set of segments, with less cover-
age and overlap than naive participants from other
groups.

Our final analysis considers the clusters of labels
that we requested an LLM to identify (see Table 2).
We considered the number of labels from each clus-
ter used by each participant (without considering
the number or size of the corresponding segments)
and performed a correspondence analysis. The first
factor map is shown in Figure 3.

Here also, we can see that the experts exhibit
a specific and coherent behavior. They all appear
on the right side of the map, standing out with
label clusters such as Impact and consequences
and, to a lesser extent, Processes and actions. The
second group that differs is the Other annotators,
who focus on cognitive and mental aspects. On
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Figure 3: Correspondence Analysis: participants and
label clusters

the left, Managers and HR professionals are posi-
tioned together, suggesting that they share similar
preferences in the label categories used during an-
notation. The categories on this left side appear to
be more individual-focused, encompassing aspects
such as Balance and Well-being, Relationships and
Interaction, Adaptation and Change. These clus-
ters reflect individual experience and interpersonal
dynamics within the context of mental workload.

These results seem consistent with the mission
of managers and HR, more focused on individu-
als, while experts are more interested in mental
workload processes.

Beyond this specific analysis, it appears that it
remains possible to perform a qualitative analysis
and to identify global tendencies in the annotations,
even in the absence of specific guidelines.

5 Conclusion and future work

This study explored the subjective perceptions of
mental workload through an innovative annotation
method involving participants of diverse profes-
sional profiles, with different expertise related to
the MWL concept. Regarding the formulated re-
search questions, we can state that firstly, text anno-
tation can serve various purposes, notably the anal-
ysis of different points of view on mental workload.
Next, the analysis of the results showed that, even
without clear instructions, people share a common
representation of mental workload. Finally, despite
this convergence in the representation, we observed

149



differences in user behavior based on their profes-
sional roles. By allowing annotators to define their
own labels and freely annotate text segments, we
captured a variety of perspectives on MWL. We
observed similarities in the annotated segments,
labels, and groups, indicating a common represen-
tation of MWL, as we anticipated. Additionally,
differences emerged, highlighting the influence of
individual professional profiles on the perception
of this topic. The comparison between experts’ and
non-experts’ approaches allowed us to see differ-
ences in the process of identifying MWL elements
in the text. Therefore, we gained a better under-
standing of the non-expert analysis and potentially
considered new candidate facets in the MWL con-
cept by leveraging employees’ knowledge of the
workplace context.

This holistic approach promotes richer and more
representative annotation and can thereby improve
models for analyzing and interpreting textual data.
The collected data can be viewed as explicit, struc-
tured, exemplified, and tested individual models
of the MWL. The same annotation protocol could
be applied to topics beyond mental workload, en-
abling a more inclusive approach.

Since we recorded all the interviews and have
a transcript of the participants’ comments on their
own actions (such as definition, reformulating la-
bels, choice of segments, etc.) we possess an even
richer dataset than what we have presented here,
which requires further analysis and effort.

As part of a larger project, we are now consid-
ering the development of an automatic annotation
process for mental workload in the messages. How-
ever, we are currently at the stage of defining the an-
notation scheme. This innovative approach opens
the way to a better understanding of the linguistic
and cultural nuances that influence the assessment
of mental workload, while emphasizing the impor-
tance of integrating different perspectives to enrich
textual data analysis models.

Limitations

One of the limitations of this study is the small
dataset of texts, which displayed limited variabil-
ity, as the messages primarily focused on a small
number of topics. This limitation is caused by the
collection of texts within a specific working envi-
ronment, and further investigations are needed to
generalize the findings to other contexts. Neverthe-
less, we aimed to compile a dataset from various

campaigns to present annotators with messages on
different topics, all still related to work.

Another limitation is that the participants were
recruited from a population that was very busy at
work, allowing them to dedicate only 1 to 2 hours
to the study. This time constraint may have im-
pacted their level of involvement in the process.
However, all participants were engaged in the task
and performed well in annotation, despite having
no prior experience. We assess their performance
based on the annotations they produced as well as
the received feedback. All participants expressed
significant interest in the task and demonstrated
high motivation and self-awareness; however, they
also noted that it was complicated and mentally
resource-consuming.
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A Appendix

A.1 Sample message

French Original:

Points a améliorer: - Avant SDLR: Faire
en sorte que la Brand revoie les slides un
mois avant le salon, et pas 3 jours avant.
Les modifications imposées sont trés im-
portantes et nécessitent une surcharge de
travail tant pour etre en conformité que
pour modifier le discours pour les visi-
teurs. Demander des slides en francais
et en anglais plutdt que de nous laisser
dans le flou (sur la partie anglaise).

English translation:

Areas for improvement: - Before Re-
search and innovation fair: Have the
Brand review the slides a month before
the show, and not 3 days before. The
changes imposed are very significant and
require a lot of work both to comply
and to modify the presentation for vis-
itors. Ask for slides in French and En-
glish rather than leaving us in the dark
(about the English part).

A.2 Prompt used for clustering labels

The prompt was designed and submitted in French.
Below is the translation to English by the authors:
I've interviewed people and asked them what
mental workload means to them, and they’ve given
me a list of terms that they associate with the notion
of mental workload. Can you cluster these terms
and group them according to their meaning? Each
term must only go into one cluster and must not be
repeated. I want you to use all the terms from the
list in this task.
{List of 197 distinct labels in random order}.

A.3 List of text segments in French annotated
by at least 14 different participants

"lourdeur de la logistique et des regles’,

“ne sont pas inclus’,

“points de synchronisation’,

"tissage des liens sociaux’,

"collaboration et le partage d’informations et
d’idées’,

“en-dehors des temps de travail’,

’on fait quoi maintenant’,

‘ne sais pas trop’,
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“peut-étre di réfléchir un peu’,

’sens’,

’un peu perdus’,

’on ne sait pas vers ol, ni pourquoi’,
’malaise général’,

’pas promus’,

’absolument’,

’garder autant’,

*fallait-il pas simplifier’,

’donner du sens’,

’dans les hiérarchies supérieures il n’y en a pas as-
sez’,

‘numérique’,

’les écrans ont raison de notre bien-€tre’,
’Se reconnecter a la nature, a notre environnement,
aux humains’,

’moi’,

’primordial’,

“essentiel’,

’revenir a des choses simples’,
’reconnecter’,

’non pas’,

’des robots’,

’nos émotions’,

‘réponse différente’,

’tu as certainement un probléme hormonal’,
’géne occasionnée’,

‘réponse différente’,

“géne’,

“interrompre le travail’,

‘nous sommes tres heureux’,
’déshumanisé’,

’perso’,

‘nauséabonde’,

’tres froid’,

’heureuse’,

‘retrouver mes collegues’,

“perdu une part de la bonne humeur, de I’ambiance’,
’échange convivial’,

’informel’,

’un mois avant le salon’,

“et pas 3 jours avant’,

’imposées’,

’trés importantes’,

’surcharge de travail’,

’laisser dans le flou’
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Abstract

Test-time scaling is a family of techniques to
improve LLM outputs at inference time by per-
forming extra computation. To the best of our
knowledge, test-time scaling has been limited
to domains with verifiably correct answers, like
mathematics and coding. We transfer test-time
scaling to the LeWiDi-2025 tasks to evaluate
annotation disagreements. We experiment with
three test-time scaling methods: two bench-
mark algorithms (Model Averaging and Major-
ity Voting), and a Best-of-N (BoN) sampling
method. The two benchmark methods improve
LLM performance consistently on the LeWiDi
tasks, but the BoN method does not. Our exper-
iments suggest that the BoN method does not
currently transfer from mathematics to LeWiDi
tasks, and we analyze potential reasons for this

gap.
1 Introduction

Supervised learning typically assumes a single
fixed label per example. However, prior work doc-
uments substantial interpretative variability in hu-
man annotations, with annotators often disagreeing
on labels (RoB et al., 2016; Warner and Hirschberg,
2012; Baan et al., 2022), especially for subjective
Natural Language Processing (NLP) tasks (Oves-
dotter Alm, 2011). Plank (2022) and Cabitza et al.
(2023) argue that this variability is informative
rather than problematic and Rottger et al. (2022)
suggests that variability should be explicitly inte-
grated into the annotation processes.

The shared task Learning With Disagreement
(LeWiDi) 2025 (Leonardelli et al., 2025) tackles
this opportunity and provides four datasets with
annotator-level metadata and label variation. We
document the datasets in detail in subsection 3.6.
The datasets support two different tasks: (1) Per-
specivist task: Predicting the label of each indi-
vidual annotator. (2) Soft-label task: Predicting
the distribution of human annotations for a single

Prediction N

Prediction 1

'Y

v
Best-of-N max final
sampling score soft-label

Figure 1: Best-of-N sampling with step-wise scores.
For each problem a reasoning LLM generates N soft-
labels and Chains-of-Thought (CoTs). Next, an LLM-
as-a-judge scores each step in the CoT for correctness,
and BoN selects the soft-label with the highest total
score. Takeaway: Sampling multiple times increases the
chances for a good prediction.

problem instance. This distribution is known as a
soft-label, or a human judgement distribution (Nie
et al., 2020).

In the previous iteration of the LeWiDi shared
task (Leonardelli et al., 2023), many teams trained
encoder-based models like BERT (Devlin et al.,
2019) directly on soft-labels. However, the innova-
tions in generalist Large Language Models (LLMs)
and the rise of “reasoning” capabilities (Wei et al.,
2022; OpenAl, 2025; Yang et al., 2025; DeepSeek-
Al et al., 2025) motivated us to answer the follow-
ing question:

“Can reasoning LLMs handle interpretative vari-
ability and annotation disagreement effectively at
inference time?”

To answer this question, we turn to test-time
scaling methods, like BoN sampling, which im-
prove the LLMs performance by spending more
compute per problem (Cobbe et al., 2021; Shen
et al., 2021). These methods have been very suc-
cessful in mathematics and coding, but have not
been applied yet to NLP tasks with annotation dis-
agreement, as far as we know. In this paper, we
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take established test-time scaling methods and ap-
ply them to the LeWiDi tasks.
Our contributions are:

* A metric named prediction diversity, used to
analyze the performance of test-time scaling
methods on soft-label tasks. We show that it
tracks problem difficulty on the LeWiDi tasks.

* We show that Model Averaging and Major-
ity Voting consistently improve LLMs perfor-
mance across all LeWiDi datasets.

* Finally, we show that BoN sampling with step-
wise scores does not work well on the LeWiDi
tasks, and analyze potential causes.

2 Related Work

2.1 Learning Interpretative Variability

Modeling the diverse perspectives that human an-
notators have on the same problems is impor-
tant to prevent minority voices from being ig-
nored (Leonardelli et al., 2021). Prior work on
modeling annotator disagreement has explored vari-
ous techniques, such as using separate model heads
for each annotator (Mostafazadeh Davani et al.,
2022), learning specific representations for anno-
tators (Mokhberian et al., 2024), separating stable
opinions from annotation mistakes (Gordon et al.,
2021; Weber-Genzel et al., 2024), and using soft-
labels to aid learning (Fornaciari et al., 2021; Uma
et al., 2020). To evaluate models on soft-labels,
Rizzi et al. (2024) propose using the Manhattan or
Euclidean distance rather than the Cross-Entropy
loss. In terms of quantifying the diversity of soft-
labels, Singh et al. (2024) proposed the Jensen-
Shannon Divergence in the context of ensemble
classification.

2.2 Test-Time Scaling

Test-time scaling methods improve the perfor-
mance of LLMs by spending more compute per
problem instance. One approach is to refine
an initial response iteratively with self-feedback
(Madaan et al., 2023), or improve the response
by following a set of rules (a constitution, Bai
et al. 2022). Another common test-time scaling
approach is Best-of-N sampling, where multiple
solutions are sampled in parallel, and a verifier
model scores or ranks the solutions to select the
best one (Cobbe et al., 2021; Shen et al., 2021). The
scores are computed based solely on the outcome

(correct or incorrect) of the task (Outcome Reward
Model). But the scores can also be computed for
the correctness of individual reasoning steps used
to arrive at the answer (Process Reward Model).
Lightman et al. (2024) showed that scoring indi-
vidual steps in a Chain-of-Thought (CoT) for cor-
rectness, and discarding CoTs with faulty steps
improves the performance of LLMs on the MATH
dataset (Hendrycks et al., 2021). In their work,
the scoring annotations were provided by humans.
Follow-up work replaced the human scores with
automated scoring, using either Monte Carlo (MC)
sampling (Wang et al., 2024) or an LLM judge
(LLM-as-a-judge, Zheng et al., 2023). Research
by Zhang et al. (2025) and Zheng et al. (2025)
showed that using LL.Ms to provide these scores
generalizes well and is competitive with training a
custom model.

A different approach that leverages diversity plus
selection is Mixture-of-Experts (MoE): multiple
parallel expert subnetworks, with a gate that selects
a few experts per input. Both MoE and test-time
scaling are independent approaches that can be
combined during model evaluation, e.g. as did Co-
manici et al. (2025) for the SWE-Bench (Jimenez
et al., 2024).

3 Method

Nomenclature: A dataset is a collection of prob-
lem instances (problem in short). We sample a
reasoning LLM N times to solve a problem. Each
sample contains a prediction and a CoT. A predic-
tion could be text, a soft-label or a list of integers
(perspectivist task).

Our test-time scaling method is not novel but
rather a combination of methods already estab-
lished in the literature. Our innovation is to apply
it to a new domain: the LeWiDi-2025 tasks. We
refer to the method as BoN sampling with step-wise
scores, or just BoN sampling in short. The method,
shown in Figure 1, consists of three steps: (1) A
reasoning LLM generates /N samples for a prob-
lem. (2) A judge LLM scores each CoT-step in
each sample for correctness. (3) We choose the
sample with the best score for the final prediction.
We explain all method details in subsection 3.1 and
subsection 3.2. Table 1 is an overview of all meth-
ods we run experimentally, which include different
baselines and benchmarks.
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Method Samples Use CoT
Most Frequent - -
Simple Sampling 1 X
Model Averaging N X
Majority Voting N X
BoN Oracle N X
BoN + SWS N v

Table 1: Methods Overview. The first two methods
are baselines (subsection 3.4). The next two methods
are our own benchmarks (subsection 3.5). The BoN
Oracle (subsection 3.3) is a performance upper bound
on our proposed method BoN + SWS (Step-Wise Scores,
subsection 3.2). The models we submitted to the shared
task are in italic.

3.1 LLM Setup

Prompts We prompt a reasoning LLM to solve
the soft-label and perspectivist tasks directly. For
example, in the soft-label task, we present the
dataset (e.g. sarcasm detection), and instruct the
model to predict the human soft-labels (snippet in
Listing 1, full prompt in Listing 12).

Listing 1: Prompt Snippet (Soft-label Task)

Below is a context+response pair where
human annotators rated the sarcasm
level of the 'response' ranging from 1
(not at all) to 6 (completely). Please
guess the distribution of ratings and
output it in the final_response field
in JSON format [...]

borrows heavily from Lightman et al. (2024), so in
Table 2 we summarize the differences and similari-
ties between both.

Lightman et al. Ours
Domain Math LeWiDi Tasks
Model GPT4 Qwen3-32B
Scorer Human(s) LLM-as-a-judge
Reduction Product Mean
Sampling Best-of-N
Scores bad=0, okay=0, good=1

Table 2: Comparison to Lightman et al. (2024). First
4 rows are differences, last 2 rows are similarities.

First, we split the CoT into logical steps (details
in Appendix B), and then score each step as either
“great”, “okay”, or “bad” in line with Lightman
et al. (2024). They used human annotations to train
a scoring model, but we use an LLM-as-a-judge
instead to provide the scores directly, as suggested
by Zheng et al. (2025). The prompt for the LLM-
as-a-judge is based on their scoring instructions

(snippet in Listing 3, full prompt in Listing 14).

Listing 3: Prompt Snippet (LLM-as-a-judge)

In the perspectivist task, we instead instruct the
model to predict the label for each annotator (snip-
pet in Listing 2, full prompt in Listing 13).

Listing 2: Prompt Snippet (Perspectivist Task)

Your goal is to grade an LLM's
step-by-step solution to a problem. The
model will often say things that look
ok at first, but will turn out to be

wrong on closer inspection - stay
vigilant!

Please mark each step with (great,
okay, bad). [...]

Below is a context+response pair [...].
Please guess the rating given by each
annotator and output them all in a
list, in the same order as the
annotators. [...]

We include a prompt section that explicitly instructs
the model to reason about the diverse perspec-
tives and interpretations that annotators could have.
This improved performance by a small, but statis-
tically significant margin, so we included it in all
later experiments (see Appendix H).

3.2 BoN Sampling with Step-Wise Scores

In BoN sampling we score each of the /N model
samples and select the best for the final prediction.
The score for a sample depends on the correctness
of each step in its CoT. Our BoN sampling method

We follow Lightman et al. (2024) to convert the
three scores to numbers (bad=0, okay=0, good=1),
and average all the step-wise scores to compute a
prediction-level score. Lightman et al. (2024) used
a product reduction, but in our experiments, mean
reduction outperformed product. This step-wise
scoring is repeated for N = 10 model samples
and their corresponding CoTs. We select the one
with the highest prediction-level score as the final
prediction.

Models Previous research in hate speech detec-
tion and Natural Language Inference (NLI) showed
that explanations are useful to judge the plausibil-
ity and correctness of annotations and model pre-
dictions (Mathew et al., 2020; Jiang et al., 2023;
Weber-Genzel et al., 2024). We hypothesize that
reasoning about annotator disagreements also re-
quires a deliberative and explanatory approach that
considers multiple interpretations and weights their
likelihoods. Therefore, we use a reasoning LLM
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for our experiments (Qwen3-32B, Yang et al. 2025).
For LLM-as-a-judge we use a model from a dif-
ferent family besides Qwen3 (DeepSeek-R1-0528-
Qwen3-8B, DeepSeek-Al et al. 2025). Sampling
parameters are detailed in Appendix A.

3.3 Upper Bound on Performance

We determine the upper bound on performance
of any BoN sampling method by computing a so-
called BoN oracle. The BoN oracle is a hypothet-
ical model that always selects the best prediction
among N predictions (in our case, lowest distance).
We compute the oracle in the training set by choos-
ing the soft-label among the IV predictions with the
lowest distance to the human soft-label. However,
for a dataset with unknown human soft-labels, we
cannot compute the oracle. The oracle is an analyti-
cal tool to determine the BoN performance ceiling,
rather than an algorithm to use in practice. The
oracle soft-label p, for a set of predictions P (size
N) is defined as:

Po = argmin W(p, pp,) )
peEP
where py, is the human soft-label. We compute it
for both the soft-label and perspectivist tasks.

3.4 Baselines

The LeWiDi 2025 shared task proposed the Most
Frequent Baseline. In the soft-label task, this is
the mean label value for each label across all train-
ing problems. In the perspectivist task, it is the
most frequent label for each individual annotator.
Our own basic baseline is the performance of the
LLM without any test-time scaling, i.e. with a sin-
gle sample per problem (N = 1). We call this
Simple Sampling.

3.5 Test-Time Scaling Benchmarks

BoN sampling uses a lot more compute per prob-
lem than Simple Sampling (/V times more). To
benchmark BoN sampling fairly, we compare it
with two test-time scaling algorithms that also cre-
ate a single prediction out of NV predictions.

Soft-label task We benchmark against Model Av-
eraging, where all N soft-labels p™ are averaged
into a single soft-label p. The resulting soft-label p
is a valid probability distribution. Each entry ¢ of p
is defined as:

1 N
pi= anlp? 0)

Perspectivist task We benchmark against Major-
ity Voting, where we sample the model NV times per
problem, each prediction resulting in a label per
annotator, and then select the most frequent label
(within the N predictions) for each annotator.

3.6 LeWiDi-2025 Datasets

We report the datasets as provided by the LeWiDi-
2025 shared task. All datasets provide some level
of annotator-level metadata like gender, age, na-
tionality, education and more.

The Conversational Sarcasm Corpus (CSC):
The CSC dataset by Jang and Frassinelli (2024)
is a dataset for sarcasm detection with 7,036 en-
tries (5,628 train, 704 dev, 704 test). Each entry
consists of a context+response pair, where the re-
ponse is rated for sarcasm on a 6-point Likert scale,
by either 4 or 6 annotators.

The MultiPico dataset (MP): The MP by Ca-
sola et al. (2024) is a dataset for irony detection
with 18,778 entries (12,017 train, 3,005 dev, 3,756
test). Each entry consists of a post-reply pair from
Twitter and Reddit, and the reply’s irony is rated as
either ironic (1) or not ironic (0) by between 2 and
21 annotators.

The Paraphrase Detection dataset (PAR): The
Paraphrase is a dataset by the MaiNLP lab! for
paraphrasing detection with 500 entries (400 train,
50 dev, 50 test). Each entry has two questions from
Quora Question Pairs (QQP), and annotators rate
how strongly the questions are paraphrases of one
another from -5 to 5. Each entry is rated by 4
annotators.

The VariErr NLI dataset (VEN): VariErrNLI
by Weber-Genzel et al. (2024) is a dataset for NLI
with 500 samples (400 train, 50 dev, 50 test). An-
notators can assign any and multiple of the NLI
categories (entailment, contradiction, neutral) for
each entry. Each entry is annotated by 4 annotators.

3.7 Metrics

Soft-label Task As suggested by the LeWiDi
task, we report Manhattan Distance for the MP
and VEN datasets, and Wasserstein Distance for the
CSC and PAR datasets. Both distances are exactly
equivalent when applied to binary datasets (Rizzi
et al., 2024). The Wasserstein distance measures
the minimum “work” needed to transform one

"https://mainlp.github.io/
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probability distribution into another, where “work”
equals the amount of mass moved times the dis-
tance.

Perspectivist Task For the perspectivist task, we
report Error Rate (1 - accuracy) for the MP and
VEN datasets, and Absolute Distance for the CSC
and PAR datasets. We divide the Absolute Dis-
tance by the range of the Likert scale, in line with
the LeWiDi organizers. Both metrics are exactly
equivalent when applied to binary datasets.

Prediction Diversity BoN sampling requires a
diverse set of predictions for each problem. Oth-
erwise, if all predictions were the same (or very
similar), it would not matter which one is selected,
and BoN sampling would provide no improvement
over Simple Sampling. Therefore, we quantify the
variability of the soft-labels across the N predic-
tions for each problem, and call this the prediction
diversity.

We implement this as the average pair-wise dis-
tance between all NV soft-labels for a single prob-
lem. For the LeWiDi datasets, we use the Wasser-
stein distance because it can capture distances in
Likert scales. We do not compare soft-labels to
themselves, because the distance is 0. This is why
we divide by N(N — 1) rather than by N2. The
formula for diversity D is:

N N
D(P) = N(NI_DZZW@Z,PJ) 3)
i=1 j#i
where P is the set of NV soft-labels, and W (p*, p/)
is the Wasserstein distance between the soft-labels
p’ and p?. Note that measuring the diversity of a
set of predictions P is different from measuring
the spread of a single soft-label (i.e. measuring the
entropy of the soft-label).

Problem Difficulty Classically, problem diffi-
culty is measured as the percentage of correct an-
swers over IV attempts. For soft-label tasks, it can
instead be defined as the distance between predic-
tions and human soft-label across N attempts. In
the LeWiDi task, we posit a relationship between
prediction diversity and problem difficulty: low di-
versity arises when the model perceives no ambigu-
ity (the problem is easy or only one interpretation is
considered), while high diversity arises when mul-
tiple plausible interpretations exist and the model’s
N predictions vary. Since both prediction diversity
and distances (Wasserstein, Manhattan) are com-
putable, their correlation is empirically measurable.

4 Results

In Table 3 we summarize the results on the test,
taken from the LeWiDi leaderboard?, since we have
no access to the test set ground truth. In Table 4 we
present a performance overview of all methods for
the LeWiDi datasets. We did not train on the train
set, so we used it for evaluation.

Task

Dataset Soft-label () Perspectivist ()
CSC 0.928 0.231

MP 0.466 0.414
PAR 1.797 0.228
VEN 0.356 0.272
Avg. Rank 5th 6th

Out of 15 11
Method Model Averaging Majority Voting

Table 3: Results on the test set of the LeWiDi datasets
(lower is better). Values are from the LeWiDi leader-
board. We submitted our best performing methods,
Model Averaging and Majority Voting.

4.1 Test-Time Scaling Benchmarks

We first report the performance of all methods ex-
cept BoN sampling. The orange bar in Figure 2
is the performance Simple Sampling with Qwen3-
32B. It outperforms the Most Frequent Baseline on
3 out of 4 datasets in the soft-label task, but only in
2 out of 4 datasets in the perspectivist task. The test-
time scaling benchmarks (green) are Model Averag-
ing and Majority Voting. Both methods consistently
improve performance over Simple Sampling across
datasets and tasks. We discuss the effects of Model
Averaging on soft-label entropy in Appendix E and
compare it with naive soft-label smoothing. The
BoN oracle (red) is meant to show the performance
ceiling of any BoN sampling method. Its strong
performance indicates that, at least theoretically, a
good BoN sampling method can achieve very good
performance on the LeWiDi tasks.

4.2 Best-of-N Sampling with Step-Wise Scores

The BoN sampling method has inconsistent perfor-
mance in the LeWiDi datasets, as shown in Figure 3.
Performance is often flat with the number of sam-
ples N, or varies wildly with judge model. E.g in
the MP dataset, the Deepseek judge is consistently
worse (higher distance) than Simple Sampling on
both tasks (soft-label and perspectivist). BoN sam-
pling is only competitive with the benchmarks (red

21 eWiDi leaderboard: https://le-wi-di.github.io/
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Soft-label Task Perspectivist Task

Method CSC Par MP VEN |CSC Par MP VEN
Most Frequent Baseline 1.14 2.89 0.26 0.27 | 0.21 0.36 0.30 0.33
Simple Sampling 1.00 196 026 022 | 024 025 043 0.32
Model Averaging 091 1.78 0.24 0.20 - - - -
Majority Voting - - - - 023 025 040 0.30
BoN Sampling + SWS  1.01 193 026 022 | 024 025 042 032
BoN Oracle 0.51 129 0.11 0.11 [ 0.15 0.18 0.18 0.16
Metric (|) Wasserstein ~ Manhattan Abs. Dist. Error Rate

Table 4: Results on the train set of the LeWiDi datasets. In bold is the best performing method by column. BoN
sampling underperforms the test-time scaling benchmarks, even though the BoN oracle suggests a high performance
ceiling. We submitted to the LeWiDi shared task the Model Averaging (soft-label task) and Majority Voting

(perspectivist task) methods, since they perfomed best.

dataset = CSC dataset = MP

Most Frequent
Simple Sampling I .
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BoN Oracle
0.0 0.5 1.0 0.0 0.1 0.2
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Figure 2: Test-time Scaling Benchmarks. Top: soft-
label task. Bottom: perspectivist task. Distance metric
on the x-axis (lower is better). Model Averaging and
Majority Voting (green) are consistently better than Sim-
ple Sampling (orange) in the soft-label and perspectivist
tasks, respectively.
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horizontal lines) in a single case (perspectivist task,
PAR dataset, Qwen3-32B judge). These inconsis-
tent results raise the question why step-wise scoring
is not effective in the LeWiDi tasks. For the BoN
sampling numbers in Table 3, we report the Qwen3-

Figure 3: Best-of-N Sampling on LeWiDi Tasks. Top:
soft-label task. Bottom: perspectivist task. Distance
metric on the y-axis (lower is better). Higher NV should
lead to better performance, but does not. No consistent
pattern emerges across datasets and tasks. In red are
the test-time scaling benchmarks, which BoN generally
does not beat. The shaded areas show the 0.25 and 0.75

32B judge, because it performs slightly better than
the Deepseek judge on the perspectivist task. For
the LeWiDi shared task, we submitted the predic-
tions for Model Averaging and Majority Voting,
rather than BoN sampling.

quantiles.
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4.3 Prediction Diversity

Back to the LeWiDi tasks, we empirically observe
that prediction diversity correlates with model per-
formance (Figure 4): diversity increases for diffi-
cult problems and decreases for easier ones. For
analysis, we binned prediction diversity into five
quantiles (but the trends hold for any number of
bins). We document the distribution of prediction
diversity across datasets in Appendix F. Prediction
diversity strongly affects test-time scaling methods,
as shown in Figure 5: the BoN oracle performance
(the upper bound for any BoN sampling method) in-
creases with diversity. The same applies for Model
Averaging.

dataset = CSC dataset = PAR

s 127 259
[T}
2104 2.0
o8
Al
c0 (0.8 1.5
£00.
T T T T T T T T T T
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0.3004 0.30
5o
£ 202751 0.25
£8 0.2504
25" 0.20
0.2254
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QL Q2 Q3 Q4 @5
Prediction Diversity

Q1 Q2 Q3 Q4 Q5
Prediction Diversity
Figure 4: Model performance (lower is better) varies
with prediction diversity and is related to the difficulty
of the problem.
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Figure 5: High prediction diversity leads to better per-
formance of test-time scaling methods. Both the upper
bound (BoN oracle) and Model Averaging benefit from
higher prediction diversity. The y-axis shows the im-
provement over Simple Sampling.

Table 5 shows that Model Averaging achieves a
significant fraction of the theoretical performance
gains dictated by the BoN oracle. For example, in
the top quantile of the PAR dataset, Model Averag-

ing achieves 46% of the performance gains of the
BoN oracle.

Prediction Diversity

Dataset Q1 Q2 Q3 Q4 Q5

CSC 0.11 0.16 0.14 0.19 0.29
PAR 0.09 0.14 0.17 0.24 046
MP 0.03 0.09 0.12 0.13 0.17
VEN 0.03 0.11 0.18 0.18 0.27

Table 5: Fraction of the BoN oracle performance gains
that Model Averaging achieves for different datasets and
prediction diversities.

5 Discussion

5.1 BoN Sampling Underperformance

We were surprised by the underperformance of
BoN sampling in the LeWiDi datasets. To verify
that we had not made a mistake in our implementa-
tion of BoN sampling, we ran our method on two
math datasets (PRM800K and AIME), as shown
in Figure 6.
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Figure 6: Best-of-N Sampling in Mathematics: The
performance of BoN sampling (Correct answers, higher
is better) improves with the number of samples N and
with stronger judges. The shaded area shows the 0.25
and 0.75 quantiles: improvements are consistent.

The results are in line with Lightman et al. (2024).
Using the best judge and N = 10 samples, the rate
of correct answers jumps by 14% on PRMS0OK
and by 18% in AIME. More information about both
datasets is in Appendix C.

Why is BoN sampling effective in math, but not
in the LeWiDi tasks? We think the LeWiDi tasks
are not inherently harder or more intractable than
math problems. The gap we observe is a failure
of cross-domain generalization. For example, we
observed that the shift in domain introduces unex-
pected side-effects:

1. We found qualitative evidence of the LLM
being more vague in its formulation of CoT
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steps in LeWiDi tasks (see Appendix I). When
steps are vague, it is harder for a judge to dis-
criminate between good and bad steps. During
post-training, the Qwen3 model was likely
never rewarded for summarizing precise ar-
guments around interpretative variation and
different perspectives. In contrast, we know
that Qwen3 has been post-trained to reason
on “[...] math, code, logical reasoning, and
general STEM problems.” (Yang et al., 2025).
We find same in the technical reports for
Deepseek R1 and Gemini-2.5 (DeepSeek-Al
et al., 2025; Comanici et al., 2025).

2. We empirically observe that LLMs and judges
both spend a higher compute budget (i.e.
they produce more tokens) on reasoning when
solving the mathematical tasks than on the
LeWiDi tasks as shown in Figure 7. Since
reasoning capabilities are learned during post-
training, we hypothesize that this difference
is also caused by the standard post-training
recipe.

Domain
. LeWiDi Math

LLM: Qwen3-32B Judge: Qwen3-32B Judge: DeepSeek-R1-8B
MP

CsC

PAR

VEN
PRM80OK
AIME

T T
0 5000

Output Tokens

Dataset

T T F T T
1000 2000 0 5000 10000
Output Tokens Output Tokens

T T
10000 0

Figure 7: Compute Budget used by LLM and judges
on different domains. Error bars are the 0.25 and 0.75
quantiles: they show large variability in output length.
The models invest an order of magnitude more com-
pute budget into solving AIME problems than in the
LeWiDi tasks. Both Qwen3 and Deepseek-R1-8B show
this bias.

5.2 Logical Steps in LeWiDi Tasks

One might argue that step-wise scoring requires a
clear boundary between correct and incorrect steps,
which is lacking in tasks with strong interpretative
variation. We argue against this for two reasons:

1. Mathematical problem solving is also not al-
ways clear-cut. Lightman et al. (2024) show
many steps add no insight or progress, leading
them to use an “okay” label alongside “great”
and “bad”.

2. LeWiDi tasks define correctness precisely
(e.g., Wasserstein Distance 0). Steps that are
logical, plausible, and advance a prediction
are “great”, while vague or unsound steps are
“bad”. Previous perspectivist research has also
leveraged explanations to judge the validity of
annotations (Weber-Genzel et al., 2024).

We see no theoretical conflict between perspec-
tivism and step-wise scoring. Rather, adjusting the
method to incorporate perspectivist principles is an
avenue for future work. For example, using dif-
ferent step labels like “plausible”, “implausible”,

“vague”, etc.

6 Conclusion

We present a systematic evaluation of three test-
time scaling methods on the LeWiDi tasks. Our
key findings are: (1) Our prediction diversity met-
ric correlates with test-time scaling performance
and problem difficulty on the LeWiDi soft-label
task. (2) Model Averaging and Majority Voting
consistently improve LLM performance across the
LeWiDi tasks. (3) BoN sampling with step-wise
scores does not transfer from the domain of math-
ematics to the LeWiDi tasks, potentially due to
vague reasoning steps and lower reasoning com-
pute used. We hypothesize that this difference is
caused by the post-training recipes of current rea-
soning LLMs, which lean towards mathematical
and logical reasoning. The performance on datasets
with annotation disagreements could potentially be
improved by including similar tasks in the post-
training recipe.
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Limitations

We articulated the limitations of BoN sampling
with step-wise scores in the LeWiDi tasks. We
do not explore prompt optimization thoroughly,
because we think that methods should be robust
over different prompts. In terms of the prediction
diversity metric, we suggest that authors evaluate
the correlation with problem difficulty on their own
datasets, since we showed an empirical rather than
theoretical relationship.
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A Sampling Parameters

Yang et al. (2025) suggest two different param-
eter configurations for Qwen3: for thinking and
non-thinking modes. In early expriments we found
almost no difference in performance between both
configurations, but observed less variation with
the non-thinking configuration, so we used thoese
parameters in our experiments: top-k=20, top-
p=0.8, temperature=0.7, presence-penalty=1.5. We
used the same parameters for the Deepseek-R1-8B
model. For Gemini-2.5-flash we used the default
parameters documented in Google’s documenta-
tion: top-k=64, top-p=0.95, temperature=1.0>.

B Splitting the CoT into Steps

To score each step of a CoT for correctness, it must
be first split into steps. We instruct the model to
answer using a structured format (JSON) with sep-
arate fields for the prediction and the CoT steps, as
shown in Listing 4.

Listing 4: Output format for the LLM

{
'steps': [
'<step 1 text>',
'<step 2 text>',

] )
'final_response ':

}

'<text>'

We found that this approach to get logical steps
is more robust than two alternatives: (1) Using
string matching (e.g. on double line breaks) to split
a CoT into steps, because it produces overly gran-
ular, incoherent steps, where e.g. a bulleted list
becomes a step on its own. (2) Using a separate
LLM to reformat the CoT into logical steps, be-
cause the reformatting model sometimes rephrases
and truncates the original CoT instead of only re-
formatting it. We think that the original LLM is
best positioned to split its own reasoning process
into coherent, logical steps.

One might argue these steps are constructed ex-
post and do not reflect the model’s true reasoning.
However, during a math exam, students are allowed
to sketch ungraded work on separate sheets, and
then present a clean step-by-step solution. We fol-
low this same principle, and our math experiments
show that the ex-post steps are expressive enough
to discriminate good and bad reasoning.

3https://cloud.google.com/vertex-ai/generative-
ai/docs/models/gemini/2-5-pro

C Mathematical Datasets

Our method for providing step-wise scores is com-
pletely automated and requires no human annota-
tions for the CoT steps at all. As a sanity check
that our test-time scaling implementation is correct,
we also include in our BoN evaluation two datasets
with mathematical problems, where we expect step-
wise scoring to perform very well. The datasets
are: (1) High-school math problems and solutions
compiled in the PRM800K dataset by Lightman
et al. (2024). The problems are originally from
the MATH dataset by Hendrycks et al. (2021). (2)
Mathematical problems given to the top 2.5% to
5% of high-school students in the US from the
American Invitational Mathematics Examination
(AIME) compiled by Veeraboina (2023) and rang-
ing from 1983 to 2024. The AIME problems are
generally more difficult than those in PRM80OK.
Many math problems are solved by Qwen3-32B
in 10/10 samples, which makes BoN sampling un-
necessary. We skipped these problems in our BoN
evaluation, which is why the horizontal line for
Simple Sampling is relatively low in Figure 6.

D LLM Compliance

When using an LLM with structured output, we
need to measure its adherence to the output format
of the prompt. We call this compliance. As we
show in Table 6, the compliance level varies by
dataset and by task.

Dataset Perspectivist Soft-label
MP 100.0 100.0
CSC 100.0 99.3
VEN 100.0 93.9
PAR 100.0 86.2

Table 6: Percentage of compliant predictions sorted by
dataset from highest to lowest. The PAR soft-label task
is difficult because the weight of 11 classes must sum
to 1.0.

We observe near-perfect compliance for the CSC
and MP datasets. The VEN dataset has lower com-
pliance because of the nested strucure of the predic-
tions (one for each NLI category). The lowest com-
pliance is in the PAR datasets, which has 11 classes
(-5 to 5, including 0). We found that the LLM
outputs correct JSON for PAR, but often the soft-
labels did not sum exactly to 1. We experimented
with enforcing structured outputs in vLLM, but
initial experiments showed that the LLM would
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sometimes output infinite newline characters until
it reached the output token limit, which is valid
JSON, so we dropped this constraint.

E Model Averaging and Entropy

Model Averaging has an adaptive flattening ef-
fect on the model’s soft-labels: When the model
identified a consensus interpretation (regime of low
prediction diversity), Model Averaging keeps soft-
labels intact (e.g. peaky). And when the model’s
answers are diverse, Model Averaging flattens the
soft-labels, which has a hedging effect. We com-
pare Model Averaging with a naive smoothing
method, which flattens a soft-label by averaging it
with the uniform distribution, therefore increasing
the entropy of the soft-label.

Figure 8 shows the entropy of the soft-labels for
Qwen3-32B, for different datasets and sampling
methods. It shows that smoothing the soft-labels
does not automatically improve the model perfor-
mance and that Model Averaging is much more
adaptive than the naive smoothing.

dataset = CSC

Simple Sampling
Model Averaging =
Smoothing
0 1

dataset = PAR dataset = VEN

Simple Sampling
Model Averaging =
0 1 2 0

dataset = MP

%

0.00 0.25 0.50

.00 0.25 0.50

Entropy Entropy

Figure 8: Entropy of soft-labels: We observe that both
smoothing (green) and Model Averaging (orange) in-
crease the entropy of the soft-labels, but only Model
Averaging improves the model performance.

F Prediction Diversity

The distribution of prediction diversity by dataset is
shown in Figure 9. We observe that it is distributed
with a single peak in the center, and sometimes has
a right tail.

G Compute Infrastructure

We use the vLLM engine (Kwon et al., 2023) to run
the models, because of its high throughput, which
help us compute N samples per example in parallel.
vLLM can also be configured to parse the CoT and
return them separately from the final answer. All

dataset = CSC dataset = PAR

Count

0.5 1.0 15 1 2

dataset = MP dataset = VEN

100 0

Count

50 25

o- 04
0.0 0.1 0.2 0.3 0.0 0.1 0.2 0.3
Prediction Diversity Prediction Diversity

Figure 9: Distribution of prediction diversity by dataset.
The distributions follow a normal-like distribution, and
the PAR dataset shows a longer tail to the right. The
colors indicate the quantiles of the distribution.

our experiments are run on a single NVIDIA H100
GPU, except for the Qwen3-32B model, which is
run on two GPUs. We called Gemini-2.5-flash over
the Google Cloud APIL.

H Prompt Ablations

We created two prompt variations that could po-
tentially affect performance for interpretative tasks:
(1) One variant provides a dictionary definition*
of sarcasm (for CSC), or irony (for MP). (2) The
second variant explicitly instructs the model to con-
sider different perspectives and interpretations.

Listing 5: Prompt Section Defining Sarcasm

Use this definition for sarcasm: "The
use of remarks that clearly mean the
opposite of what they say, made in
order to hurt someone's feelings or to
criticize something in a humorous way”

Listing 6: Prompt Section to Consider Perspectives

Think about the perspectives that
different annotators might have and how
they could potentially interpret the
post-reply pair.

We perform an ablation analysis to determine
the impact of the two prompt variants: (1) first,
we remove the prompt section that defines irony
and sarcasm and (2) we remove the prompt section
about considering diverse perspectives.

As shown in Table 7 for ablation 1, we observe
mixed effects: In the CSC dataset, including the
definition of sarcasm improves performance, while
in the MP dataset, including the definition of irony

*Online dictionary: https://dictionary.cambridge.org/
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decreases performance. We compute the 95% con-
fidence interval of mean performance using the
bootstrap method to rule out the possibility that
performance differences between prompts are a
sampling artifact.

For ablation 2, we observe that prompting the
model to consider diverse perspectives improves
performance in 3 out of 4 datasets (CSC, MP, VEN).
In the PAR dataset, performance is not affected by
the prompt section on diverse perspectives.

I Vague CoT Steps

Below is a qualitative comparison of two responses
to the same problem by Qwen3-32B. Listing 7 de-
scribes the problem (ID=637 of the CSC dataset
on sarcasm detection). Listing 8 shows a response
with very vague CoT steps, which are not strictly
wrong, but are so general that they could be applied
to any or all problems. Listing 9 shows a different
response with very specific CoT steps that directly
refer to the problem statement and are easier to
judge.

Note that these are the structured logical steps,
rather than the raw CoT. The raw CoT for the
vague answer is in Listing 10 and the one for the
concrete answer is in Listing 11. Neither of the raw
CoT are vague, so there is no reason why the model
should generate vague logical steps from either
of them. We observed this “vagueness” behavior
particularly in the CSC dataset.

Listing 7: Problem Description (Sarcasm Detection)

"Analyze the context and response to
identify elements of sarcasm based on
the given definition.”,

"Determine if the response uses remarks
that mean the opposite of what they say
to criticize or hurt someone
humorously.",

"Assess the likelihood of different
annotator interpretations, considering
variations in perception of sarcasm.”,

"Assign probabilities to each rating
(1-6) based on the analysis, ensuring
the sum equals 1.0."

Listing 9: Specific Logical Steps

"Analyze the context and response to
determine if sarcasm is present. The
response directly criticizes Steve's
decision without evident irony or mock
praise.”,

"Consider that the response uses
rhetorical questions and direct
statements to express disapproval,
which aligns more with blunt criticism
than sarcasm.”,

"Assess potential annotator
perspectives: most may view the
response as non-sarcastic (rating 1),
while others might detect mild sarcasm

n

in the tone (ratings 2-3).",

"Distribute probabilities accordingly,
allocating higher weights to lower
sarcasm ratings and minimal
probabilities to higher ones.”

{

"context"”: "You and Steve went out
last night and drank a lot. The
next day, Steve excitedly says that
he fell in love with the girl he
met last night and that he is going
to quit his job and join her on a
backpacking trip. Steve says,
\"this girl is totally amazing and
I'm not gonna miss the opportunity
to be with her. I'm quitting my job
and traveling with her!\"",

"response”: "Man, you are fucking
serious right now? You're going to
quit your job and travel with some
girl you just met last night while
drunk? No girl is worth quitting
your job and screwing your life
over, especially not a girl you
just met last night.”

J Prompts

Listing 8: Vague Logical Steps
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Dataset
CSC MP PAR VEN
Prompt low high low high low high low high
Default 1.002 1.013 0.256 0.258 1.838 1.920 0.217 0.227
-Definition (ablation 1) 1.057 1.071 0.246 0.248 - - - -
-Perspectives (ablation 2) 1.027 1.040 0.263 0.265 1.840 1.924 0.236 0.247

Table 7: Two Prompt Ablations: The numbers are mean performance in terms of Wasserstein Distance (lower is
better). The column “low” and “high” are the bounds of the 95% confidence intervals on the performance computed
with the bootstrap method. Ablation 1 shows that including/excluding the definition of irony / sarcasm has mixed
effects. Ablation 2 shows that not instructing the model to consider diverse perspectives has negative consequences
in 3 out of 4 datasets.

Listing 10: Raw CoT for Vague Answer

Okay, let's tackle this problem step by step. First, I need to understand the task. The user provided a
context and a response pair, and I have to guess how human annotators would rate the sarcasm level of the
response on a scale from 1 to 6. The final answer should be a probability distribution over these ratings,
with each probability summing to 1.0.

The definition given for sarcasm is important here: using remarks that mean the opposite to hurt or
criticize humorously. So, I need to analyze if the response fits this definition and how different
annotators might perceive it differently.

Looking at the context: Steve met a girl after drinking a lot and decided to quit his job to travel with
her. The response is a friend (the speaker) reacting to Steve's decision. The response says, "Man, you are
fucking serious right now? You're going to quit your job and travel with some girl you just met last night
while drunk? No girl is worth quitting your job and screwing your life over, especially not a girl you just
met last night.”

First, I need to determine if there's any sarcasm in the response. Sarcasm often involves irony or mock
praise. In this case, the speaker is clearly criticizing Steve's impulsive decision. The phrases like
"you're fucking serious” and "screwing your life over” indicate frustration or disapproval. However,
there's no direct use of words that mean the opposite. Instead, the speaker is being straightforward in
their criticism. They are pointing out the irrationality of Steve's actions without obvious irony.

But maybe some annotators could interpret parts of the response as sarcastic. For example, when the speaker
says "especially not a girl you just met last night,” they might be emphasizing the absurdity, which could
be seen as a form of understatement or rhetorical question. However, under the given definition, sarcasm
requires the remark to clearly mean the opposite. Here, the speaker is directly stating their opinion
without such inversion.

Considering different perspectives: Some annotators might think that the speaker is being sarcastic in
their tone, even if the words aren't technically ironic. Others might see it as direct criticism without
sarcasm. Since sarcasm can be subtle, there's a chance that a portion of annotators might rate it as
low-level sarcasm (like 2 or 3), but most might see it as non-sarcastic (rating 1). A few might
misinterpret and give higher ratings, thinking the speaker is being sardonic, but that's less likely given
the explicit criticism.

I should distribute the probabilities accordingly. Most of the probability mass would be on 1 (not at all
sarcastic) and 2 (slightly sarcastic). Maybe a small portion on 3 for those who see some underlying
sarcasm. Higher ratings (4-6) would be minimal since the response is pretty straightforward. Let me check
if the sum adds up to 1.0 and adjust the probabilities.
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Listing 11: Raw CoT for Concrete Answer

Okay, let's tackle this problem. So, the task is to guess the distribution of sarcasm ratings given a
context and response pair. The possible ratings are from 1 to 6, with @ not allowed. The final answer needs
to be a JSON object where each key is the rating (as a string) and the value is the probability that an
annotator gave that rating.

First, I need to understand what sarcasm means here. The definition provided says it's when someone says
the opposite of what they mean, usually to criticize or hurt someone in a humorous way. So, I have to
analyze the response to see if it uses sarcasm and how different people might rate it.

Looking at the context: Steve met a girl while drunk, fell in love, and wants to quit his job to travel
with her. The response is from someone else reacting to Steve's decision. The response says, "Man, you are
fucking serious right now? You're going to quit your job and travel with some girl you just met last night
while drunk? No girl is worth quitting your job and screwing your life over, especially not a girl you just
met last night."

Now, I need to check if this response is sarcastic. Sarcasm often involves irony or mock praise. Here, the
speaker is clearly criticizing Steve's impulsive decision. They're questioning his seriousness and pointing
out the impracticality. There's no obvious use of words that mean the opposite. Instead, it's
straightforward criticism without humor. The tone is more disapproving than sarcastic.

So, most annotators might rate this as low sarcasm (like 1 or 2). Some might think there's a bit of sarcasm
in the rhetorical question ("you are fucking serious”), but that's more shock than sarcasm. Others might
see it as direct advice rather than sarcastic. Maybe a few could interpret the repeated emphasis on "just
met"” as mocking, but that's a stretch.

I should consider possible distributions. If the response isn't sarcastic, the majority would rate 1 (not
at all). Some might give 2 for slight sarcasm. Very few might go higher if they think there's hidden
mockery. Let's say 70% rate 1, 20% rate 2, and 10% split between 3 and maybe 4. But wait, the sum has to be
1.0. Let me adjust. Maybe 0.7 for 1, 0.2 for 2, .05 for 3, and 0.05 for 4. That adds up to 1.0.
Alternatively, perhaps even less for higher numbers. Another approach: since the response is direct and not
using irony, most will rate 1. A small percentage might see some sarcasm in the phrasing. Maybe 0.8 for 1,
0.1 for 2, and 0.1 distributed among others. But ensuring the total is 1.0. Let's try:

I
oA WwWN =
[SIESEUSEGSIESENS
OO0 O NN
- = w u

That sums to 1.0. But maybe even lower for higher numbers. Alternatively, maybe only 1 and 2. Let's check
again. The response is critical but not sarcastic. So most would rate 1. Some might rate 2 if they think
there's a hint of sarcasm. Let's say 0.8 for 1, ©0.15 for 2, and 0.05 for 3. That's 1.0. Or maybe ©.9 for 1,
0.05 for 2, 0.05 for 3. Hmm. It's tricky. To be safe, I'll go with a high concentration on 1, some on 2,
and minimal elsewhere. So final distribution might look like {'1': ©.7, '2': 0.2, '3': 0.05, '4': 0.03,
'5': 9.01, '6': ©.01}. That adds up to 1.0.
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Listing 12: LLM prompt for the CSC dataset (soft-label task)

[Instructions]

Solve the task below. Format your response into logical steps that can be verified by a third-party, and
format each step in JSON format like this:

{{
'steps': [
'<text of step 1>',
'<text of step 2>',
'<text of step n>'
Iy
'final_response': '<response>'
13

Please simplify your final response as much as possible, and avoid any unnecessary text there.

[Task]

Below is a context+response pair where human annotators rated the sarcasm level of the 'response' ranging
from 1 (not at all) to 6 (completely). Please guess the distribution of ratings and output it in the
final_response field in JSON format like this: {{'@': po, '1': pl, '2': p2, '3': p3, '4': p4, '5': p5, '6'
p63}}, where each p@, ..., p6 is a probability. Note that p@ is always 0.0 because the rating @ is not
allowed. The sum of probabilities must equal 1.0.

Use this definition for sarcasm: "The use of remarks that clearly mean the opposite of what they say, made
in order to hurt someone's feelings or to criticize something in a humorous way"”

Think about the perspectives that different annotators might have and how they could potentially interpret
the context+response pair.

[Context+Response Pair]

{text}

Listing 13: LLM prompt for the CSC dataset (perspectivist task)

[Instructions]

Solve the task below. Format your response into logical steps that can be verified by a third-party, and
format each step in JSON format like this:

{{
"steps': [
'<text of step 1>',
'<text of step 2>',
'<text of step n>'
15
'final_response': '<response>'
33

Please simplify your final response as much as possible, and avoid any unnecessary text there.

[Task]

Below is a context+response pair where human annotators rated the sarcasm level of the 'response' ranging
from 1 (not at all) to 6 (completely). Please guess the rating given by each annotator output them all in a

list in the final_response field, in the same order as the annotators.

Use this definition for sarcasm: "The use of remarks that clearly mean the opposite of what they say, made
in order to hurt someone's feelings or to criticize something in a humorous way"”

Think about the perspectives that different annotators might have and how they could potentially interpret
the context+response pair.

[Annotator Metadatal
{annotator_metadata}
[Context+Response Pair]

{text}
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Listing 14: Judge prompt for scoring reasoning steps (soft-label task)

[Chain-of-Thought Evaluation]

Overview: Your goal is to grade an LLM's step-by-step solution to a problem. The model will often say
things that look ok at first, but will turn out to be wrong on closer inspection - stay vigilant!
Please mark each step with (great, okay, bad).

Instructions: A "great” step is anything a smart student would try.

Most of the time it's a clear cut step forward towards solving the problem. But it

could also be a sub-optimal choice, as long as it looks like something a reasonably smart

human might say while trying to solve the problem. An "okay" step is anything that's

reasonable for a person to say, but it's not offering any insight, doesn't further the solution
by exploring an option, performing a calculation, or offering an idea for the next step. A
"bad” step is one that confidently says something incorrect, is off-topic/weird, leads

the solution into a clear dead-end, or is not explained clearly enough for a human to follow
along with (even if it is correct).

[Output Format]
Only output the step idx and the rating, like this example below.

L
{{"idx": @, "rating": "great"}},
{{"idx": 1, "rating"”: "ok"}},
{{"idx": 2, "rating"”: "bad"}},
{{"idx": 3, "rating": "great"}},
]

Please verify that the number of steps is the same as in the input.
[LLM Problem]

<problem>
{PROBLEM?}
</problem>

[LLM Chain-of-Thought Steps]

<steps>
{STEPS}
</steps>

<final_response>
{FINAL_RESPONSE}
</final_response>
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Abstract

This system paper presents the DeMeVa team’s
approaches to the third edition of the Learning
with Disagreements shared task (LeWiDi 2025;
Leonardelli et al., 2025). We explore two di-
rections: in-context learning (ICL) with large
language models, where we compare example
sampling strategies; and label distribution learn-
ing (LDL) methods with RoBERTa (Liu et al.,
2019b), where we evaluate several fine-tuning
methods. Our contributions are twofold: (1) we
show that ICL can effectively predict annotator-
specific annotations (perspectivist annotations),
and that aggregating these predictions into soft
labels yields competitive performance; and (2)
we argue that LDL methods are promising for
soft label predictions and merit further explo-
ration by the perspectivist community.

1 Introduction

In natural language processing (NLP), annotations
are often treated as a gold standard, implying a
single, unambiguous truth. However, for tasks that
involve, among other things, cultural norms or sub-
jectivity, human judgments can vary substantially,
often reflecting diverse annotator backgrounds or
personal perspectives (Plank, 2022; Cabitza et al.,
2023). Customary approaches that aggregate these
diverging annotations with techniques like majority
voting disregard the potential validity of pluralis-
tic interpretations, which may lead to the loss of
valuable information about both the data instances
and the people who annotated them. The Learning
with Disagreements (LeWiDi) shared task shifts
the focus to learning from unaggregated crowd la-
bels, whether through learning from soft labels or
through aligning models with specific annotators’
viewpoints (i.e., perspectivist training).

The DeMeVa team ranks 2nd overall on the
leaderboard of the LeWiDi 3rd Edition shared task
(LeWiDi 2025; Leonardelli et al., 2025). In this
system paper, we describe the contributions of the

DeMeVa team and discuss both our highest-scoring
method and the other approaches that did not make
it onto the leaderboard. We hope that our interpreta-
tion of these results will offer insights into learning
with disagreement in NLP.

We obtained our score on the leaderboard by em-
ploying in-context learning (ICL) for perspectivist
modeling. ICL refers to the ability of pre-trained
large language models (LLMs) to perform NLP
tasks without task-specific training; in ICL, these
models are instead conditioned on input-output ex-
amples (“demonstrations”) provided in the prompt
(Brown et al., 2020). Recent studies have demon-
strated ICL’s success on a wide range of tasks (see
e.g. Dong et al., 2024). However, they have also
shown that ICL is sensitive to the choice, order,
and format of demonstrations. We explore how
and to what extent ICL can be leveraged to steer
LLMs toward the annotation patterns of individual
annotators in natural language understanding.

In parallel with perspectivist ICL, our team also
pursued alternative directions aimed at modeling
label distributions. In this context, we drew on
existing research from both NLP and other com-
munities. Specifically, we refer to studies in label
distribution learning (LDL), a research vein that
focuses on modeling probability distributions over
full label spaces and which has its roots in the
broader machine learning community. We note
that some of the insights from LDL have not yet
fully found their way into NLP-specific research.
In our experiments, we build on such works by us-
ing two LDL-specific fine-tuning methods, neither
of which has been widely applied in NLP: ordinal
label distribution learning (Wen et al., 2023) and
predicting population-level label distributions via
clustering (Liu et al., 2019a).

The structure of this paper is as follows. In Sec-
tion 2, we briefly reintroduce the datasets and sub-
tasks of the LeWiDi1 shared task. Next, we describe
our ICL approaches in Section 3 and our LDL-
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Dataset Task #E (train/dev/test) #Ann/E #Ann
CSC (Jang and Frassinelli, 2024) Sarcasm detection 5628/704/704 4+ 840
MP (Casola et al., 2024) Irony detection 12017/3005/3756 5+ 506
Par (as yet unpublished) Paraphrase detection 400/50/50 4 4
VariErrNLI (Weber-Genzel et al., 2024) NLI 388/50/50 4 4

Table 1: Overview of datasets used in LeWiDi

related fine-tuning strategies in Section 4. Finally,
we make our concluding remarks in Section 5.

2 Datasets, tasks, and evaluation metrics

In this section, we discuss the datasets and evalua-
tion metrics of the LeWiDi 2025 shared task.

2.1 Datasets

The LeWiDi 2025 shared task includes 4 datasets
covering various aspects of natural language under-
standing (see Table 1 for an overview).

CSC The Conversational Sarcasm Corpus (CSC;
Jang and Frassinelli, 2024) is a richly annotated
sarcasm dataset containing 7,040 context-response
pairs. For each of these pairs, the authors provided
self-ratings on a 6-point Likert scale, and third-
party annotators (360 in total, with 6 per author in
Part 1 and 4 per response in Part 2) rated the level
of sarcasm in the responses on the same scale.

MP The MultiPICo Dataset (MP; Casola et al.,
2024) is a multilingual, socio-demographically
grounded dataset of irony on social media, compris-
ing 18,778 post-reply pairs from Reddit and Twitter
across 9 languages and 25 linguistic varieties. Each
received a mean of 5.02 binary irony labels from a
pool of 506 crowd annotators balanced by gender
and nationality.

Par The Paraphrase Detection Dataset (Par; as
of yet unpublished) contains 500 sentence pairs
from the Quora Question Pairs dataset, each an-
notated by 4 expert annotators on a Likert scale
ranging from -5 to +5 based on paraphrase quality.
Annotators were asked to provide short explana-
tions justifying their scores as well.

VariErrNLI The VariErrNLI Dataset (Weber-
Genzel et al., 2024) is designed to disentangle gen-
uine human label variation from annotation errors
in natural language inference (NLI). It features a
two-round annotation protocol applied to 500 multi-
genre NLI (MNLI; Williams et al., 2018; Nie et al.,

2025. E denotes entries, Ann denotes annotators.

2020) items, resulting in 1,933 label-explanation
pairs in the first round and 7,732 validity judgments
in the second round. The dataset serves both as a
benchmark for Automatic Error Detection methods
and a resource to improve dataset trustworthiness.
It also includes explanations for each annotation.

2.2 Tasks and evaluation metrics

LeWiDi 2025 introduces two tasks for the two es-
tablished main approaches to unaggregated data: 1)
Task A—soft label modeling, where systems gen-
erate probability distributions over all classes for
each item; and 2) Task B—perspectivist modeling,
where systems predict individual annotators’ labels
for specific items. At the same time, within each of
these two tasks, the evaluation metrics vary depend-
ing on the structure of the concrete dataset they are
paired with: e.g., Par and CSC, which both include
Likert-scale values, require a different metric suite
compared to datasets with unranked labels.

For Task A, the MP and VariErrNLI datasets
make use of the Manhattan distance as the evalua-
tion metric. The Manhattan distance measures the
sum of absolute differences between the predicted
and the target distributions. For VariErrNLI, this
is extended to a Multi-label Average Manhattan
Distance (MAMD), averaging the Manhattan dis-
tances across multiple labels. Performance on the
Par and CSC datasets is assessed with the Wasser-
stein distance, which measures the minimum cost
to transform one distribution into another.

Regarding Task B, MP and VariErrNLI are
paired with the error rate (ER) and multi-label
error rate (MER), respectively. ER measures the
proportion of incorrectly matched values between
predicted and target label vectors, while MER aver-
ages the error rates across multiple labels. For Par
and CSC, the average normalized absolute distance
(ANAD) is used, which normalizes the average ab-
solute difference between Likert scale values based
on the range of the scale. In all cases, a lower
score indicates better performance, with a score of
0 indicating a perfect match.
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3 In-context learning

Recent work has explored in-context learning for
steering language models toward diverse human
label distributions, primarily focusing on persona-
based prediction for tasks like toxicity and hate
speech detection (Sorensen et al., 2025; Radlin-
ski et al., 2022; Ramos et al., 2024). In that vein,
many studies focus solely on the effect of steering
models with persona descriptions (Hu and Collier,
2024; Kambhatla et al., 2025; Sun et al., 2025);
in the meantime, prompts that also incorporate an-
notations have been shown to elicit better predic-
tions (Meister et al., 2025). While these inquiries
are mostly based on more widely used datasets,
LeWiDi 2025 presents new challenges on tasks
that have received limited attention so far in the
domain of perspectivist NLP such as paraphrase
evaluation and sarcasm detection.

We explore different ICL strategies on these
novel datasets to advance perspective-aware mod-
eling, leveraging state-of-the-art generative mod-
els: OpenAl’'s GPT-40 (Achiam et al., 2023),
Claude Haiku 3.5 (Anthropic, 2024), and Llama
3.1 70B-Instruct (Grattafiori et al., 2024). How-
ever, we do not explore persona-based steering as
the LeWiDi 2025 datasets contain relatively few
sociodemographic variables, making sociodemo-
graphic prompting infeasible.

3.1 System pipeline

To accomplish both tasks of LeWiDi 2025, we pro-
pose a two-step pipeline (Figure 1). First, we use
ICL to prompt LLMs to predict individual annota-
tors’ labels based on their previous responses (Task
B). We then use these predictions to calculate the
final soft label (Task A).

The two key components of ICL are demonstra-
tion selection and prompt engineering. Our main
focus is on finding the most appropriate example
sampling method (demonstration selection). As for
the prompt engineering component, we use a sim-
ple template adapted from Dutta et al. (2025) that is
applicable to all datasets in the shared task (see Fig-
ure 2 for the prompt template and Appendix A for
a filled example for the CSC dataset). The template
is designed to be flexible enough to accommodate
different tasks and input formats while also being
straightforward enough for the LLM to leverage.
For every experiment, we set the temperature to
0.0 to enforce greedy decoding and yield the most
probable sequence with minimal randomness.

)
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Vv
\ In-Context Learning y, Aggregation

Figure 1: Our two-step pipeline to solve both tasks,
based on ICL. In the first step (Task B), we sample ex-
amples from an annotator’s past annotations and prompt
the LLM to model annotator-specific behavior and pre-
dict labels for test inputs. In the second step, we aggre-
gate these predictions into soft labels (Task A).

Prompt Template

[INST] You are an expert in guessing my
response against a {TASK_NAME} task.

Your task is to analyze and predict my
response to {INPUT_FORMAT} between <<<
and >>>, and label it with {RESPONSE
_FORMAT} {LABEL_EXPLANATION}.

Below are some of my previous responses.
You should learn my response behavior
from them and then make the prediction.

{EXAMPLES}
[/INST]

>>>

{INPUT}
>>>

Figure 2: Our ICL prompt template. The template sup-
ports varied tasks and input formats without sacrificing
clarity.

3.2 Example selection strategies

ICL is sensitive to how demonstrations are sampled
and supplied to the model. We therefore compare
two strategies for example selection: similarity-
based and stratified label-based sampling. Addi-
tionally, we examine whether explanations avail-
able in the Par and VariErrNLI datasets can im-
prove model personalization when included in
prompts. This test builds on the work started by
Ye and Durrett (2022) and Jiang et al. (2023), who
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stress the ambiguous role of explanations in NLI
labeling.

The standard approach of retrieving semantically
similar examples faces challenges with respect to
perspectivist learning. BERT-based cosine similar-
ity primarily ensures lexical and topical proximity
(Kaster et al., 2021), but perspectivist tasks may
require more nuanced selection. First, as Jiang and
Marneffe (2022) show, annotators in NLU tasks
rely on specific linguistic heuristics rather than
topical similarity; hence, similarity with respect
to these heuristics would offer a better selection
criterion. Second, annotator-specific subsets can
be arbitrarily small, which means they may lack
enough similar examples for meaningful retrieval.
Our two sampling strategies are as follows.

Similarity-based sampling For a test input ¢
(the current query) and annotator a, let D, de-
note the set of training examples annotated by a.
Let h(z) € R? be the sentence embedding of z
produced by Sentence-Transformers (Reimers and
Gurevych, 2020). We measure the relevance using
the cosine similarity: s(¢, z) = cos (h(g), h(z)).
We select & demonstrations starting with § = @
and at each step, we add to this set the element

r* = argmax A s(q,z) — (1-\) maxs(z,z’).

2€D\S z’'eS

and update S < S U {z*} until |[S| = k. We
set A = 0.7 to reduce redundancy among selected
shots via the Maximal Marginal Relevance (MMR)
method.

Stratified label-based sampling For each anno-
tator a, let D, denote the training set, ), the full
set of their annotations, and y,(x) € ), the label
assigned by this annotator for data sample x. We
first drop labels that occur less than two times to
ensure stratification. Let L = max{|),|, k}. If
|Do| < L or only one label remains, we sample
up to k examples uniformly from D,. Otherwise,
we construct a stratified subsample S’ C D, that
approximately preserves the empirical label propor-
tions over y, (). We do this using scikit-learn (Pe-
dregosa et al., 2011), and we then draw k& examples
uniformly without replacement from S’

We hypothesize that label-based sampling yields
more representative examples by exposing models
to diverse annotation patterns, which can be par-
ticularly effective for nuanced label scales (such
as those found in CSC and Par) compared to bi-
nary tasks. This approach increases the likelihood

that relevant linguistic heuristics appear in demon-
strations, helping models learn annotator-specific
decision patterns. We set the number of demonstra-
tions to k = 10.

3.3 Model performance

We report the experiment results in Table 2. While
the performance differences between ICL ap-
proaches are relatively subtle, they mostly yield
substantial improvements over the baseline meth-
ods across the datasets and tasks.'

Similarity-based sampling performs best on MP,
whereas label-based sampling tends to improve
(lower) Task A distances on the other datasets with-
out reducing the error rate. For MP, both error rate
and distance are lower when using similarity-based
sampling. This is to be expected: with binary la-
bels, stratified label-based sampling is practically
equivalent to random sampling. On the other three
datasets, label-based sampling often results in im-
provements on Task A, while the error rate often
changes insignificantly or even increases compared
to stratified label-based sampling. Our explanation
for this is that the metrics for Task A show more
sensitivity toward numeric values of predictions,
and label-based sampling offers more control of
said numeric values since the model limits its out-
puts to within the provided label range. At the
same time, since the error rate is not significantly
influenced, our assumption that the sampled exam-
ples are more representative of this method does
not appear to hold.

For Par and VariErrNLI, the results show that the
inclusion of explanations further enhances perfor-
mance; remarkably, this trend is more pronounced
in Task A metrics compared to Task B metrics, as
the error rate remains roughly in the same range
for both settings. However, the calibration effect of
label-based sampling is more notable (especially
for GPT-40), showing that it is amplified by rea-
soning examples. The fact that explanations im-
prove performance in this regard may complement
the results of Ni et al. (2025), who find that CoT-
prompting helps steer RLHF models toward human
perspectives. While explanations only contain one
reasoning step, they still can be regarded as being
analogous to more complex reasoning examples.

'MP stands out as an exception to that. We explain the
poor performance of Llama and Haiku on MP by the fact
that they do not adequately support several of the languages
present in MP.
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Task A Task B
CSC MP Par VariErrNLI | CSC MP Par VariErrNLI

baseline_random 1.549 0.689 3.35 1.0 0355 05 0.38 0.5
baseline_most_frequent 1.169 0.518 3.23 0.59 0.238 0.316 0.36 0.34
GPT-40 +sim 0.84 0.466 1.17 0.46 0.175 0.294 0.13 0.26
GPT-4o +strat 0.792 0.469 1.25 0.44 0172 03 0.14 0.25
Haiku-3.5 +sim 1.005 0.657 1.58 0.43 0.205 0.375 0.15 0.26
Haiku-3.5 +strat 095 0.684 147 0.42 0.201 0.392 0.16 0.27
Llama-3.1-70B-Inst +sim | 1.192 0.691 1.41 0.44 0.226 0.392 0.14 0.24
Llama-3.1-70B-Inst +strat | 1.157 0.706 1.38 0.36 0.227 0.399 0.15 0.22
+ Explanation:

GPT-40 +sim — — 1.17 0.43 - - 0.12 0.24
GPT-40 +strat — - 1.12 0.38 - — 0.13 0.23
Haiku-3.5 +sim — - 1.36 0.44 - — 0.13 0.24
Haiku-3.5 +strat - - 1.35 0.45 - - 0.15 0.25
Llama-3.1-70B-Inst +sim - - 1.35 0.46 - - 0.14 0.25
Llama-3.1-70B-Inst +strat - - 1.39 0.44 - - 0.14 0.25

Table 2: Results of ICL Strategies on LeWiDi 2025. +sim denotes similarity-based example sampling, and +strat
denotes stratified label-based sampling. We additionally experiment with including annotator explanations in the
Par and VariErrNLI datasets (+Explanation). The results submitted to the leaderboard are shown in bold.

3.4 Discussion

To further validate the results of ICL, we examine
its predictions on each development set in more
detail. While the development sets of Par and Vari-
ErrNLI both comprise only 50 examples, those of
MP and CSC consist of hundreds of items each,
making it more challenging to inspect them thor-
oughly. We therefore sample a smaller subset of
items from both datasets: for CSC, we randomly
select 50 items, whereas for MP, we extract 50 ran-
dom items for each included language (totaling 450
items). Although this strategy makes the analysis
more feasible, it effectively prevents us from com-
paring per-annotator label distributions on CSC, as
the down-sampled sets only include a few exam-
ples per worker. Nevertheless, we can still identify
the strengths and weaknesses of our ICL. methods
based on specific data items.

One notable tendency is that models often pre-
dict unanimous agreement on instances that appear
straightforward on the surface, but which are actu-
ally annotated differently. We illustrate this with
an example from MP—dev-1597 in Figure 3. While
the reply is directly licensed by the first utterance,
that utterance does not give an immediate and ob-
vious reason for an ironic reply. However, more
than half of the annotators labeled this example
as ironic. Similar cases can also be identified in

MP-dev-1597 (snippet)

[Post]: We once used coins such as Annas, paise,
even half annas! and one could survive a day! The
rupee used to be made of silver which would be a
day’s salary back then.

[Reply]: How old are you?

Figure 3: A sample from the MP development set.
The majority of the annotators marked this example
as ironic.

the three other datasets, as annotators often demon-
strate vastly different annotation behaviors. These
examples possibly show that complete pluralistic
alignment of language models may be impossible
to fully achieve (at least in the linguistic domain),
as the model adhering to common sense in all ex-
amples appears to be more important in this con-
text when compared to adhering to the plurality of
views.

At the same time, we note that the tested mod-
els are generally successful in mimicking specific
annotators’ labeling strategies. This is best illus-
trated in the VariErrNLI and Par datasets, since
the annotators’ motivations are directly available
for analysis. For example, in the Par dataset, an-
notator Ann3 uses label @ considerably more often
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than their peers, consistently labeling most non-
contradicting examples with 0 rather than negative
values even when they are non-relevant. This rea-
soning is also reflected in Ann3’s explanations. The
models, particularly when combined with label-
based sampling, tend to imitate this peculiarity
while also never predicting 0 for annotators Ann1
and Ann2 (who rarely use it). Likewise, the pre-
dictions also reflect less subtle differences, like the
annotators’ inclination toward positive or negative
scale values (for Par) and entailment or neutral
labels (for VariErrNLI). For example, Ann3’s pref-
erence for positive values is also discernible in the
predicted labels. In this respect, it can be argued
that ICL can be successful when used for perspec-
tivist modeling of individual perspectives.

4 Fine-tuning approaches

In this section, we discuss the various fine-tuning
approaches we have explored for Task A. While
the overall performance of these approaches was
ranked lower on the leaderboard than the in-context
learning methods from Section 3—in part because
we merely tackled a subset of Task A—we believe
that these fine-tuning methods are still a valuable
contribution to understanding how we can learn
from disagreements. All fine-tuning experiments
were done using the base RoBERTa (Liu et al.,
2019b) model.

4.1 Approach 1: Cumulative distances for
Likert scales

In the machine learning and computer vision com-
munities, Geng and Ji (2013) introduced label dis-
tribution learning (LDL) as an alternative to single-
label and multi-label learning (MLL). While MLL
allows data instances to be assigned to multiple
classes, LDL aims to solve the ambiguity prob-
lem (i.e., instances potentially belonging to several
classes) by predicting how much each label de-
scribes an instance. In other words, just like the
soft evaluation approaches developed in perspec-
tivist NLP communities, LDL predicts a probability
distribution over the set of available labels. Wen
et al. (2023) remark that LDL algorithms gener-
ally fail to accurately predict distributions for tasks
where the labels are inherently ordered, such as
age estimation. They propose the ordinal label
distribution learning (OLDL) paradigm and intro-
duce evaluation metrics which take the ordinality
of labels into account.

The Par and CSC datasets both contain anno-
tations based on a Likert scale. These scales are
ordered: higher ranks represent a higher degree
of the measured concept. In the first part of our
fine-tuning efforts, we experiment with using two
evaluation metrics proposed by Wen et al. (2023) as
loss functions when fine-tuning RoBERTa: cumu-
lative Jensen—Shannon divergence and cumulative
absolute distance. During experimentation, we
freeze all but the last six layers.

Let CDFp and CDFg, be the cumulative distri-
bution functions of distributions P and (), respec-
tively. We define the two loss functions as follows.

Cumulative Jensen—Shannon The cumulative
Jensen—Shannon (CJS) divergence between P and
(@ is defined as:

C
CIS(P,Q) = Y _ D;s(CDFp(n)||CDFq(n)),

n=1
ey
where D; (X ||Y") denotes the Jensen—Shannon di-
vergence between distributions X and Y.

Cumulative Absolute Distance The cumulative
absolute distance (CAD) is defined as:

C
CAD(P,Q) =Y |CDFp(n) — CDFg(n)|. (2)

n=1

We make the following observation: the evaluation
metric used for both Par and CSC in Task A is the
Wasserstein distance (WSD). Intuitively, the WSD
reflects how much mass has to be moved, and how
far, to transform one distribution into another. In
the discrete 1-dimensional scenario, as is the case
for Likert labels, the Wasserstein distance reduces
to:

C
W1i(P,Q) = > _|CDFp(n) — CDFg(n)l, (3)
n=1

which is the same as CAD (Equation 2). Indeed,
Wen et al. (2023) proposed CAD as an adaptation
of the Mallows distance, which is also known as
the Wasserstein-2 distance.

Results We report our results in Table 3. We
concluded that straightforwardly using one of the
given formulas as a loss function for fine-tuning
RoBERTa would not be sufficient. The reason for
this is that although CAD is equal to the Wasser-
stein distance in 1D, minimizing CAD loss during
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CSC Par
CJS 0.831 +0.01 1.677+0.10
CIS+MAE | 0.813+£0.00 1.694 4+ 0.03
CAD 0.800 £0.01 1.590 4+ 0.12
CAD+MAE | 0.797 £0.01 1.558 +0.10

Table 3: Fine-tuning results (Wasserstein distance) for
the CAD and CJS loss functions on the test sets. All
results are averaged across three random seeds. Here,
CJS+MAE is the average of predictions from CJS and
MAE; CAD+MAE is defined in a similar fashion.

training might not guarantee good generalization:
the cumulative nature of CAD/W1 could allow
small prediction errors to be diffused across sub-
sequent labels. As a result, we hypothesized that
it might not strongly penalize localized prediction
errors if the overall CDF stays close, potentially
leading to blurry or smeared distributions. For
this reason, we also experimented with combining
CJS/CAD with the mean absolute error (MAE), en-
couraging the mode of the predicted distribution
to align better with the “ground truth” distribution
while still respecting the ordinal structure of the
data. However, Table 3 suggests that this does not
make a difference. For the CSC dataset in particu-
lar, we find that CAD/CAD+MAE can yield scores
that are competitive with in-context learning (0.792
in Table 2).

4.2 Approach 2: Population-level label
distributions

Liu et al. (2019a) introduce a strategy for learning
label distributions designed to significantly reduce
the total number of human labels required for each
data item. They suggest that even if humans can in-
terpret a data item in many ways, their annotations
tend to reduce these interpretations to a limited
number of distinct “ground truth” label distribu-
tions. Therefore, the annotations for any given
item are seen as a sample drawn from one of these
distinct underlying distributions. They found that
this technique works well for datasets with 5-10 an-
notations per data item. Given that the Par dataset
only has four annotations per sentence pair, we
used this approach on this dataset alone. Liu et al.
(2019a) also hypothesized that semantically sim-
ilar items tend to have similar label distributions.
For this reason, they proposed to (1) cluster the
data into semantically similar groups using unsu-
pervised learning, (2) aggregate the annotations of

the clusters to create a single soft label for each
cluster, and (3) use supervised learning to learn to
predict the unified label distributions.

When dealing with the Par dataset, we assume
that some sentence pairs are inherently more dif-
ficult to annotate than others. The annotations for
these pairs may be more spread out and sparse
as a result, while those for other samples may be
more unified. We adopt the clustering and two-
stage training methodology proposed by Liu et al.
(2019a). However, instead of using a single soft la-
bel distribution for all items in a cluster, we trained
the classifiers on the original soft labels and then in-
cluded clustering information to push the predicted
soft labels to fall within a certain range.

Model Specification For the clustering, we opted
for k-means clustering with a maximum of 5 clus-
ters. We clustered the sentence pairs into groups
with similar soft label distributions and then used
their cluster numbers to guide the training process.
We then fine-tuned RoBERTa to predict the soft la-
bels. To leverage the resulting clusters, we trained
multitask classifiers with 2 prediction heads.

Soft Label Head The soft label head is a simple
feedforward layer outputting logits over 11 anno-
tation scores from -5 to 5. In this case, we used
cross-entropy loss as the loss function.

Cluster Classification Head To classify the clus-
ters, we used a separate feedforward layer for pre-
dicting the logits for n discrete cluster IDs. The
head is trained to predict the corresponding cluster
assignment of each example. For the loss func-
tion, we tried several options, namely KL diver-
gence, Wasserstein distance, and all loss functions
described in Section 4.1.

The overall training loss is the sum of the soft
label loss and the weighted cluster classification
loss:

Liotat = Lot + o+ Leluster- 4)

In this formula, Ly, represents the total training
loss, Lo 1s the loss for soft label prediction, and
Leuster 18 the loss for cluster prediction. « is a
tunable parameter that varies the overall influence
of Lejuster-

Results Our best score with this approach is a
Wasserstein distance of 1.66 for the Par dataset.
We achieved this by classifying the dataset into
3 clusters. While the performance is above the
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baseline by a notable margin, this method still un-
derperformed compared to the other fine-tuning
method described in Section 4.1 and the in-context
learning method described in Section 3.

4.3 Discussion

For the loss functions, it comes as no surprise that
CAD yields better results than CJS on the test set,
given that the evaluation metric is CAD/WSD. Ta-
ble 3 suggests that a standard fine-tuning setup
with this loss function might be enough to yield
competitive scores on the CSC dataset.

Note that the Par dataset in particular had a rela-
tively small number of annotators. Given that only
four annotators were annotating on an 11-point Lik-
ert scale, sparse distributions are inevitable. We
find that our methods are not able to handle this
sparsity well enough to yield scores comparable to
those for CSC. On a related note, we would like to
make one additional observation: when working
with sparse annotations, it is highly important to
consider how the models are evaluated. When anno-
tations are sparse, the “ground truth” distributions
may only be a noisy, undersampled proxy of the
underlying human opinion distribution. As well,
relying on raw empirical frequencies can exagger-
ate annotation noise, and evaluating against them
with strict distance metrics such as the Wasserstein
distance may unfairly penalize models that produce
smoother (and arguably more plausible) distribu-
tions. However, as it was not possible to apply
smoothing to the unseen test set, we found that
models optimized for smoother distributions will
generally perform poorly according to the LeWiDi
scoring mechanism. All results reported in this sec-
tion were obtained without additional smoothing.

As with many other domains, it appears that
the NLP community can take inspiration from the
computer vision and machine learning communi-
ties (and vice versa). Indeed, the perspectivist ap-
proaches in NLP appear to have emerged indepen-
dently from label distribution learning in CV/ML
(and also with different objectives; note, for ex-
ample, the fact that CAD and 1D WSD are the
same), yet both grapple with similar challenges.
We argue that perspectivist NLP could benefit from
the probabilistic and distributional modeling tech-
niques developed in these other communities.

5 Conclusion

In this paper, we introduced the two main ap-
proaches taken by the DeMeVa team for the
LeWiDi 2025 shared task. Our comparison of ICL
approaches on perspectivist modeling, while not
yielding fully conclusive results, suggested that
sampling examples based on labels can help gener-
ative models calibrate their predictions—especially
for numeric outputs like Likert scale values. Mod-
els calibrated in this way can trace and mimic an-
notators’ behavior down to more specific, granular
details. However, their reliance on common sense
(possibly induced by RLHF) may hinder their abil-
ity to recognize plurality when it is not overtly
expressed.

The second contribution of this work is a call
for the perspectivist NLP community to look out-
ward. In particular, we can learn from how ma-
chine learning communities have addressed un-
certainty and label distribution learning. While
perspectivist NLP rightly centers the diversity of
annotator perspectives, it can benefit from estab-
lished techniques such as probabilistic modeling
and smoothing methods that account for annotation
noise and limited sample sizes. We have merely
scratched the surface here by borrowing simple
loss functions and a clustering method from LDL,
but we believe that engaging with other fields can
be beneficial to the perspectivist community as a
whole.

Ethical Considerations

In this work, we make use of personalized an-
notations, which, inter alia, include sociodemo-
graphic variables related to the annotators. How-
ever, anonymization by their respective original
authors ensures that this data cannot be used in a
manner that is harmful to individuals.
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A Example of an ICL prompt

CSC-test—2143-Ann743

[INST] You are an expert in guessing my
response against a sarcasm detection task.

Your task is to analyze and predict my
response to a pair of context and
response between <<< and >>>, and label
it with an integer from 1 to 6 where 1
means not sarcastic at all and 6 means
completely sarcastic.

Below are some of my previous responses.
You should learn my response behavior
from them and then make the prediction.

Example 0:

[Context]: Steve is a fan of Bulgarian
folk music. Every week, he finds a
different song and plays it on his phone
and says, "I finally found one you'll
like! This one is really good. Come on!”
[Response]: Bulgarian folk music is for
old people Steve, didn't you say you
wanted to be young and cool?

[Label]: 2

Example 1:

[Context]: You are watching TV with Steve.
Whenever you set the volume to an odd
number, Steve takes the remote control
away from you and sets the volume to an
even number.

[Response]: My mistake, I never useally
do that.

[Label]l: 2

Example 9:

[Context]: Steve and you are hanging out
tonight. He shows up wearing a red tank

top, green shorts, and yellow sneakers.

[Response]: Did you go to a yard sale or

something?
[Label]: 5
[/INST]
>>>

[Context]: You walk into the room and
Steve is wearing his shoes on his hands.
When you see him, he says "look at me! I'
m Mr. Shoehand!"”

[Response]: Are you 5 or 507?

[Label]:

>>>

Figure 4: ICL prompt for entry CSC-test-2143 and
Annotator Ann743 (excerpt). The in-context examples
are selected from Ann743’s annotations in the train set,
following the stratified label-based sampling method.
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Abstract

Many researchers have reached the conclusion
that a1 models should be trained to be aware of
the possibility of variation and disagreement in
human judgments, and evaluated as per their
ability to recognize such variation. The LEW1D1
series of shared tasks on Learning With Dis-
agreements was established to promote this ap-
proach to training and evaluating a1 models, by
making suitable datasets more accessible and
by developing evaluation methods. The third
edition of the task builds on this goal by ex-
tending the LEW1D1 benchmark to four datasets
spanning paraphrase identification, irony detec-
tion, sarcasm detection, and natural language in-
ference, with labeling schemes that include not
only categorical judgments as in previous edi-
tions, but ordinal judgments as well. Another
novelty is that we adopt two complementary
paradigms to evaluate disagreement-aware sys-
tems: the soft-label approach, in which models
predict population-level distributions of judg-
ments, and the perspectivist approach, in which
models predict the interpretations of individual
annotators. Crucially, we moved beyond stan-
dard metrics such as cross-entropy, and tested
new evaluation metrics for the two paradigms.
The task attracted diverse participation, and
the results provide insights into the strengths
and limitations of methods to modeling varia-
tion. Together, these contributions strengthen
LEWID1 as a framework and provide new re-
sources, benchmarks, and findings to support
the development of disagreement-aware tech-
nologies.

1 Introduction

The assumption that natural language (NL) expres-
sions have a unique and clearly identifiable interpre-
tation has been recognized in Al as just a convenient
idealization for over twenty years (Poesio and Art-
stein, 2005; Versley, 2008; Recasens et al., 2011;
Passonneau et al., 2012; Plank et al., 2014b; Aroyo
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and Welty, 2015; Martinez Alonso et al., 2016;
Dumitrache et al., 2019; Pavlick and Kwiatkowski,
2019; Jiang and de Marneffe, 2022). More recently,
the increasing focus in NLP on tasks depending on
subjective judgments (Kenyon-Dean et al., 2018;
Simpson et al., 2019; Cercas Curry et al., 2021;
Leonardelli et al., 2021; Akhtar et al., 2021; Al-
manea and Poesio, 2022; Casola et al., 2024) led to
the realization that in many NLP tasks the traditional
approach to dealing with disagreement of ‘recon-
ciling’ different subjective interpretations is not
tenable. Many A1 researchers concluded therefore
that rather than eliminating disagreements from
annotated corpora, we should preserve them (e.g.
Poesio and Artstein, 2005; Aroyo and Welty, 2015;
Kenyon-Dean et al., 2018; Pavlick and Kwiatkowski,
2019; Uma et al., 2021b; Davani et al., 2022; Aber-
crombie et al., 2022; Plank, 2022). As a result, a
number of corpora with these characteristics now
exist, and more are created every year (Plank et al.,
2014a; White et al., 2018; Dumitrache et al., 2019;
Poesio et al., 2019; Nie et al., 2020; Cercas Curry
et al., 2021; Leonardelli et al., 2021; Akhtar et al.,
2021; Almanea and Poesio, 2022; Sachdeva et al.,
2022; Casola et al., 2024; Jang and Frassinelli,
2024; Weber-Genzel et al., 2024). Much recent
research has therefore investigated whether corpora
of this type are also useful resources for training NLP
models, and if so, what is the best way for exploiting
disagreements (Sheng et al., 2008; Beigman Kle-
banov and Beigman, 2009; Rodrigues and Pereira,
2018; Uma et al., 2020; Fornaciari et al., 2021;
Uma et al., 2021b; Davani et al., 2022; Casola et al.,
2023). This research in turn led to questions about
how such models can be evaluated (Basile et al.,
2021; Uma et al., 2021b; Gordon et al., 2021; For-
naciari et al., 2022; Giulianelli et al., 2023; Lo et al.,
2025). A succinct overview of the literature on how
the problem affects data, modeling and evaluation
in NLP is given in Plank (2022), and an extensive
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survey can be found in Uma et al. (2021b).

Such research also led to the establishment of
the Learning With Disagreements (LeWiDi) shared
tasks. The first edition, organized at SemEval 2021
Task 12 (Uma et al., 2021a), introduced the idea of
providing a unified testing framework for modeling
disagreement and evaluating systems on such data.
The benchmark combined six widely used corpora
spanning semantic and inference tasks as well as
image classification tasks. While the resource
attracted considerable attention (the benchmark was
downloaded by more than 100 teams worldwide)
participation in the evaluation was limited, possibly
due to the difficulty of the provided baselines or the
need for expertise in both NLP and computer vision.
In addition, the benchmark only covered a single
subjective task, i.e., humour detection, (Simpson
et al., 2019), and a single language (English).

A second edition followed at SemEval 2023
(Leonardelli et al., 2023), designed to address these
limitations and to better reflect the growing interest
in subjective NLP tasks. In contrast to the first edi-
tion, all datasets were textual and the focus shifted
entirely to inherently subjective phenomena such
as misogyny, hate-speech and offensiveness detec-
tion, where training with aggregated labels makes
much less sense. Moreover, Arabic was added as
a second language. Finally, evaluation combined
the soft-label approach also used in the first edition,
based on cross-entropy, with the more traditional
F1 metric. The reformulated task attracted broad
interest in the community: more than 130 groups
registered, with 30 submitting predictions and 13
contributing system papers.

The third edition of the LeWiDi shared task,
described in this manuscript and co-located with the
NLPerspectives Workshop at EMNLP 2025, builds
on these experiences while further broadening the
scope of the task. Like the earlier editions, its
central goal is to provide a common evaluation
framework for systems trained on disagreement-rich
data. However, LeWiDi-2025 introduces several
innovations. New tasks include natural language
inference (NLI), irony detection, conversational
sarcasm detection, and paraphrase detection. On
the evaluation side, we move entirely to soft metrics,
which are organized into two complementary tasks:
(i) soft-label evaluation, refining methods from
LeWiDi 2 with several distance-based metrics (e.g.,
Manhattan distance, Rizzi et al. 2024); and (i1)
perspectivist evaluation, where systems must model
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the labeling behavior of individual annotators, again
with newly developed metrics tailored to this setting.
In addition, two of the datasets adopt Likert-scale
annotation, posing further challenges for evaluation.
LeWiDi 3 engaged a smaller but dedicated group
of participants relative to the previous edition. A
total of 53 individuals registered on the competition
platform, with 15 teams providing submissions,
which resulted in 9 system papers.

2 The LeWiDi 3 Benchmark

The four selected datasets are summarized in Ta-
ble 1, illustrated with examples in Table 2, and
described in detail in the following sections.

All datasets were released in a harmonized json
format, identical to that of the previous LeWiDi edi-
tion, to ensure consistent access across datasets and
shared tasks editions. Each item contains the same
fields,' while the field other info is dataset-specific
and includes additional subfields particular to each
dataset. Annotator age and gender is available
for all four datasets, with some datasets providing
further attributes. This metadata was distributed
separately in an additional json file. All datasets
are publicly available.”

2.1 The Conversational Sarcasm Corpus
(CSO)

The CSC dataset (Jang and Frassinelli, 2024) is
a dataset of sarcasm in English, which contains
around 7,000 context—response pairs. Each pair is
rated on a 1 (not at all) — 6 (completely) scale both
by the speakers who generated the responses and by
multiple external observers (4 - 6 per speaker). The
contexts consist of situation descriptions involving
an imagined interlocutor, and the responses stem
from the responses given by online participants.
The generators of the responses as well as evaluators
rated the level of sarcasm of the responses.

2.2 The MultiPICo dataset (MP)

The MP dataset (Casola et al., 2024) is a mul-
tilingual perspectivist corpus consisting of short
exchanges from Twitter and Reddit. Each entry
in the corpus represents a post-reply pair. Crowd-
sourced workers had to determine whether the reply
was ironic given the post (binary label). The corpus
includes 11 languages: Arabic, Dutch, English,

1item_id, text, task, number of annotations, number of an-
notators, disaggregated annotations, annotator IDs, language,
hard label, soft labels, split, and other info.

Zhttps:/le-wi-di.github.io/


https://le-wi-di.github.io/

N. Items N.Ann.  Pool S
Dataset Task Labels Lang(s) (N. Annota per Anno- Textual Annotators ‘Other
. . type Metadata info
tions) item tators
Sarcasm Likert scale 7,036 Variable: context+ context +
cse detection [1to 6] En (31,984) 4t06 872 response gender, age speaker
Ar,De,En, o ] gender, age, source, level,
MP g;‘;zﬁon [0,1] Es,Fr.Hi, (;i’;zg) \;‘L::)“glle' 506 f’é”l” ethnicity, language
It,N1Pt ’ Py [..+6] variety
Paraphrase Likert scale 500 question] + genfier, age, explana-
Par . En 4 4 . nationality, .
detection [-5to 5] (2,000) question2 . tions
education
Natural [COl’ltr.adICtl()l’l ©, 500 Variable: context + genfier, zfge, explana-
VEN Language entailment (E), En 4 nationality, .
(1,933) 1to6 statement . tions
Inference neutral (N)] education

Table 1: Key statistics about the datasets used in the 3" LEW1Dr shared task.

French, German, Hindi, Italian, Portuguese, and
Spanish. It also contains sociodemographic infor-
mation about the annotators, including gender, age,
nationality, race, and student or employment status.
While the statistics may vary slightly across lan-
guages, each post-reply pair is typically annotated
by an average of 5 workers.

2.3 The VariErr NLI dataset (VEN)

VariErr NLI (Weber-Genzel et al., 2024) was de-
signed for automatic error detection, distinguishing
between annotation errors and legitimate human la-
bel variations in NLI tasks. The dataset was created
using a two-round annotation process: initially, four
annotators provided labels and explanations for each
NLI item; subsequently, they assessed the validity
of each label-explanation pair. It comprises 1,933
explanations for 500 re-annotated items from the
Multi-Genre Natural Language Inference (MNLI)
corpus for Round 1 and 7,732 validity judgments for
Round 2. The LeWiDi 2025 Shared Task focuses
on Round 1 (and therefore we refer to it just as
VEN), where annotators could assign one or more
labels from Entailment, Neutral, Contradiction to
each Premise ("context") - Hypothesis ("statement")
pair and provide corresponding explanations.

2.4 The Paraphrase Detection dataset (Par)

The Par dataset focuses on paraphrase detection. It
is structurally similar to VEN, but unlike VEN, the
labels here are scalar and each annotator provides
only a single score per item. It consists of 500 ques-
tion pairs sampled from the Quora Question Pairs
(QQP) dataset, each annotated independently by the
same four annotators. Annotations are given on a
Likert scale from -5 to 5, indicating the perceived de-
gree of paraphrastic relation between the questions,
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and are accompanied by short textual explanations.
As this dataset had not been released previously, it
was new to the participants of LeWiDi-2025.

3 Task definition

The main goal of the shared task is to provide a
unified testing framework for learning from dis-
agreements and evaluating models on such datasets.
Given the heterogeneous nature of the datasets,
participants were free to design dataset-specific ap-
proaches; however, they were encouraged to adopt a
unified crowd learning methodology or framework
across all datasets, rather than optimizing a separate
best-performing model for each dataset.

3.1 Task A and Task B

LeWiDi-2025 defines two complementary tasks.

Task A: Soft-label prediction. Participants are
required to predict a probability distribution over
the possible labels for each item. Evaluation is
based on the predicted distribution and the gold
soft label distribution. This task continues the line
of soft-label modeling from previous editions, but
is now applied across expanded datasets, including
those with Likert-scale judgments.

Task B: Perspectivist prediction. Participants
must predict the individual label choices of anno-
tators, i.e., model how a specific annotator would
label a given instance. Evaluation measures the
agreement between predicted and actual annotator-
level responses. This task emphasizes capturing
annotator bias and perspective.

Participants may choose to submit to one or both
tasks, and across any subset of the provided datasets.



Dataset Annotations Soft labels
(detection of) Example (Task B) (Task A)
Annotatorld:Label Label:Probability
CcsC g:‘:jztisyiieﬁill;nzntsiez:e o ‘:ﬁ " A812:1, A813:3,  [1:0.5,2:0.25, 3:0.25,
(Sarcasm) e Y ' A814:1, A815:2 4:0, 5:0, 6:0]
response: "hi
post: "@QUSER Oh dear" . .
?ﬁzn ) reply: "@QUSER It’s ok, wine has fixed A26A17’(¢164'1’ [0:0, 1:1]
Y everything" :
Par Ql: "Have you seen an alien craft?" Al:-1, A2:-3, _[_15002’5_4®0(’) _13(??(’)_:(()),
" ian?" . . :0.25, 0:0, 1:0, 2:0, 3:0,
(Paraphrase) Q2: "Have you ever seen an alien? A3:5, Ad4:4 4:0.25. 5:0.25]
VEN context: "yeah i can believe that" AL:E, A2:N, E[[C@[gsl,:llgls]
(NLID) statement: "I agree with what you said." A3:N, A4:E LA, LA

N:[0:0.5, 1:0.5]]

Table 2: Examples from the four datasets included in LeWiDi-2025. For each item, the annotators’ IDs and their
corresponding annotations are shown, along with the derived soft-label distributions. Task B required predicting an
individual annotator’s label given their ID, while Task A required predicting the full soft-label distribution for the

item.

Codabench served as the official competition plat-
form, where participants registered to access the
data and to submit their results.’

3.2 Phases

The competition consisted of three phases:

Practice phase: Participants received training
and development data (with full metadata) to design
and test their models. They could submit their
results (on the development data) to Codabench
and compare results on a public leaderboard.

Evaluation phase: Participants submitted predic-
tions on unseen test data (without labels). Rankings
were computed for each dataset and across datasets,
with missing submissions replaced by the orga-
nizer’s baseline score.

Post-campaign phase: To support long-term re-
search, the test data and gold labels were later
released publicly and remain available through our
website?.

3.3 Baselines

We provided two simple baselines: (i) a random
baseline, where each distribution (Task A) or pre-
diction (Task B) was assigned a random prediction,
and (ii) a most frequent baseline, where all items
were assigned the most frequent distribution within
the training set (Task A) or label. These baselines
were intentionally kept minimal so as not to dis-
courage participation, unlike in the first edition of
the shared task.

3 https://www.codabench.org/competitions/7192/
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4 Evaluation metrics

Two complementary paradigms for disagreement
evaluation were employed in LeWiDi-2025: soft-
label and perspectivist evaluation.

4.1 Soft-label Evaluation

In soft-label evaluation, annotator judgments are
represented as probability distributions (soft la-
bels), and system predictions are evaluated against
these human-derived soft labels by measuring the
distance between the two distributions. Previous
editions of LeWiDi employed cross-entropy as the
distance metric. However, Rizzi et al. (2024)
demonstrated that cross-entropy exhibits several
counterintuitive properties, whereas the Manhattan
and Euclidean distances provide a more suitable
alternative in the context of binary classification.
At the same time, they highlighted the limitations of
the analyzed metrics in providing fair comparisons
for multiclass classification tasks.

Based on previous findings, here we address the
broader settings introduced in this edition of the
shared task, i.e., multiclass and multilabel classi-
fication, as well as labels on a Likert scale. In
LeWiDi-2025, both the Manhattan distance and the
Wasserstein (Earth Mover’s) distance are adopted
as the primary soft evaluation metrics. Specifically,
the Average Manhattan Distance is applied to the
MP and VEN* datasets, while the Average Wasser-
stein Distance is used for the ordinal-scale datasets

4Considering the nature of the dataset itself, a multilabel
adaptation of the Average Manhattan distance has been pro-
posed. Additional details are reported in Appendix A.


https://www.codabench.org/competitions/7192/

(i.e. Par and CSO).

In particular, for what concerns the Average
Wasserstein Distance (AWD), the cost of transport-
ing probability mass from one bin to another is
defined as the absolute difference between their po-
sitions, forming a symmetric, non-negative ground
distance matrix with zeros on the diagonal.

4.2 Perspectivist Evaluation

The perspectivist evaluation focuses on assessing
a system’s ability to model the individual label
choices of annotators. For datasets with nominal
categories (MP, VEN), performance is measured
using error rate; for datasets with ordinal categories
(Par, CSC), a normalized absolute distance is used.

In particular, the average error rate (AER) (Equa-
tion 1), which measures the degree of error between
corresponding pairs of target and predicted value
vectors is computed as follows:>

1 N
AER=—=Y ER() )
NS
1 X a=%5_1 1tk —pikl
=—Z 1— k=1ti,k~ Pik (2)
N3 a

Where the Error Rate (ER) for a single sample i with
target label vector 7; = [f1, f», ...t4], and predicted
label vector p; = [p1, p2,..-Pal is defined as:

a—Yi_ 1tk pikl
a

ER(i)=1- (3)
Here, a denotes the length of the vectors (i.e., the
number of annotators), and N is the total number
of samples.

The Average Normalized Absolute Distance
(ANAD) across all samples is defined as:

N
ANAD = = ) NAD(@) “4)
Nizl
1 X1 & [tk —pikl
=—Y =) =2 x100 0 (5)
Nizzlakgl $

Where the Normalized Absolute Distance (NAD)
for a single sample i with target label vector
ti = [t b2, ..., t4], and predicted label vector p; =

[P1, P2, s Pal is:

NADG) ==Y Mxloo (6)
afz s

5 A multilabel adaptation of the average error rate has been
adopted for VEN; see Appendix A for further details.

with a denoting the number of annotators, and s
the scaling factor given by the range of the Likert
scale.

5 Participating systems

The third edition of the LEWIDr1 shared task at-
tracted a smaller but more focused community com-
pared to the previous edition. In total, 53 people
subscribed to the competition Codabench, and 15
teams submitted predictions. Among them, 6 teams
participated across all datasets and both tasks; 2
teams submitted for three datasets and both tasks
(excluding VEN); and 5 teams focused on a single
dataset with submissions only for Task A. In terms
of system papers, 9 were submitted: 6 from teams
who participated in multiple tasks and datasets, and
2 from teams who worked on a single dataset and
Task A. Task A was overall more popular, as the
majority of teams who submitted exclusively for
one dataset contributed only to Task A, while 11
teams engaged also with Task B.

5.1 Systems overview

This section provides an overview of the participat-
ing systems, focusing on the 9 participating teams
that submitted system papers, describing their archi-
tectures, methodologies, and key features relevant
to the evaluation tasks.

Opt-ICL (Sorensen and Choi, 2025) combines
in-context learning (ICL) with fine-tuning in a two-
stage approach. They first apply post-training, by
exposing an LLM to over 40 datasets rich in human
disagreement (Sorensen et al., 2025), and then, for
each dataset, conduct supervised fine-tuning, using
in-context demonstrations from all the individual
annotators along with annotator demographics. At
inference, the model performs per-rater prediction
by constructing a prompt with as many training
examples from that annotator as possible, followed
by the input to be labeled. They derive soft label
distributions from perspectivist predictions.

DelMeVa (Ignatev et al., 2025) employs LLMs
with ICL, modeling perspectivism through anno-
tators’ past behavior. They focus on criteria for
selecting demonstrative examples for LLMs (10 per
annotator), comparing semantic and label-based
strategies, with the latter performing better for
multi-label datasets. They derive soft label distri-
butions from perspectivist predictions.

twinhter (Nguyen and Van Thin, 2025) built
a BERT-based model that integrates annotator per-
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spectives by creating a new (text, annotator) pair.
They create a separate training instance for each
annotator’s view and combine it with their back-
ground information when available, enabling the
model to capture individual interpretations of the
same input.

McMaster (Sanghani et al., 2025) implemented
a demographic-aware RoOBERTa model that incor-
porates information such as age, gender, nationality,
and evaluated it across all four datasets. The au-
thors find that nationality and ethnicity in particular
show the largest gains in performance, while also
noting the limitations of relying on such features.

BoN Appetite Team (Ruiz et al., 2025) inves-
tigated three test-time scaling methods, a way to
improve LL.Ms performances: two benchmark al-
gorithms (Model Averaging and Majority Voting),
and a Best-of-N (BoN) sampling method. Their re-
sults show that the benchmark methods (Averaging
and Voting) reliably boost performance, while BoN
sampling does not transfer well from mathematical
domains.

PromotionGo (Huang et al., 2025) submitted
only to the MP-Task A with an XLM-R-based
system, ranking first. They deployed three main
strategies to develop a competitive system: data aug-
mentation, including lexical swaps, prompt-based
reformulation, and large-scale back-translation into
nine languages; optimization for alignment to the
evaluation metric (Manhattan Distance) by using
L1 loss as a loss function; ensemble learning, by
training multiple models on shuffled data splits and
averaging predictions to improve robustness.

Uncertain Mis(Takes) (Stalitnaité and Vla-
chos, 2025) addressed only the VEN-Task A, rank-
ing first. They aim to quantify ambiguity in NLI
instances, relying on the hypothesis that if a given
instance is ambiguous, then the explanations for
different labels will not entail one another. For each
item, they generate 128 LLM explanations. With a
fine-tuned entailment model they cluster them and
quantify their Semantic Entropy (SE). The expla-
nation clusters’ SE scores are combined with text
embeddings for soft label distribution prediction.

NLP-ResTEAM (Sarumi et al., 2025) proposed a
multi-task architecture. Special ‘tokens’ are added
to the input, including several tokens aiming at
modeling the annotators based on their ID, their
demographic features, their annotation behavior, or
combinations of those. The system produces two
outputs from a textual input and an annotator’s in-

formation: one is a soft-label, the other a prediction
of that specific annotator’s (hard) label.

LPI-RIT (Sawkar et al., 2025) builds upon the
DisCo (Distribution from Context) architecture
(Weerasooriya et al., 2023), a neural model that
jointly predicts item-level, annotator-level, and per-
annotator label distributions. They tackled both
soft-label and perspectivist tasks simultaneously.
They also introduced several extensions to DisCo,
such as integrating annotator metadata through
pretrained sentence encoders, and modified loss
functions to better align with evaluation metrics.

6 Results and discussion

This section presents the official results of the shared
task and discusses key trends across systems and
datasets. We also examine the role of evaluation
metrics and summarize insights from ablation stud-
ies conducted by participating teams.

6.1 Results and statistics

Table 3 and 4 report the overall leaderboard for
Task A and Task B respectively. If a team did not
submit predictions for a particular dataset or task,
we used the random baseline results to compute the
overall ranks and average positions. Ranks were
calculated with statistical ties taken into account.
Specifically, we used the Wilcoxon signed-rank
test at the instance level to identify clusters of tied
systems. Predictions that were not significantly
different (p = 0.05) from the top-performing system
in a given cluster were considered ties. A new
cluster was formed when a system’s performance
was found to be statistically different from that of
the best-performing system in the previous cluster.
Leadboards for each specific dataset are reported
in Appendix B.

6.2 General discussion

As in the previous edition of the shared task, we
observed a great variety in design choices, but some
trends emerge.

System choices Some teams (OCP-ICL, DeMeVa,
BoN Appetit Team) used large language models
relying on in-context learning (ICL) or test-time
scaling methods. Others built on transformer mod-
els (RoBERTa, BERT, or XLM-R) and trained on
the shared task data with annotator-aware exten-
sions (McMaster, twinhter, NLP-ResTeam), or
with data augmentation and ensembles but without
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SOFT EVALUATION
Rank (av.pos)) TEam CsC Mp Par VEN
WS (rank) MD (rank) WS (rank) | MMD  (rank)
1 (1.5) | Opt-ICL 0.746 (1) 0.422 (1) 1.200 (1) 0.449 (3)
2 (2.75) | DeMeVa 0.792 (1) 0.469 (6) 1.120 (1) 0.382 (3)
3 (3) twinhter 0.835 (5) 0.447 (5) 0.983 (1) 0.233 (1)
4 (4.25) | McMaster 0.803 (3) 0.439 (3) 1.605 (4) 0.638 (7)
5 (4.75) | BoN Appetite Team 0.928 (6) 0.466 (6) 1.797 (4) 0.356 (3)
6 (5.5) aadisanghani* 0.803 (3) 0.439 (3) 3.051 (7) BSL 9)
7 (7) PromotionGo BSL (11) 0.428 (1) BSL (7) BSL 9)
8 (7.25) | Most frequent baseline 1.170 (7) 0.518 (8) 3.231 (7) 0.595 (7)
9 (7.5) | Uncertain Mis(Takes) BSL (11) BSL (11) BSL (7) 0.308 (1)
10 (8.5) | NLP-ResTeam 1.393 9) 0.551 9) 3.136 (7) 1.000 9)
10 (8.5) | LPI-RIT 1.451 9) 0.540 9) 3.715 (7) BSL 9)
12 (8.75) | cklwanfifa® BSL (11) BSL (11) BSL (7) 0.469 (6)
12 (8.75) harikrishnan_gs* 1.295 (8) BSL (11) BSL (7) BSL 9)
12 (8.75) tdang* BSL (11) BSL (11) 1.665 (4) BSL 9)
15 (9.5) | Random baseline (BSL) | 1.543 (11) 0.687 (11) 3.350 (7) 0.676 9)

Table 3: Overall Task A (soft evaluation) results as an average of a system’s rank across datasets. ~ indicates that no

system description was available for the team.

PERSPECTIVIST EVALUATION
Rank (av.pos)) TEam CsC Mp PAr VEN
MAD  (rank) ER (rank) | MAD  (rank) | MER  (rank)
1 (1.5) | Opt-ICL 0.156 (1) 0.289 (1) 0.119 (2) 0.270 (2)
2 (2) | DeMeVa 0.172 (2) 0.300 (2) 0.134 (2) 0.228 (2)
3 (3.25) | twinhter 0.228 (5) 0.319 (6) 0.080 (1) 0.124 (1)
4 (3.75) | McMaster 0.213 (3) 0.311 (2) 0.199 (4) 0.343 (6)
5 (4.75) | Most frequent baseline 0.239 (5) 0.316 (2) 0.362 (6) 0.345 (6)
6 (5) aadisanghani* 0.213 (3) 0.311 (2) 0.491 (6) BSL (9)
6 (5) | BoN Appetite Team 0.231 (5) 0.414 9) 0.228 (4) 0.272 (2)
8 (6.5) | NLP-ResTeam 0.291 (8) 0.326 (6) 0.418 (6) 0.345 (6)
9 (7) | cklwanfifa " BSL  (10) | BSL  (i0) BSL (6) 0.271 2)
10 (7.5) | LPI-RIT 0.331 9) 0.324 (6) 0.437 (6) BSL (9)
11 (8.75) | Random baseline (BSL) | 0.352 (10) 0.499 (10) 0.367 (6) 0.497 9)

Table 4: Overall Task B (perspectivist evaluation) results as an average of a system’s rank across datasets.

that no system description was available for the team.

explicit annotator features (PromotionGo). Finally,
hybrid systems included LPI-RIT, which combined
sentence-transformer embeddings with the DisCo
architecture, and Uncertain (Mis)Takes, which
modeled disagreement via semantic entropy over
LLMs’ generated explanations.

Towards Unified Approaches A clear difference
from the previous edition (where teams tailored
systems to each dataset) is that all participants who
submitted for more than one dataset pursued general-
purpose pipelines, aiming to capture patterns of
disagreement across datasets with a unified ap-
proach. The majority instantiates a separate model
for each dataset but follows the same pipeline, while
others use a single model uniformly for all datasets.

Overall Rankings and Local Exceptions As
a consequence of the shift away from dataset-
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indicates

specific solutions toward general-purpose pipelines,
a clearer view of which approaches generalize bet-
ter was enabled. In fact, differently from the pre-
vious edition, some systems ranked consistently
among the best across all datasets and tasks. LLM-
based systems with ICL secured the top posi-
tions in the overall leaderboard, with OCP-ICL
and DeMeVa ranking first and second. However,
fine-tuned transformer models, such as twinhter
and McMaster were competitive and twinhter
outperformed LLMs on smaller datasets Par and
VEN. Moreover, the specific leaderboards revealed
notable exceptions: teams that focused on tailored
solutions for a single dataset, PromotionGo on Par
and Uncertain (Mis)Takes on VEN, achieved
first place locally.

Annotator information The majority of teams
(six) used annotator information extensively, de-



voting effort to find the optimal way for encoding
annotator information. Two types of information
were available: annotators’ previous behavior and
demographics. Some systems used annotator ex-
amples in in-context prompts to learn annotator
views with LLMs (Opt-ICL, DeMeVa) or implic-
itly by training on each pair annotation-item or by
passing annotator ID (twinhter, NLP-ResTeam,
LPI-RIT). Demographics information usage was
tested by Opt-ICL, McMaster, twinther and
NLP-ResTeam. Notably, all of the best-performing
systems incorporated some form of annotator infor-
mation. Further details on the impact of annotator
information are in Section 6.5.

Data Augmentation Strategies Opt-ICL post-
trained LLMs using over 40 additional datasets.
NLP-ResTEANM synthesized examples via paraphras-
ing and back-translation. PromotionGo applied
extensive lexical (swap and reformulation) and
translation-based augmentation. Further details
on the impact of data augmentation are given in
Section 6.5.

Task A vs Task B Leaderboard rankings for the
two complementary tasks were largely similar. Not
all systems attempted Task B, but of those that
did, several derived the soft labels for Task A from
the perspectivist labels for Task B. All three top-
performing systems adopted this strategy, indicating
that understanding annotator behavior contributes
to overall prediction quality. Other systems adopted
a multi-task strategy, using one output head for the
soft label, the other for the perspectivist information.

6.3 Individual datasets results

CSC Two major observations stand out regard-
ing CSC. The first relates to the role of demo-
graphic information. Most participating teams have
used annotator information in their systems, regard-
less of their ranking. However, the winning team
(Opt-ICL) reports through an ablation study that
using demographic information did not significantly
improve their results. This might be because the
demographic information provided in CSC consists
only of gender and age, with missing data, reported
by the twinther team. Another observation is
related to the importance of fine-tuning. While
the most successful teams have used a combina-
tion of in-context learning while leveraging annota-
tors information, two of these teams (DeMeVa and
McMaster) report that fine-tuning RoBERTa has
yielded comparable results to in-context learning
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with larger models. The winning team (Opt-ICL)
also reports that dataset-specific fine-tuning was a
crucial contributor to the results.

MP With respect to the other dataset included
in the shared task, MP presented and additional
challenge due to its multilinguality. This challenge
was approached by leveraging pre-trained multilin-
gual backbones (the majority of the teams) and/or
by fine-tuning on the multilingual data. While
the dataset is very metadata-rich, the top-2 best
performing models for both tasks either did not
incorporate annotators’ sociodemographic data or
only noticed a slight improvement when doing so.
Fine-tuning was used for most systems. Submis-
sions to Task A showed in general better results
(with only two teams performing worse than the
most frequent BSL), while only the winning team
performed significantly better in Task B; we hy-
pothesize this could be due to the large number of
annotators in the dataset.

VEN & Par VEN and Par are two datasets with
similar designs: (1) the same four annotators anno-
tated all instances in the corpora, (2) all annotators
are required to provide explanations to supplement
their annotated labels. Due to these design similar-
ities, we observe that the Perspectivist rankings of
Par and VEN are extremely similar, with twinhter
ranking first and Opt-ICL and DeMeVa in the tied
second place. All three systems incorporated ex-
planations into the context and demonstrated that
models (both BERT-based ones and LLMs) can
leverage this richer textual input to better understand
labeling rationales and thus enhance performance.
DeMeVa observed that including explanations in
prompts helps better understand individual annota-
tors’ preferences, e.g., Ann3 for positive labels in
Par. Additionally, Uncertain (Mis)Takes par-
ticipated only and won first place in the VEN Task
A using LLM-generated explanations and semantic
entropy scores. Overall, explanations proved to be
a valuable resource, either as explicit input features
or as generated reasoning traces, and consistently
contributed to stronger performance on datasets in
both soft-label and perspectivist evaluations.

6.4 The new evaluation metrics: an
assessment

The introduction of new evaluation metrics aimed
to overcome the limitations of cross-entropy and
to provide more reliable measures of model per-
formance across diverse settings, including binary,



multilabel, and ordinal-scale datasets based on the
Likert scale. In practice, the Manhattan and Wasser-
stein distances offered intuitive and robust evalua-
tions of soft label predictions, while the Error Rate
and Average Normalized Absolute Distance en-
abled perspectivist assessments that better reflected
annotator behavior and label structure.

For the multilabel scenario, evaluation relies on
the Mean Absolute Manhattan Distance (MAMD)
and the Mean Error Rate (MER).® These metrics
have been designed to consider each label dimen-
sion independently, while simultaneously capturing
the overall structure of label co-occurrence within
an instance. By design, partially correct predictions
incur a lower penalty than completely incorrect pre-
dictions. This allows the evaluation to reflect both
the distribution of individual labels across anno-
tators and their joint occurrence within the same
instance, providing a nuanced measure of system
performance in multilabel settings.

For datasets with ordinal labels (i.e., Likert-type
scales), the Average Normalized Absolute Distance
(ANAD) and the Average Wasserstein Distance
(AWD) explicitly incorporate the ordinal nature of
the labels. Unlike simple accuracy-based measures,
these metrics penalize predictions proportionally
to their deviation from the true label. In this way,
systems are penalized less when producing outputs
that are closer to the correct ordinal value, even if not
exact, thereby providing a more faithful evaluation
of performance on ordinal data.

Across all metrics, the lower bound remains
consistent, with a score of 0 indicating a perfect
match. A limitation, however, is that the upper
bound is in some cases dataset-dependent (e.g., for
the Wasserstein distance), which prevents direct
comparisons across datasets.

6.5 Post-Submission Experiments and
Ablation studies

Beyond their official submissions, all teams con-
ducted supplementary analyses to gain a deeper
understanding of their systems. These ablation
studies and evaluations of alternative strategies en-
riched the competition with valuable insights and
underscored the participants’ commitment. The
results demonstrated that the effectiveness of dif-
ferent approaches varied across datasets, reflecting
both the specific characteristics of the data and the
influence of the evaluation metrics employed.

OFurther details are reported in Appendix A.

One major focus investigated was the role of
annotator information. For LLM-based systems
such as OCP-ICL and DeMeVa, provide in-context
rater examples at inference time proved decisive:
OCP-ICL showed that such examples drove large
gains across datasets while demographics had neg-
ligible impact, and DeMeVa demonstrated that strat-
ified selection of annotator examples improved con-
sistency over random or similarity-based sampling.
In contrast, for fine-tuned transformer-based mod-
els, annotator metadata and embeddings were more
influential. McMaster found that demographic
embeddings, particularly nationality and ethnicity,
improved their ROBERTa system; twinhter ob-
served stronger benefits from annotator metadata
on small-annotator datasets; LPI-RIT reported that
simple annotator ID tokens stabilized predictions;
and NLP-ResTeam showed that label-style compos-
ite embeddings often outperformed demographics,
though the best choice varied depending on the
evaluation metric.

Ablation studies across papers revealed mixed
effects of augmentation across teams. OCP-ICL
found that post-training on over 40 dataset im-
proved results only for MP, while for the other
datasets was indifferent. NLP-ResTeam concluded
that augmentation helped for small datasets (Par
and VEN), while PromotionGo found that combin-
ing augmentation strategies worked best.

7 Conclusions

We are delighted that the third edition of the LEW1D1
shared task continued to attract the attention of the
community researching disagreement and variation
inNLP. Again, we found that the participating teams
engaged actively with the tasks, tackling interesting
issues such as how best to use annotator information
and the relation between soft-label modelling and
perspectivist modelling.

Our hope is that the shared task and the datasets
we released will stimulate further research in this
area, by the participant groups and others. We
believe that further thinking is still needed on issues
such as the most appropriate form of evaluation
for tasks in which human subjects express ordinal
judgments, or the usefulness of modelling individ-
ual annotators or groups of annotators. To promote
this, the Codabench page will remain open to sub-
missions after the deadline so that researchers can
continue test their models on the datasets.
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Limitations

While this edition broadened the range of datasets,
the scope remained restricted to text, leaving open
the question of how disagreement-aware methods
would perform in other modalities such as vision,
speech, or multimodal tasks. Another open issue is
that all annotators present in the test sets were also
seen during training and development. As a result,
the shared task did not directly evaluate systems’
ability to generalize to unseen annotators, an ability
that is likely to be critical in real-world applications.
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Appendix

A Evaluation Metrics for the Multilabel
setting

In this section we outline how the adopted metrics
were adapted to handle multilabel classification.

A.1 Multilabel Average Manhattan Distance
(MAMD)

To account for the multilabel setting, the Average
Manhattan Distance (AMD) was adapted into the
Multilabel Average Manhattan Distance (MAMD)
reported in equation 8. For each sample, the av-
erage Manhattan distance across all label-specific
distributions is computed. The final score is then
obtained as the average of such values over all
samples.

. 1 L n
AMD() = ; Y Y pijk—tijkl D
j=1k=1
1 N
MAMD = — ) AMD() ()
i=1
With:

* N is the total number of samples,

e L is the number of labels (e.g., Entailment,
Neutral, Contradiction for the VEN dataset),

* nis the length of each distribution,

* 1k is the k-th value of the j-th target distri-
bution for sample i,

* pi,jk is the corresponding predicted value.
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A.2 Multilabel Error Rate (MER)

The metric adopted for the perspectivist evaluation
is the Multilabel Error Rate (MER), which quanti-
fies the average dissimilarity between predicted and
target label vectors across multiple samples. The
Multilabel Error Rate (MER) is computed as the
average of the average Error Rate values across all
samples as shown in Equation 9:

1 £ 1)
MER=—) |— ) ER()
Nia\L o
i%(lil a—zz:“ti,j,k_pi,jvkl)
Nz:I L]:1 a
&)
Here,

* N is the total number of samples.

* L is the number of possible labels (i.e., the
number of label-specific vectors to evaluate
per sample, such as Entailment, Neutral, Con-
tradiction).

* ais the length of a target or predicted vector
(i.e., the number of annotators contributing to
each label vector).

* 1 jk 18 the k-th element of the j-th target
vector for sample i.

* pi,jk is the k-th element of the j-th predicted
vector for sample i.

B Datasets specific leaderboards

CSC
TASK A TASK B

TEAM WS TEAM MAD
1 Opt-ICL 0.746| 1 Opt-ICL 0.156
1 DeMeVa 0.792| 2 DeMeVa 0.172
3 McMaster 0.803| 3 McMaster 0.213
3 aadisanghani 0.803| 3 aadisanghani 0.213
5 twinhter 0.835| 5 twinhter 0.228
6 BoN Appetit Team 0.928| 5 BoN Appetit Team 0.231
7 Most frequent BSL 1.170| 5 Most frequent BSL 0.239
8 harikrishnan_gs  1.295| 8 NLP-ResTeam 0.291
9 NLP-ResTeam 1.393| 9 LPI-RIT 0.331
9 LPI-RIT 1.451|10 Random label BSL 0.352
11 Random label BSL 1.543

Table 5: Results for the CSC dataset
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MP

LPI-RIT 0.540

BoN Appetit Team 0.414

TASK A TASK B

TEAM MD TEAM ER
1 Opt-ICL 0.422| 1 Opt-ICL 0.289
1 PromotionGo 0.428| 2 DeMeVa 0.300
3 McMaster 0.439| 2 McMaster 0.311
3 aadisanghani 0.439| 2 aadisanghani 0.311
5 twinhter 0.447| 2 Most frequent BSL 0.316
6 BoN Appetit Team 0.466| 6 twinhter 0.319
6 DeMeVa 0.469| 6 LPI-RIT 0.324
8 Most frequent BSL 0.518| 6 NLP-ResTeam 0.326
9 9
9

NLP-ResTeam 0.551
11 Random label BSL 0.687

10 Random label BSL 0.499

Table 6: Results for the MP dataset

4 BoN Appetit Team 1.797

Par
TASK A TASK B
TeEaM WS TEAM MAD
1 twinhter 0.983|1 twinhter 0.080
1 DeMeVa 1.120|2 Opt-ICL 0.119
1 Opt-ICL 1.200|2 DeMeVa 0.134
4 McMaster 1.605 |4 McMaster 0.199
4 tdang 1.665|4 BoN Appetit Team 0.228

6 Most frequent BSL 0.362

7 aadisanghani 3.051|6 Random label BSL 0.367

7 NLP-ResTeam 3.136 |8 NLP-ResTeam 0.418

7 Most frequent BSL 3.231|8 LPI-RIT 0.437

7 Random label BSL 3.350|8 aadisanghani 0.491

7 LPI-RIT 3.715

Table 7: Results for the Par dataset
VEN
TASK A TASK B
TeEAM MMD| TeEAMm MER

1 twinhter 0.233 |1 twinhter 0.124
1 Uncertain Mis(Takes) 0.308 |2 DeMeVa 0.228
3 BoN Appetit Team  0.356 |2 Opt-ICL 0.270
3 DeMeVa 0.382 |2 cklwanfifa 0.271
3 Opt-ICL 0.449 |2 BoN Appetit Team 0.272
6 cklwanfifa 0.469 |6 McMaster 0.343
7 Most frequent BSL 0.595 |6 NLP-ResTeam 0.345
7 McMaster 0.638 |6 Most frequent BSL 0.345
9 Random label BSL 0.676 |9 Random label BSL 0.497
10 NLP-ResTeam 1.000

Table 8: Results for the VEN dataset
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Abstract

The Learning With Disagreements (LeWiDi)
2025 shared task aims to model annotator dis-
agreement through soft label distribution predic-
tion and perspectivist evaluation, which focuses
on modeling individual annotators. We adapt
DisCo (Distribution from Context), a neural
architecture that jointly models item-level and
annotator-level label distributions, and present
detailed analysis and improvements. In this pa-
per, we extend DisCo by introducing annotator
metadata embeddings, enhancing input repre-
sentations, and multi-objective training losses to
capture disagreement patterns better. Through
extensive experiments, we demonstrate substan-
tial improvements in both soft and perspectivist
evaluation metrics across three datasets. We
also conduct in-depth calibration and error anal-
yses that reveal when and why disagreement-
aware modeling improves. Our findings show
that disagreement can be better captured by
conditioning on annotator demographics and
by optimizing directly for distributional met-
rics, yielding consistent improvements across
datasets.

1 Introduction

As machine learning systems increasingly medi-
ate social, legal, and civic decision-making, their
alignment with human values becomes paramount.
However, as any participant in a democratic pro-
cess knows well, human disagreement is always
present. This includes many existing problems,
such as hate speech detection, intent classification,
or moral judgment. The LeWiDi 2025 shared task
(Leonardelli et al., 2025) directly addresses this
need by evaluating models on their ability to (1)
predict soft label distributions derived from anno-
tator disagreement and (2) approximate individual
annotator behavior in a perspectivist setting.
Supervised learning typically resolves annotation
disagreement by aggregating labels into a single

*Equal contribution.

ground truth, often via plurality vote. However,
doing so can obscure valuable minority perspec-
tives, especially on subjective or contentious con-
tent (Basile et al., 2021; Prabhakaran et al., 2021;
Uma et al., 2021b; Plank, 2022; Cabitza et al.,
2023; Homan et al., 2023; Weerasooriya et al.,
2023a; Prabhakaran et al., 2023; Pandita et al.,
2024). However, preserving and modeling this
disagreement can improve system robustness, fair-
ness, and social accountability. Tasks such as
MultiPICo (Casola et al., 2024), Paraphrase, Vari-
ErrNLI, and CSC (Jang and Frassinelli, 2024) ex-
emplify domains where capturing nuanced human
perspectives, rather than just the majority opinion,
is essential for ethical and practical deployment.
LeWiDi-2025 challenges systems to go beyond
single-label classification and instead model the
full distribution of possible human responses.

The core challenge lies in modeling disagree-
ment when annotation is both sparse and noisy.
Annotators may vary in reliability, background, and
interpretation, and most datasets provide only a
few annotations per item. Moreover, models must
predict not only soft aggregate distributions but also
simulate individual annotator responses, requiring
them to generalize from partial supervision over
complex, entangled signal sources. Compound-
ing this difficulty is the need for robust evaluation
across both soft (e.g., Manhattan, Wasserstein) and
perspectivist (e.g., Error Rate, Normalized Abso-
lute Distance) metrics, which test a model’s fidelity
to human-like prediction under both collective and
individual frames. The four datasets utilized in
the shared task are Conversational Sarcasm Cor-
pus (CSC), MultiPico (MP), Paraphrase (Par), and
VariErr NLI (Ven).

We adapt the DisCo (Weerasooriya et al., 2023b)
model to the LeWiDi 3rd Edition datasets. DisCo
consumes item—annotator pairs as input and jointly
predicts three interconnected distributions: the
specific label an individual annotator would assign,
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the soft label distribution over all annotators for
that item, and the annotator’s own distribution over
all items.

While DisCo demonstrated the value of jointly
modeling item- and annotator-level distributions,
it treated annotators as one-hot IDs and optimized
losses misaligned with evaluation. We address
both limitations by embedding annotator metadata
and by designing loss functions directly tied to
disagreement-aware metrics, enabling more inter-
pretable and robust models.

For the post-evaluation phase, we made the fol-
lowing contributions:

1. The original DisCo model relied solely on
simple annotator ID mappings, limiting its
ability to understand annotator characteristics
and biases. We modified it to account for anno-
tator metadata features such as age, nationality,
gender, education, etc.

2. We extended DisCo’s preprocessing capabili-
ties to process a wider range of data formats.

3. We updated the underlying sentence trans-
former models on which DisCo may depend.

4. We modified the loss functions to align with the
evaluation for soft label distribution prediction
and perspectivist modeling.

5. We perform extensive failure mode analysis
on the model.

With these updates, we observed a substantial
improvement in the scores for three datasets: CSC,
MP, and Par. Additionally, this placed us as rank 4
instead of 7 for Par and Rank 5 instead of 9 for MP
in the post-evaluation phase.

2 Background

The LeWiDi shared task has emerged as a focal point
for advancing methods that embrace, rather than
suppress, annotator variation, since its inception
(Uma et al., 2021a). The third edition, LeWiDi-
2025 (Leonardelli et al., 2025), further extends
these efforts by evaluating both distributional and
perspectivist modeling across diverse datasets.

LeWiDi-2025 focuses on four core benchmark
datasets, each designed to probe different facets
of human interpretative variation. Please refer
to Appendix A.1 for further information on the
datasets.

The LeWiDi evaluation draws on two comple-
mentary research traditions. First, item—annotator
modeling, the goal is to explicitly account for indi-
vidual annotator behaviors when aggregating labels.
Dawid and Skene (1979)’s foundational model rep-
resents each annotator’s reliability via a latent con-
fusion matrix, enabling joint estimation of true item
labels and per-annotator error rates. Subsequent
work extended this framework with fully Bayesian
treatments (Raykar et al., 2010; Kim and Ghahra-
mani, 2012) and introduced clustering techniques
to group annotators by shared labeling patterns
(Lakkaraju et al., 2015).

In the second paradigm, label distribution learn-
ing (LDL) reframes “ground truth” not as a single
class but as a probability distribution over all possi-
ble labels. Under this view, models are trained to
match the full annotator-derived distribution rather
than just the majority vote. Early LDL work demon-
strated strong performance in tasks like facial age
estimation (Geng, 2016; Gao et al., 2017) and has
since been applied to diverse applications, from
short text parsing (Shirani et al., 2019) to climate
forecasting (Yang et al., 2020), showing that dis-
tributional targets can yield richer, more nuanced
predictions.

By learning shared embeddings for both items
and annotators, DisCo effectively regularizes sparse
annotation settings and pools context across related
examples. In experiments on six publicly avail-
able datasets, DisCo matched or exceeded state-
of-the-art LDL approaches, such as multinomial
mixture models combined with CNNs, and outper-
formed annotator-modeling baselines like Crowd-
Layer across both single-label and distributional
evaluation metrics.

Since SemEval-2023, researchers have contin-
ued to push toward richer annotator-aware mod-
eling. IREL (Maity et al., 2023) conditions
toxicity predictions on anonymized user meta-
data—integrating each annotator’s identity embed-
ding directly into both the model input and the
loss function to improve alignment with individual
judgments. CICL_DMS (Grétzinger et al., 2023),
by contrast, builds on large pre-trained language
models and explores ensemble learning, multi-task
fine-tuning, and Gaussian process calibration to
better match the full distribution of annotator labels.
Together, these contributions underscore a growing
emphasis on leveraging demographic, behavioral,
and contextual signals to capture the nuances of
human disagreement.
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Figure 1: Data representation for DisCo: each item x,,
is paired with per-annotator responses y. ,, and their
empirical distribution #y. ,,,, and each annotator n has
a response vector y,, . with distribution #y, ..

3 System Overview

Our system builds upon the DisCo (Distribution
from Context) architecture originally proposed by
Weerasooriya et al. (2023b). To adapt it for the
LeWiDi-2025 task, we introduced several targeted
enhancements, including the use of task-specific
sentence encoders, integration of annotator meta-
data via pretrained embeddings, and modified loss
functions to reflect task evaluation metrics. These
adaptations enable the model to generalize more ef-
fectively from sparse supervision and better capture
the complexity of annotator behavior and disagree-
ment.

DisCo is designed to jointly model individual an-
notator responses, aggregate item-level label distri-
butions, and annotator-level behavior distributions
in a unified probabilistic framework.

Each data item x,,, € R’ is represented as a
column vector of J features, and its associated
annotations from N annotators are collected in
the matrix Y € ZV*M_ We denote the vector of
responses for item m as y. ,, and the histogram of
these responses as #y. ,,. Similarly, each annotator
n’s behavior across all items is summarized by y,, .
and its histogram #y,, .. This setup is illustrated in
Figure 1.

In the encoder (Figure 2), item and annotator
inputs are mapped into separate subspaces. The
item vector X, is projected via a learnable matrix
W € R/1%7 to yield the embedding z; = W X,
while the one-hot annotator identifier a,, is projected
through W 4 € R74*N to produce z4 = W 4a,,.
These embeddings are concatenated and passed
through a two-layer MLP with softsign activations

2 W,
24 I
= B

Encoder

Figure 2: Block diagram of the DisCo encoder and
decoder. The encoder maps item and annotator inputs
into a joint latent code z g, and the decoder produces
three parallel distributions via softmax heads.

and a residual connection:

Zp = ¢(WP : ¢ZI7 ZA)7 (1)
zp = p(Wg -zp zp), (2)

where W p and W are learned projection matri-
ces.

The decoder takes the joint code zg and out-
puts three softmax-normalized vectors: z, =
softmaxWzp, for the per-annotator label distri-
bution Py | Xm,an, 2yr = softmaxWrzp
for the item-level distribution, and z,4 =
softmaxW 4z for the annotator-level distribu-
tion. Training minimizes a composite loss that
combines the negative log-likelihood of observed
annotator responses with KL divergence terms that
align predicted and empirical label distributions at
both the item and annotator levels.

At inference time, for an unseen item x,,, without
a specific annotator ID, we embed x,,, to obtain z;
and tile it across all annotator embeddings in W 4
to form N joint codes. Each code is decoded to
yield per-annotator distributions, which are then
aggregated by expectation or majority vote to pro-
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Figure 3: Metadata Embedding Pipeline for DisCo_New:
After converting raw metadata into Natural language, it
is passed through a transformer to generate embeddings
and eventually generate a,,

duce the final item-level prediction. This procedure
preserves the learned annotator diversity even when
specific annotator metadata is unavailable.

In the post-evaluation phase, we extended the
DisCo architecture to better leverage annotator and
item information. Annotators were no longer repre-
sented by one-hot identifiers but instead by metadata
derived from structured JSON inputs. The meta-
data preprocessing pipeline (Figure 3) concatenated
demographic attributes into a textual description,
which was then encoded using a transformer-based
sentence embedding model fieta-. This produced
annotator embeddings &, = fimetaJSONn € RP,
which were projected through a learnable ma-
trix W4 € R%*D to yield the annotator repre-
sentation z4 = W4a,,. On the item side, the
generic encoder was replaced with a task-specific
transformer encoder fien-, producing item vectors
z7 = W7 fitemXm. Both item and annotator vectors
were mapped into semantically aligned subspaces
and concatenated into a joint latent representa-
tion z g, which was decoded following the original
DisCo framework.

In parallel, we revised the training objective
to incorporate additional distributional and per-
annotator losses. Beyond categorical negative log-
likelihood and KL divergence, we explored Wasser-
stein distance for soft-label alignment and mean
absolute error for per-annotator alignment, as well
as combined and alternating formulations. These
revisions aligned optimization more closely with
the evaluation metrics. Full implementation details,
loss formulations, and dataset-level hyperparameter
configurations are described in Section 4.4.

These modifications to the DisCo architecture are
not cosmetic but address fundamental gaps: richer
annotator modeling and task-aligned optimization.

4 Experimental Setup

4.1 Datasets

Experiments are conducted on three datasets pro-
vided by LeWiDi-2025: Conversational Sarcasm
Corpus (CSC), MultiPico (MP), and Paraphrase
(Par). Each dataset is provided in a unified JSON
format, including item-level features, per-annotator
labels, and annotator identifiers. The datasets and
their evaluation metrics are discussed further in
Appendix A.1.

4.2 Tasks

The system is evaluated on the two complemen-
tary tasks defined in the LeWiDi-2025 shared task
framework. In Task A (Soft Label Prediction), a
probability distribution over the label space must be
output for each instance. Evaluation is conducted
using the Manhattan distance for MP and Ven, and
the Wasserstein distance for Par and CSC. In Task
B (Perspectivist Prediction), the individual labels
assigned by each annotator must be predicted. Eval-
uation is performed using Error Rate for MP, and
Normalized Absolute Distance for Par and CSC.
This setup reflects the task’s emphasis on modeling
annotator disagreement rather than collapsing it
into a single ground-truth label.

4.3 Model Configuration: DisCo_OG

The original DisCo model was adapted to the
LeWiDi-2025 tasks with minimal modifications.
Annotators were represented using simple identi-
fiers, and the model jointly optimized soft-label
and perspectivist objectives. Training used a com-
posite loss combining negative log-likelihood of
annotator responses with KL divergence against
empirical distributions. Hyperparameters such as
activation function, optimizer, dropout rate, learn-
ing rate, and fusion strategy were tuned based on
validation performance.

4.4 Model Configuration: DisCo_New

Building on the architectural extensions described
above, we implemented several systematic modifi-
cations.

First, the metadata preprocessing pipeline was
redesigned to extract annotator attributes (age,
gender, nationality, education, etc.) from struc-
tured JSON files. These attributes were verbalized
into natural language templates and embedded us-
ing transformer-based sentence encoders such as

199



Hyperparameter Par Value MP Value CSC Value
Activation ReLU Softsign elu
Annotator Latent Dim 64 64 256

Item Latent Dim 128 256 256
Fusion Type Concat Concat Concat
Optimizer Adam Adam Adam
Learning Rate 0.001 0.001 0.001
Embedding paraphrase-mpnet-base-v2 paraphrase-multilingual-mpnet-base-v2  all-mpnet-base-v2
Loss Wasserstein + MAE (a = 0.6) KL Divergence KL Divergence
Weight Init Gaussian Uniform Gaussian

Table 1: Best hyperparameters.

paraphrase-mpnet and all-mpnet. Each annota-
tor’s metadata embedding was 768-dimensional
and projected into the model space via a learnable
transformation matrix, replacing the simple one-hot
identifier scheme used in DisCo_OG. This richer
representation enabled the model to capture sys-
tematic annotator behavior beyond identity-level
patterns.

Second, the training objectives were expanded.
In addition to KL divergence and categorical cross-
entropy, we introduced multi-objective loss func-
tions: (i) Wasserstein distance for aligning pre-
dicted and true soft-label distributions (applied to
Par and CSC), (ii) mean absolute error (MAE) for
per-annotator alignment (also on Par and CSC),
(iii) a weighted combined loss that optimized both
simultaneously, and (iv) an alternating formula-
tion that switched objectives between epochs. The
combined loss proved most effective, defined as:

L = o - Lwasserstein 1 — @ - Limag,

with o = 0.6 favoring the soft-label component.
This formulation produced the most consistent im-
provements across datasets.

Finally, extensive hyperparameter sweeps were
conducted per dataset. The optimal configurations
covering activation functions, latent dimensions,
fusion strategies, optimizers, learning rates, embed-
ding models, loss functions, and weight initializa-
tion schemes are reported in Table 1.

4.5 Reproducibility

To ensure reproducibility, all experiments were con-
ducted with fixed random seeds and repeated five
times per dataset. The optimal hyperparameter
settings for each dataset are reported in Section 4.4.
Source code is publicly available at https://
github.com/Homan-Lab/lewidi3_public. The
metadata prompt templates are included in Sec-
tion A.3 in the appendix to facilitate end-to-end
replication of our results.

5 Results

We report the official results of our submitted sys-
tem (under the name “LPI-RIT”) on the final leader-
board of the LeWiDi 2025 shared task. Table 2
presents our ranking and evaluation metrics across
the three datasets, under both tasks. Our team, “LPI-
RIT”, placed tenth in both soft and perspectivist
tasks among fifteen and eleven teams (including
LeWiDi baselines), respectively.

Compared to the two official baselines, our sys-
tem outperformed the random baseline across all
submitted tasks except for Paraphrase, but per-
formed worse than the most frequent label baseline.
For soft labels, our results were 1.45 (CSC), 0.54
(MP), and 3.71 (Par) while in the perspectivist task,
they were 0.33 (CSC), 0.32 (MP), and 0.44 (Par).

Despite not achieving top rankings, our system
provided a consistent output across tasks and served
as a solid implementation of the DisCo modeling
framework. These results highlight several areas
for improvement—particularly in soft-label predic-
tion on CSC and in modeling individual annotator
behavior under the perspectivist setup—while af-
firming the feasibility of generalizing DisCo to
the LeWiDi setting without extensive task-specific
modifications.

In the post-evaluation phase, we introduced sev-
eral improvements to the DisCo model, including
the use of annotator metadata, expanded preprocess-
ing support, stronger sentence encoders, and loss
functions better aligned with soft-label and perspec-
tivist objectives. These changes led to consistent
gains across all datasets. Table 3 summarizes these
results; further analysis is provided in Section 6.

6 Discussion

Having established that DisCo_INEW consistently
outperforms both OG and baselines, we now analyze
how and why these improvements occur. In the
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Participant TASK A - Soft Evaluation | TASK B - PE Evaluation
CSC | MP | Par CSC | MP | Par
taysor 0.746 | 0.422 1.200 0.156 | 0.288 0.120
dignatev 0.792 | 0.469 1.12 0.172 | 0.300 0.130
azadis2 0.803 | 0.439 1.610 0.213 | 0.311 0.200
aadisanghani 0.803 | 0.439 3.050 0.213 | 0.311 0.490
twinhter 0.835 | 0.447 0.980 0.228 | 0.319 0.080
tomasruiz 0.928 | 0.466 1.800 0.231 | 0.414 0.230
LeWiDi_mostfrequent | 1.169 | 0.518 3.230 0.238 | 0.316 0.360
aadisanghani 0.803 | 0.439 3.051 0.213 | 0.311 0.491
funzac 1.393 | 0.551 3.140 0.291 | 0.326 0.420
LPI-RIT (DisCo_OG) | 1.451 | 0.540 3.710 0.331 | 0.324 0.440
LeWiDi_random 1.549 | 0.689 3.350 0.355 | 0.500 0.380

Table 2: Final leaderboard scores for LeWiDi 2025. Scores reflect error or distance metrics (lower is better).

subsequent comparisons and analyses, the original
and updated models are referred to as DisCo_OG
and DisCo_New, respectively.

Across all datasets and both tasks, the post-
evaluation model (DisCo_NEW) consistently out-
performs both our original submission (DisCo_OG)
and the strongest LeWiDi baselines. On CSC
and Par, DisCo_New reduces error substantially in
both soft-label and perspectivist metrics, while
on MP the gains are smaller but still clear.
These results demonstrate that the proposed ex-
tensions—metadata embeddings and task-aligned
loss functions—yield tangible improvements over
the baseline DisCo architecture and most frequent
baselines.

6.1 MultiPICo Analysis

Evaluation: A modest but consistent reduction in
Manhattan distance was observed for DisCo_New
compared to DisCo_OG (evaluation score reduced
from 0.54 to 0.45), indicating that tighter pre-
dicted distributions around human soft labels were
achieved. A comparison of soft-label confusion
matrices (Figure 4) shows a clear improvement in
recall for the [ronNic class—true positives increased
from 92 to 116, while false negatives decreased
from 711 to 687. We interpret this shift as evidence
of improved sensitivity to sarcastic and ironic in-
stances, which is a core objective of the MP task.
Importantly, these gains were achieved with only
a small increase in false positives, suggesting that
minority perspectives were captured more effec-
tively without over-predicting irony. The error-rate
distribution for individual annotator predictions
also improved from 0.32 to 0.31. Overall, stronger
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Figure 4: Soft-label confusion matrix for MP dev set
(DisCo_New). Improved recall for the IroNIC class is
shown compared to DisCo_OG.

alignment at the class level and consistency through
replication were demonstrated by DisCo_New.

Confidence Calibration: Improvements in
model calibration were also observed. Figure
(5), a scatterplot of prediction error versus modal
label probability, compares model performance
DisCo_OG and DisCo_New using Manhattan dis-
tance against modal prediction confidence. In the
original submission, the model exhibited numerous
high-error predictions even at high confidence, and
the error spread remained large across the confi-
dence spectrum. After improvements, the updated
model shows a tighter error distribution, particu-
larly in the 0.7-0.95 confidence range, and fewer
catastrophic failures at high confidence. This indi-
cates improved calibration and reliability, although
low-confidence predictions continue to produce er-
ratic errors, suggesting room for further refinement
in uncertain regions of the prediction space.

6.2 Paraphrase Analysis

Evaluation: For the Par dataset, the largest im-
provement in soft-label matching was recorded,



Dataset Task _OG Score _New Score LeWiDi Most Frequent Label LeWiDi Random Label
CSC Soft 1.45 0.87 1.17 1.54
PE 0.33 0.22 0.24 0.36
MP Soft 0.54 0.45 0.52 0.69
PE 0.32 0.31 0.32 0.5
P Soft 3.71 2.21 3.23 3.35
ar PE 0.44 0.28 0.36 0.38

Table 3: Original vs. new scores across datasets.

Error vs. Modal Label Probability (MP dev) - 0G Error vs. Modal Label Probability (MP dev) - New

Distribution of Absolute Distance (Par dev) - OGDistribution of Normalised Absolute Distance (Par dev) - New

200 - 200

-

2 e
B 150
2

€ 125

£ 100

5
Sors
5 050 -

W25
™
000 -

" ol Lavel pabasiy
Figure 5: Prediction error vs. modal label probability
for the MP dev set. Fewer high-error outliers at high
confidence are seen for DisCo_New.
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Figure 6: Mean absolute error per Likert label on the
Par dev set. DisCo_New (blue) shows a more balanced
and lower error profile, especially at the extremes.

with the Wasserstein distance decreasing from 3.71
to 2.21. This indicates substantially better align-
ment with annotator distributions. The absolute
distance was also reduced from 0.44 to 0.28, show-
ing that gains in the soft-label space translated to
higher accuracy under the perspectivist evaluation
metric. We believe these results demonstrate that
DisCo_New can capture annotator-specific varia-
tions more effectively.

Error Calibration by Label: To assess model
behavior across the Likert scale, mean absolute
error per label was examined. As shown in Figure 6,
predictions from DisCo_OG were highly skewed,
with excessive probability mass assigned to label
+5, producing sharp error peaks. A more balanced
error profile was seen in DisCo_New, with reduced
overcommitment to extreme positive labels while
calibration error in the mid-range was maintained
or slightly increased. This suggests that output bias
was corrected in a way that more faithfully reflects
the true distribution of paraphrase strength.

50 200 250 300 o 50 100 00 250 300

100 150 150 2
Per-item NAD (%) Per-item NAD (%)

Figure 7: Distribution of Normalized Absolute Distance
(NAD) for the Par dev set. DisCo_New exhibits a sharper
peak and lower error across the board.

Normalized Error Distribution: Overall soft-
label alignment was further assessed using Normal-
ized Absolute Distance (NAD), which measures
deviation from the gold distribution relative to total
mass. Asshown in Figure 7, lower and more concen-
trated NAD scores were achieved by DisCo_New,
with most predictions deviating less than 75%. In
contrast, DisCo_OG exhibited inflated NAD values
due to label scale mismatches and miscalibration.
We view this as evidence that DisCo_New better
captures the inherent ambiguity and subjectivity in
paraphrase judgments.

6.3 Conversational Sarcasm Corpus (CSC)

Evaluation: For CSC, clear gains in soft-label
alignment were recorded. The Wasserstein dis-
tance decreased from 1.45 in DisCo_OG to 0.87
in DisCo_New, indicating a closer approximation
to gold label distributions. This improvement was
especially evident for examples with low annotator
consensus. The absolute distance also fell from
0.33 to 0.22, showing significant enhancement in
the perspectivist task.

Confidence Sensitivity: The effect of gold label
certainty on model performance was examined
by plotting prediction error against modal label
probability. As shown in Figure 8, lower error for
cases with low modal confidence (high annotator
disagreement) was achieved by DisCo_New. While
DisCo_OG exhibited the highest Wasserstein error
in these ambiguous cases, DisCo_New maintained

202



Error vs. modal-label probability (CSC dev) - 0G Error vs. modal-label probability (CSC dev) - New

Mean Wasserstein distance

modal_prob modal_prob

Figure 8: Prediction error vs. modal label probability
on the CSC dev set. Reduced error on low-agreement
cases is observed for DisCo_New.
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Figure 9: Mean absolute error per Likert label on the
CSC dev set. DisCo_New reduces overprediction of
non-sarcastic responses (label 0) and achieves smoother
calibration overall.

greater stability and resilience, capturing soft-label
nuances even when consensus was weak. We see
this as further support for the model’s improved
perspectivist capabilities and robustness in handling
disagreement.

Error Calibration by Label: Mean absolute
error per Likert label (Figure 9) showed that
DisCo_OG over-predicted label &—non-sarcastic
interpretations—resulting in large mismatches.
This overcommitment was reduced by more than
half in DisCo_New. A smoother error profile across
all sarcasm intensities was also observed, avoiding
the sharp asymmetries seen in DisCo_OG. These
findings indicate a more balanced and context-aware
handling of literal and sarcastic language, with im-
proved soft-label calibration overall.

6.4 Cross-Dataset Insights

Several cross-cutting patterns emerged across CSC,
MP, and Par, providing broader insight into the han-
dling of label ambiguity, annotator disagreement,
and error sensitivity.

Annotator-Level Evaluation: Annotator error
distributions (Figure 10) showed that for CSC, vir-
tually all annotators were predicted incorrectly
by DisCo_OG—error rates clustered at 1.0. In
contrast, a more varied distribution was seen for
DisCo_New, with many annotators achieving error
rates below 0.6. We interpret this as evidence of
better alignment with annotator-specific viewpoints.

MP remained largely stable, with a slightly tighter
distribution under DisCo_New. For Par, high error
persisted in both models, driven by strong prior bias
in predictions. These findings confirm that while
overall system-level scores improved modestly, sub-
stantial gains in modeling annotator diversity and
disagreement were achieved for CSC.

Additional linguistic and entropy-based analyses
in Appendix A.2 further support these findings.
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Figure 10: Annotator-level error distributions for the
DisCo_New model. Each histogram shows the distribu-
tion of absolute error per annotator across the dataset.

These analyses show that beyond leaderboard
scores, disagreement-aware modeling yields inter-
pretable and socially relevant gains.

7 Conclusion

We presented enhancements to the DisCo architec-
ture in the context of the LeWiDi-2025 shared task,
addressing key limitations in annotator modeling,
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input representation, and loss formulation. By em-
bedding annotator metadata, refining item encoders,
and introducing task-aligned multi-objective losses,
our post-evaluation system achieved consistent im-
provements across CSC, MP, and Par in both soft-
label and perspectivist evaluations.

Beyond leaderboard performance, our analyses
revealed important behavioral patterns: improved
calibration under uncertainty, stronger alignment
with annotator-specific perspectives, and greater ro-
bustness to label ambiguity. These findings demon-
strate that modeling disagreement is not only a
technical challenge but also an opportunity to cap-
ture the diversity inherent in human annotation.

Looking ahead, we see promising directions in
scaling demographic-aware modeling, developing
systematic ablation studies, and exploring methods
that safeguard fairness and privacy while leveraging
annotator metadata. Our work underscores the
value of moving beyond aggregated ground truth
toward systems that better reflect the complexity of
human judgment.

Limitations

Our study has some limitations. First, we did not
evaluate on the VariErrNLI dataset, primarily due
to time constraints and the additional modeling
adjustments the dataset features would require. As
a result, our findings are restricted to CSC, MP,
and Par, and may not fully generalize to NLI-style
disagreement tasks.

Second, while our system integrates multiple ex-
tensions to DisCo, including metadata embeddings
and revised loss formulations, we did not conduct
full ablation studies. Consequently, it is difficult
to isolate the contribution of each component, and
future work should aim to quantify their relative
impact more systematically.

Finally, the use of annotator metadata raises ethi-
cal considerations. Demographic information such
as age, gender, and nationality can be valuable for
modeling disagreement, but also introduces poten-
tial risks around privacy and fairness if applied
in real-world systems. These aspects warrant fur-
ther investigation before deployment in sensitive
applications.

Future work should address these limitations by
extending evaluation to broader datasets, perform-
ing systematic ablations, and developing methods
that leverage annotator metadata while safeguarding
privacy and fairness.
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A Appendix
A.1 Datasets

Conversational Sarcasm Corpus (CSC): Itcom-
prises roughly 7,000 context-response pairs, each
annotated for sarcasm intensity on a six-point scale
by both the original response generators (“‘speak-
ers”) and subsequent external observers (Jang and
Frassinelli, 2024). In an initial online experiment,
speakers wrote a reply to a given situational context
and self-rated the sarcasm of their own utterance
from 1 (“not at all”) to 6 (“completely”). In follow-
up studies, fresh cohorts of observers provided
independent ratings for the same context-response
pairs—six observers per item in Part 1 and four in
Part 2—yielding rich soft label distributions that
reflect both insider and outsider perspectives.

MultiPico (MP): The dataset is a multilingual
irony-detection corpus built from short post—reply
exchanges drawn from Twitter and Reddit (Ca-
sola et al., 2024). For each entry, crowdsourced
annotators judged whether the reply was ironic
in light of the preceding post, producing a bi-
nary label. Crucially, MP includes sociodemo-
graphic metadata (gender, age, nationality, race,
student/employment status) for each annotator, and
covers eleven languages—among them Arabic,
Dutch, English, French, German, Hindi, Italian, Por-
tuguese, and Spanish. On average, each post-reply
pair receives five independent annotations, making
MP a challenging benchmark for cross-lingual and
demographic-aware perspectivist modeling. The
paper describing this dataset is available here.

Paraphrase Detection (Par): The benchmark
adapts the Quora Question Pairs (QQP) format to a
fine-grained judgment task. Four expert annotators
each assigned an integer score from -5 (“com-
pletely different”) to +5 (“exact paraphrase’) for
500 question pairs, and provided brief justifications
for their ratings. Unlike typical NLI-style datasets,

Par uses scalar labels and limits each annotator to
one judgment per item, emphasizing inter-annotator
variance in graded semantic similarity. This dataset
is maintained by the MaiNLP Lab and is not yet
formally published.

VariErr NLI ((VariErrNLI)): The corpus was
specifically designed to disentangle genuine human
label variation from annotation errors in Natural
Language Inference (NLI) tasks (Weber-Genzel
et al., 2024). In the first round, annotators re-
labeled 500 premise—hypothesis pairs drawn from
the MNLI corpus, providing both labels (Entail-
ment, Neutral, or Contradiction) and free-text expla-
nations for their choices. In the second round, these
same annotators validated each label-explanation
pair, yielding 7,732 judgments that pinpoint er-
ror versus variation. LeWiDi-2025 focuses on
the Round 1 soft label distributions, challenging
systems to model nuanced NLI judgments at the
intersection of semantics and annotator reasoning.
The paper describing this dataset is available here.

A.2 Supplementary Analysis

This section provides additional analyses for the
three datasets, supplementing the main results dis-
cussed in Section 6. The figures below explore
linguistic complexity, annotator alignment, and
perspective variance in greater detail.

A.2.1 Qualitative Insights from Word Clouds:

Word clouds (from the top 25% hardest and easiest
examples (by error) (Figure 11) in each dataset
provided further interpretability. In CSC, hard ex-
amples in the new system reflected more nuanced so-
cial situations (e.g., “borrowed,” “paid,” “trust”),
while easy examples featured clear sentiment or
tonal markers (e.g., “congrats,” “hang,” “job”).
The new system appeared to better distinguish prag-
matic cues of sarcasm. In MP, multilingual word
clouds remained dense and difficult to interpret
visually, but no major shifts were observed in the
most frequent hard/easy terms. Par’s clouds showed
consistent emphasis on mechanical or structured
terms (e.g., “support,” “contact”) in hard cases
and evaluative language in easy ones (e.g., “best,”
“make,” “win”). These patterns support the conclu-
sion that the new system is sensitive to social and
tonal variation, particularly in CSC.

A.2.2 Error vs. Token Length and Entropy:

Across datasets, we examined how item-level er-
ror varied with input length and gold label en-
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Figure 11: Word clouds.

tropy, refer Figure 12. In CSC, the updated
model showed improved behavior on high-entropy
items—error steadily decreased as label entropy
increased, whereas the original model incurred the
highest errors for ambiguous cases. This suggests
that the revised model better approximates human
uncertainty. A similar trend was observed in MP,
although gains were more moderate. For Par, error
increased slightly with entropy in the new model,
possibly reflecting persistent overfitting to majority-
label patterns. Overall, the improved system is
more robust to uncertainty in CSC and MP, a key
desideratum in perspectivist modeling.

A.3 Reproducibility - Metadata Prompts

For full transparency, we provide the exact tem-
plates used to verbalize annotator metadata into
natural language prompts. These were applied
consistently across datasets to ensure reproducible
results.

Par: The annotator is gender, age years old,
from nationality with an education level of
education.

MP: The annotator is a gender, age years old, of
nationality nationality, born in country_birth
and residing in country_of_residence, with stu-
dent status student_status and employment sta-
tus employment_status, and of ethnicity eth-
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across datasets.

token length and gold entropy

nicity.

CSC: The annotator is a gender and age years
old.

These templates allow consistent regeneration of
metadata embeddings and support faithful repro-
duction of our experiments.
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Abstract

We present our submission to the Learning
With Disagreements (LeWiDi) 2025 shared
task. Our team implemented a variety of BERT-
based models that encode annotator meta-data
in combination with text to predict soft-label
distributions and individual annotator labels.
We show across four tasks that a combination
of demographic factors leads to improved per-
formance, however through ablations across
all demographic variables we find that in some
cases, a single variable performs best. Our ap-
proach placed 4th in the overall competition.

1 Introduction

The shift in natural language processing toward
more perspectivist approaches has been positive, in
that it allows us to incorporate a variety of view-
points for subjective tasks and construct models
that are more aligned with, and useful for individu-
als. The number of available disaggregated corpora
is small but growing, allowing us to test more tech-
niques in annotator modeling. While the number
of available corpora has increased, the amount and
type of meta-data about annotators has not signifi-
cantly changed.

Sociodemographic variables are sometimes col-
lected with annotations for analysis or modeling
of the annotators. Without this information, we
are often left with only the set of annotations them-
selves from which to learn patterns. While these de-
mographic variables are not sufficient to represent
people or populations and their diverse viewpoints,
they give us a starting point to building annota-
tor models that can be expanded in future work as
more relevant information becomes available.

With this in mind, we developed a demographic-
aware RoBERTa model for the shared task compe-
tition. We chose RoBERTa as the transformer of
choice as it is well established, and well finetuned

T Denotes equal contribution.

which offers strong baseline results, with relatively
easy to finetune. With RoBERTa also widely used
for NLP tasks, it increased our speed of iteration,
and allowed to focus more on demographic adap-
tions. The shared task we submitted our system to
is the 3rd edition of the Learning with Disagree-
ments (LeWiDi) competition (Casola et al., 2025).
Our system uses embeddings of demographic fea-
tures and encodings of text together to predict anno-
tator labels. We evaluate using both soft-label and
perspectivist metrics, showing that our model out-
performs several baselines, including the Mistral-
7b large language model (LLM). Mistral-7b was
specifically choosen as it is lightweight enough to
run on our hardware, and has demonstrated strong
performance across benchmarks. We further per-
form ablations, exploring the significance of in-
dividual demographic variables and discuss direc-
tions for future work.

2 Background

The learning with disagreements shared task is mo-
tivated by recent efforts in annotator modeling, plu-
ralistic alignment, and data perspectivism. We first
describe work along these directions and follow
this with an in-depth description of the shared task.

2.1 Related Work

The past decade of work in natural language pro-
cessing has seen a shift from understanding ground
truth as an absolute to be uncovered through an-
notation, to a subjective value that varies across
individuals with different backgrounds and perspec-
tives (Aroyo and Welty, 2015; Frenda et al., 2024).
Majority voting can take voices away from under-
represented groups, e.g. older crowdsource work-
ers (Difaz et al., 2019). This kind of aggregation
removes perspectives of sociodemographic groups
and makes it difficult to discern causes of model
underperformance (Prabhakaran et al., 2021).
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Many recent works have begun releasing
disaggregated labels, supporting perspectivist
work (Cabitza et al., 2023). These can be used
to model annotators using a variety of approaches.
Works have used disagreements in Bayesian mod-
els to identify unreliable annotations in single
ground-truth scenarios (Hovy et al., 2013) and
in corpora with differing labels across subpopula-
tions (Ivey et al., 2025). Others have examined the
most efficient way to label data, requesting more
labels from more uncertain annotators to more effi-
ciently model a spectrum of viewpoints (Golazizian
et al., 2024). Perspectivism and personalization
have been applied simultaneously in cases where
extra annotator information is available (Plepi et al.,
2022) with extensions from classification to per-
spectivist generation (Plepi et al., 2024).

Fornaciari et al. (2021) predicted soft-label dis-
tributions for all annotators and found that their
model was more robust and higher performing even
on the aggregated labels (through majority vote
comparison). Mostafazadeh Davani et al. (2022)
implemented models with varying degrees in the
number of shared parameters across annotators,
with some fully independent models, or only shared
layers, showing improved performance. They also
showed how models that predict multiple labels
can be used to measure uncertainty. Mokhberian
et al. (2023) proposed a similar approach, which
compares multi-task models to a model that em-
beds individual annotators. These approaches are
possible when the set of annotators is not disjoint
across the train and test splits.

Deng et al. (2023) studied annotator modeling
on eight datasets, finding that demographics corre-
lated with annotation patterns but only explained
a fraction of the variance in annotations. While
demographic factors are not adequate predictors of
differences in opinion, an individuals lived experi-
ence can be viewed as a form of expertise which in-
forms their annotation (Fleisig et al., 2024). There
is a more meaningful connection between model
performance and individual annotator perception
than with sociodemographic factors (Orlikowski
et al., 2025).

2.2 Shared Task

Our system was built to address the shared task for
the 2025 Learning with Disagreements (LeWiDi)
competition (Casola et al., 2025). This task invited
submissions to build classifiers for tasks not pre-
viously addressed in earlier versions of the shared

task, including natural language inference, irony
detection, and sarcasm detection.

A variety of distributional and information-
theoretic metrics have been proposed for model-
ing human label distributions (Kurniawan et al.,
2025). Previous versions of the LeWiDi shared task
used cross-entropy and other soft evaluation met-
rics (Rizzi et al., 2024). This shared task similarly
uses soft label predictions for evaluation, where
the system outputs the distribution over labels and
uses Manhattan distance to measure distance be-
tween distributions. It also requires a perspectivist
evaluation, where performance is measured as the
percentage of correct instances classified at the in-
dividual annotator level.

3 System Description

We fined tuned RoBERTa-Large (Liu et al., 2019)
to develop a general model and apply this to all
datasets through finetuning. The model architec-
ture consisted of many different layers. This model
encodes a variable-length text sequence as input
and produces embeddings of each token, and a
sequence embedding, represented with the [CLS]
token.

For all datasets we used all available demograph-
ics. We embedded these demographics as follows.
To simplify age, we binned the ranges into groups
of: 18 — 24, 25 — 35, 35 — 44, 45 — 55, 55+, for
the datasets that provided age. Other demographic
variables had predefined sets of categorical values
from their original work. These are further listed
in the demographic breakdowns for each dataset in
the Appendix. For each field, a learnable embed-
ding matrix is created, and the text embedding and
the demographic embedding are concatenated into
a single feature vector. This vector is then normal-
ized using LayerNorm, regularized with dropout
and also passed through a linear classifier to pro-
duce the logits for classification.

The MP and CSC corpora had many annota-
tors with no instances annotated by all annotators,
whereas the Par and VarErr NLI datasets each had
only four annotators who annotated all instances.
This allows for a slightly different approach. For
the first two corpora, we predict each annotators
label individually and aggregate them afterward to
compute evaluation metrics. In this case, there are
no parameters that are specifically designated to
any individual annotator. For the latter two corpora,
we take a different approach, predicting all anno-
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tator labels at the same time. This is similar to the
multi-label model described in Mostafazadeh Da-
vani et al. (2022). This approach is tractable due
to the very small number of annotators in these
corpora. The training time substantially increases
with the number of annotators.

We also compared our approach to the Mistral-
7b model (Jiang et al., 2023). This is a large lan-
guage model shown to outperform similar sized
models across reasoning, mathematics, and code
generation tasks using several recent optimization
techniques. This is an instruction-tuned model that
is more receptive to prompting.

CSC. For the CSC (Conversational Sarcasm Cor-
pus) dataset (Jang and Frassinelli, 2024), only age
and gender were provided as demographic meta-
data for the annotator model. A notable difference
in CSC compared to other datasets is the presence
of a context situation paired with a generated "re-
sponse" from a speaker. The corpus consists of 7k
pairs. To preserve their distinct roles in sarcasm,
we concatenated the context and response fields
into a single input string, delimiting each section
with special tokens. This allowed the model to bet-
ter understand the situation (context) and interpret
the reply (response), helping it detect the mismatch
or ironic twist between them. Unlike other datasets,
the goal for this dataset was to predict the provided
sarcasm ratings, which ranged from 0 (not sarcastic
at all) to 6 (extremely sarcastic).

MP. Specifically, for the MultiPico (MP) dataset,
all of the demographic information wasn’t used.
The following wasn’t used for the final submis-
sion: country_birth, nationality, and student sta-
tus. In preliminary experiments, we found that per-
formance decreased when using all demographic
variables. We found that using a combination of
country_birth, nationality, country_residence, and
ethnicity decreased performance, perhaps due to
the inclusion of a redundant but noisy signal. The
final model we submitted used Age, Gender, Eth-
nicity, Country_residence, and Employment as the
embeddings. Similarly, the student status meta-data
didn’t provide any valuable information during pre-
liminary tests and was also omitted. This dataset
contains multilingual social media data with post-
reply pairs (Casola et al., 2024). The posts are
labeled for irony using Os and 1s, where 1 means
that the response is ironic.

Par. The paraphrase detection dataset (Par), con-
sists of question pairs from Quora. We imple-

mented an approach that significantly enhanced
the general model architecture. We incorporated
SBERT embeddings as a layer alongside RoBERTa-
Large to capture semantic similarities between para-
phrase pairs more effectively. Specifically, we
used the pretrained "all-MiniLM-L6-v2" SBERT
model as a frozen feature extractor, concatenating
its 384-dimensional embeddings with RoBERTa’s
1024-dimensional [CLS] token representation. The
model architecture for Par consisted of three main
embedding components: RoOBERTa-Large embed-
dings (1024 dimensions), SBERT embeddings (384
dimensions), and demographic embeddings. We
used a reduced set of demographic fields (age,
gender, nationality, and education) rather than the
full available set, as this improved performance
by reducing noise from redundant features. Age
was binned into discrete ranges, and each demo-
graphic field was embedded using learnable 8-
dimensional vectors. The final concatenated rep-
resentation (totaling 1424 dimensions plus demo-
graphic embeddings) was processed through Layer-
Norm and dropout for regularization before being
passed to a linear classifier for the 11-class Likert
scale prediction (-5 to +5). This approach allowed
the model to leverage both syntactic patterns from
RoBERTa and semantic similarities from SBERT
while accounting for individual annotator perspec-
tives through demographic embeddings.

VarErr NLI. For the Variable Error Natural Lan-
guage Inference, (NLI) dataset, our approach
closely followed the general model architecture.
Where it differed is in the output distribution. Each
annotator can assign more than one label, mak-
ing each output a prediction of all three labels for
each of the four annotators. This dataset consists
of around 1.9k explanations and 7.7 validity judg-
ments of NLI labels (Weber-Genzel et al., 2024).
The dataset presented natural language inference
tasks with context-statement pairs, where annota-
tors classified relationships as entailment, contra-
diction, or neutral. We maintained the standard
RoBERTa-Large text encoding approach, concate-
nating the context and statement using the separator
token and extracting the [CLS] token representa-
tion. Similar to the Par dataset, we predicted the
labels of all four annotators at the same time, us-
ing separate labels in the output layer. The de-
mographic information available in VariErr NLI
included gender, age, nationality, and education
level for four annotators. We utilized all avail-
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Demographic CSC MP Par NLI Values
Age vV Vv 5
Gender v’ v’ v’ v’ 3
Nationality v vV 33
Education v’ v’ 2
Ethnicity v’ 6
Co. Birth v’ 48
Co. Residence v’ 23
Student Status v’ 2
Emp. Status v’ 7

Table 1: Inclusion of each demographic feature across
datasets, showing for which datasets the metadata is
present and the number of possible discrete values asso-
ciated with that feature. Co. stands for country of and
Emp. for employment.

able demographic features without reduction, as
the limited number of annotators and demographic
diversity made each feature valuable for captur-
ing annotator-specific biases. Age was handled
using the same binning strategy as other datasets,
and each demographic field was embedded using
8-dimensional learnable vectors. The model pro-
duced soft label distributions across the three NLI
classes (entailment, contradiction, neutral) rather
than hard classifications, allowing it to capture the
inherent disagreement and uncertainty in human
annotations.

4 Experimental Setup

CSC. The CSC model was trained using soft label
cross-entropy loss based on the annotator distribu-
tions. We optimized the model using the AdamW
optimizer with a learning rate of 2e — 5, weight
decay of 0.01, and applied a linear learning rate
scheduler with warm-up.

The primary evaluation metric was Manhattan
Distance, ranging from 0 to 1, with lower values
indicating better performance. We also calculated
Absolute Distance (Mean Absolute Error) as a sec-
ondary metric to assess the degree of convergence
between the annotators’ labels and the predicted
mean label.

To test model robustness, we experimented with
alternative architectures, such as Mistral large lan-
guage model. However, RoBERTa consistently
outperformed these alternatives across both evalua-
tion metrics. Therefore, we carried out an extensive
hyperparameter tuning process to further enhance
performance, testing with factors including batch
size, weight decay, dropout rate, and the number of
frozen layers in ROBERTa. After determining an

211

effective value for one of the parameters, we tuned
the others while maintaining the same value.
The prompt used for Mistral is as follows:

You are a sarcasm detection expert.

Given the following conversation, rate
how sarcastic, the response is on a
scale from 1 (not sarcastic at all) to
6 (extremely sarcastic). Respond only
with a number between 1 and 6.

Context:
{context}

Response:
{response}

How sarcastic is the response?

To create this final prompt, we applied prompt
engineering techniques. First, we specified the
role (““You are a sarcasm detection expert”) to en-
courage analytical reasoning. We then constrained
the output (“Respond only with a number”) for
machine-readability. Next, we separated Context
and Response to highlight their distinct roles in
sarcasm interpretation. Finally, we ended with a
direct question to focus the model. These changes
improved clarity, reduced variability, and ensured
consistent outputs.

MP. Training for the MP model was based on soft-
label cross-entropy loss using annotator distribu-
tions with AdamW optimization (learning rate of
2e—5, and weight decay of 0.01). Similarly, the pri-
mary evaluation was Manhattan Distance between
the predicted and the true probability distributions,
where 0 is the best possible score. The submitted
model had a Manhattan Distance of 0.442.

During training, we used plots of the loss in
training and validation, learning rate schedule, and
performance metrics to inform our tuning of hy-
perparameters. Parameters were tuned individually,
including the dimension of demographic embed-
dings of size 8, weight decay of 0.01, warm-up
ratio of 0.1 and dropout of 0.3 on the concatenated
feature vector.

We used prompting the same way as in the MP
task. The prompt used for Mistral is as follows:
Analyze this social media conversation for
irony:

Post: "{post}"



Reply: "{reply}”

Is the reply ironic? Consider:

- Does it say something positive
about a negative situation?

- Does it use obvious exaggeration
or contradiction?

- Does it mean the opposite of
what it literally says?

Answer with ONLY a number:
@ = Not ironic/sarcastic
1 = Ironic/sarcastic

Par. Training for the Par model utilized cross-
entropy loss with hard labels rather than soft distri-
butions, as the paraphrase ratings were converted
to discrete classes on the Likert scale (-5 to +5,
mapped to 11 classes). We used AdamW optimiza-
tion with a learning rate of 1le — 5, weight decay
of 0.01, batch size of 16, and a maximum of 15
training epochs. The learning rate scheduler em-
ployed a warmup ratio of 0.15 followed by linear
decay. The primary evaluation metric was Manhat-
tan Distance between predicted and true probabil-
ity distributions, calculated after converting logits
to softmax probabilities. Early stopping was im-
plemented with a patience of 5 epochs to prevent
overfitting. We also employed gradient clipping
(max norm of 0.5) and a dropout rate of 0.3 for
regularization. During training, we generated com-
prehensive analysis plots for each epoch including:
prediction vs target scatter plots, prediction distri-
bution comparisons, error distribution histograms,
and error vs target relationships. These visualiza-
tions helped track model performance and identify
potential issues like prediction bias. Key hyperpa-
rameters that we tuned included the demographic
embedding dimension (8), SBERT embedding di-
mension (384), dropout rate (0.3), and the specific
set of demographic fields used. The reduced demo-
graphic field strategy improved performance over
using all available features.

The prompt for the Mistral model is as follows:

You are an expert at determining semantic
similarity between question pairs. Rate
how similar these questions
are on a scale from -5 to +5, where:
-5 = Completely different meanings
-4 = Very different meanings
-3 = Somewhat different meanings
-2 = Slightly different meanings
-1 = Minor differences in meaning

@ = Neutral/unclear relationship

+1 = Minor similarities in meaning
+2 = Slightly similar meanings
+3 = Somewhat similar meanings
+4 = Very similar meanings
+5 = Identical or nearly identical
meanings

Examples:

Question 1: "How do I learn Python?”
Question 2: "What's the best way to
study Python programming?”

Rating: +4 (Very similar meanings)

Question 1: "What is machine learning?”
Question 2: "How do I bake a cake?”
Rating: -5 (Completely different meanings)

Now rate this pair:
Question 1: "{question1}"
Question 2: "{question2}"
Rating:

VariErr NLI. Training for the VariErr NLI model
followed a similar approach to other datasets, using
soft-label cross-entropy loss based on the three-
class probability distributions (entailment, contra-
diction, neutral). We maintained the AdamW opti-
mizer configuration with appropriate hyperparame-
ters for the NLI task structure. The evaluation was
primarily based on Manhattan Distance between
predicted and ground truth soft label distributions
across the three NLI classes. This metric effectively
captured the model’s ability to predict not just the
most likely class, but the full distribution of anno-
tator disagreement. The model’s performance was
assessed by how well it could reproduce the uncer-
tainty and variability inherent in human NLI judg-
ments. Given the limited number of annotators, and
the importance of capturing individual perspectives
in NLI tasks, we utilized all available demographic
features without reduction. The hyperparameter
tuning focused on balancing the model’s capacity
to learn individual annotator patterns while main-
taining generalization across the three-class output
space. The perspectivist approach was particularly
important for this dataset, as legitimate disagree-
ment between annotators is common in natural lan-
guage inference tasks where context interpretation
can vary based on background knowledge and rea-
soning patterns (Pavlick and Kwiatkowski, 2019).

The prompt for the Mistral model is as follows:
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You are an expert at natural language
inference. Given a context and a
statement, determine the logical
relationship.

Choose from:

- ENTAILMENT: The statement is definitely
true given the context

- CONTRADICTION: The statement is
definitely false given the context

- NEUTRAL: The statement might be true or
false; can't be determined from context

Examples:
Context: "The cat is sleeping on the couch.”

Statement: "There is an animal on the
furniture.”
Answer: ENTAILMENT

Context: "All birds can fly."
Statement: "Penguins cannot fly."
Answer: CONTRADICTION

Context: "John went to the store.”
Statement: "John bought milk."”
Answer: NEUTRAL

Now analyze:

Context: "{context}"
Statement: "{statement}"
Answer:

5 Results

For all tasks we evaluated using multiple different
architectures to understand the impact of various
ways of find an optimal model. The summary of
results can be found in Table 2, with the compar-
ison against the Majority Baseline. Our main ap-
proach, which incorporates the Demographic Em-
beddings for the annotators performs well for the
given tasks. This row represents our submission
to the shared task competition, which landed us in
fourth place when results were computed using the
grand average. This scoring approach assigned a
rank the same as the random baseline for any par-
ticular dataset for which a team performed below
that baseline or did not submit any results. De-
mographic embeddings generally improved model
performance. Our model outperformed the simple
baseline, the RoOBERTa base model, and the Mistral
LLM model. The Mistral LLM was prompted to
generate responses for each instance in each corpus.
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Figure 1: PCA plot showing similarity of embeddings
of nationality for the MP task.

We found that even though neither the ROBERTa-
base nor Mistral models incorporated annotator-
specific features, the LLM performed much worse
than RoBERTa.

We performed an ablation by each demographic
factor, including only one piece of information at a
time. We found that some variables have a much
more significant impact on the model than others.
The nationality/ethnicity variables appeared to per-
form best. Gender performed best for the Par and
VariErr NLI corpora on the perspectivist evaluation.
Surprisingly, we found that some of the single de-
mographic models outperformed our submission
to the shared task, showing that even better perfor-
mance with a demographic-aware RoOBERTa model
is possible. The VariErr NLI task was the most dif-
ficult for our model, as our model underperformed
on the soft evaluation and was close to the baseline
on the perspectivist evaluation. Future work should
explore these relationships in more detail.

6 Discussion

We noted that the LLM performance was substan-
tially worse than the RoBERTa-based models. It is
possible that the LLM could perform better with
more effort put into prompt-tuning, though this re-
mains to be shown. The added computational over-
head and tuning efforts pose barriers to their practi-
cal use, over much more readily high-performing,
and smaller BERT-based models.

The much smaller RoOBERTa models were suc-
cessful in this task, placing high on the leader-
board and showing greater improvement in our
subsequent ablation experiments. Where a per-
son is from, which is partially covered by four
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Soft Eval. |

Perspectivist Eval. |

Method CSC MP Par  VariErr NLI  CSC MP Par  VariErr NLI
Majority Baseline 1.169 0518 3.23 0.590 0.238 0.316 0.360 0.340
Demographic Embeddings 0.803 0.439 1.610 0.640 0.213 0.311 0.200 0.340
- Age Only 0.809 0.443 1.118 0.635 0.216 0.314 0.190 0.335
- Country of Residence Only - 0.470 - - - 0.329 - -

- Country of Birth Only - 0.442 - - - 0.309 - -

- Employment Only - 0.442 - - - 0.313 - -

- Ethnicity Only - 0.435 - - - 0.311 - -

- Gender Only 0.811 0444 1.145 0.633 0.215 0.310 0.188 0.333
- Education Only - - 1.114 0.650 - - 0.250 0.400
- Nationality Only - 0.435 1.063 0.630 - 0.307 0.270 0.380
- Student Only - 0.449 - - - 0.315 - -
RoBERTa Base 0.821 0450 1.64 0.645 0.225 0.318 0.380 0.350
LLM (Mistral) 1.020 0.536 2.300 0.680 0352 0.326 0.450 0.360

Table 2: Breakdown of results for the majority baseline, our submission to the LeWiDi competition, the ROBERTa
base model, the large language model Mistral, and an ablation for all demographics. Empty cells mean the
demographic is not available for that dataset according to Table 1. Results are shown for both the soft and
perspectivist evaluations. Lowest (best) results for each column are shown in bold.

different demographic variables, appeared to have
the strongest effect. As participants in the studies
which collected the four datasets come from many
different countries (see Appendix for details), it
makes sense that this would be a variable that cor-
relates strongly with differences in viewpoints or
opinion. A PCA plot of the embeddings learned
by our best RoOBERTa model is shown in Figure 1,
showing some regional clusters.

Sarumi et al. (2025) found that of the datasets
for this shared task, VariErr NLI had the lowest
annotator agreement measured by Krippendorff’s
alpha, a = 0.06, while Par agreement was o =
0.09, MP o = 0.26 and CSC « = 0.34. The low
agreement for VariErr NLI, coupled with the low
number of annotators may contribute to our lower
performance on this task.

As noted in previous work, it is important to
emphasize that demographics do not and cannot
tell the full story (Fleisig et al., 2024). Given the
historical context in which data as been collected
and annotated for building NLP models, it is often
the case that no meta-data is available for annota-
tors, and when data is available it is often in the
form of a handful of demographic variables. This
provides us a rough starting point for beginning to
explore annotator modeling, but future work must
find ways to gather or infer more individual annota-
tion patterns or those that do not directly align with
sociodemographic factors.

7 Conclusion

We developed a demographic-aware RoBERTa
model for annotator modeling on four tasks, includ-

ing irony detection, sarcasm detection, paraphrase
detection, and NLI. We found that our model could
outperform baselines including a large language
model; Mistral-7b. In an ablation of demographic
factors, we found that nationality and ethnicity led
to the biggest performance increases. We note that
although demographics provide a starting point to
exploring annotator modeling approaches, more
individualized approaches will be needed to fully
capture differences in annotation patterns.

Limitations

Our experiments with LLLMs used only one type of
model, which limits the generalizability of the find-
ings, but nonetheless provides a point-of-reference
for future exploration. Furthermore, our budget
for hyperparameter tuning and further optimization
was relatively low given our time constraints and
higher performance of the BERT-based models is
likely achievable as well.

Importantly, while demographics show that we
can improve the model to some extent, they do
not provide the full picture. We believe that more
individualized approaches will be necessary to im-
prove performance on perspectivist NLP tasks. Ap-
plications and developers should not assume that
demographics are a sufficient proxy for modeling
stakeholders in any scenario. Doing so poses risks
to users, the severity of which depend on the spe-
cific application, but include both harms of repre-
sentation and allocation (Blodgett et al., 2020).
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Appendix

The following tables in this appendix describe the
demographic breakdowns for all datasets used in
the shared task.

Table 3: Age distribution of MP dataset annotators

Age Group Count Percentage
18-24 133 26.3
25-34 219 433
35-44 88 17.4
45-54 42 8.3

55+ 24 4.7

Table 4: Gender distribution of MP dataset annotators

Gender  Count Percentage

Male 274 54.2
Female 230 45.5
<UNK> 1 0.2

Table 5: Ethnicity distribution of MP dataset annotators

Ethnicity Count Percentage
White 315 62.3

Other 66 13.0
Mixed 64 12.6

Asian 44 8.7

Black 13 2.6
<UNK> 4 0.8

Table 6: Country of residence distribution of MP dataset
annotators

Country Count  Percentage
United States 66 13.0
United Kingdom 54 10.7
Germany 43 8.5
Spain 38 7.5
Canada 37 7.3
Portugal 36 7.1
Netherlands 34 6.7
France 31 6.1
Italy 30 5.9
Mexico 27 53
Austria 25 49
Switzerland 21 4.2
Australia 20 4.0
Ireland 18 3.6
Hungary 12 24
South Africa 5 1.0
Sweden 2 0.4
Israel 2 0.4
Poland 1 0.2
New Zealand 1 0.2
Belgium 1 0.2
Greece 1 0.2
Czech Republic 1 0.2
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Table 7: Nationality distribution of MP dataset annota-

Table 10: Country of birth distribution of MP dataset

annotators
Nationality Count  Percentage Country of Birth Count _Percentage
Canad 27 5'3 United States 31 6.1
Girriaerlly 27 5'3 Mexico 27 53
Netherlands 27 5.3 Colombia %6 il
France 25 4.9 Germgny 5 9
Austria 25 4'9 Austria 25 4.9
Poftugal 25 4'9 Portugal 25 4.9
Mexico 25 4'9 Netherlands 24 4.7
Colombia 25 49 Brazil 24 4.7
Italy 24 4.7 Spain . 24 4.7
Brazil 24 47 Argentina 24 4.7
Spain 24 4'7 Canada 23 45
Argentina 24 4.7 Italy 23 4.5
> France 23 4.5
Switzerland 21 4.2 . .
United Kingdom 18 3.6 United Kingdom 17 34
Australia 15 3'0 Switzerland 17 3.4
Ireland 15 30 Ireland 15 3.0
' Egypt 14 2.8
ceypt 4 28 Australia 1 22
Syrian Arab Republic 8 1.6 Syrian Arab Republi 10 2'0
Lebanon 6 12 yrian Arab Republic .
’ Lebanon 9 1.8
Morocco 5 1.0 <UNK> 7 »
Jordan 4 0.8 ’
.. . Morocco 7 1.4
Palestinian Territory 4 0.8
. . Jordan 5 1.0
Saudi Arabia 3 0.6 . .
Algeria 2 04 Saudi Arabia 5 1.0
Israel 2 0.4 UAE . 4 0.8
. Algeria 3 0.6
Slovenia 1 0.2
. Togo 2 0.4
Bahrain 1 0.2
L Israel 2 0.4
Tunisia 1 0.2
Iraq 2 0.4
Sweden 1 0.2 S,
Tra 1 0.2 Haiti 1 0.2
Ye?nen 1 02 New Zealand 1 02
. Hong Kong 1 0.2
South Africa 1 0.2
Dominican Republic 1 0.2
Martinique 1 0.2
Table 8: Employment status distribution of MP dataset Bosnia and Herzegovina 1 0.2
annotators Romania 1 0.2
China 1 0.2
Nicaragua 1 0.2
Employment Status Count  Percentage Chile 1 0.2
Full-Time 178 35.2 Puerto Rico 1 0.2
<UNK> 109 215 Kuwait 1 0.2
Part-Time 74 14.6 Bahrain 1 0.2
Unemployed (and job seeking) 74 14.6 Soma}la 1 0.2
Other 36 7.1 Tunisia 1 0.2
Not in paid work (e.g. home- 24 4.7 Palestinian Territory 1 0.2
maker, retired) Yemen 1 0.2
Due to start a new job within next 11 2.2
month

Table 11: Age distribution of CSC dataset annotators
Table 9: Student status distribution of MP dataset anno-

tators Age Group Count Percentage
18-24 134 16.5
Student Status  Count  Percentage 25-34 273 33.6
No 260 514 35-44 217 26.7
45-54 106 13.0
Yes 165 32.6 554 33 102
<UNK> 81 16.0 :
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Table 12: Gender distribution of CSC dataset annotators

Gender Count  Percentage
Male 418 49.8
Female 397 473
<UNK> (Nan, Data_expired, 17 2.9

Consent_revoked)

Table 13: Age distribution of Paraphrase dataset annota-
tors

Age Group Count Percentage

25-34 3 75.0
35-44 1 25.0

Table 14: Gender distribution of Paraphrase dataset
annotators

Gender Count Percentage

Male 2 50.0
Female 2 50.0

Table 15: Nationality distribution of Paraphrase dataset
annotators

Nationality ~Count  Percentage

Chinese 3 75.0
German 1 25.0

Table 16: Education distribution of Paraphrase dataset
annotators

Education Count  Percentage

Master student 4 100.0

Table 17: Age distribution of VariErrNLI dataset anno-
tators

Age Group Count Percentage

18-24 1 25.0
25-34 2 50.0
35-44 1 25.0

Table 18: Gender distribution of VariErrNLI dataset
annotators

Gender Count Percentage

Male 2 50.0
Female 2 50.0

Table 19: Nationality distribution of VariErrNLI dataset
annotators

Nationality Count  Percentage

Chinese 3 75.0
German 1 25.0

Table 20: Education distribution of VariErrNLI dataset

annotators
Education Count  Percentage
Master student 3 75.0
Postdoc 1 25.0
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Abstract

Recent works in Natural Language Process-
ing have focused on developing methods to
model annotator perspectives within subjective
datasets, aiming to capture opinion diversity.
This has led to the development of various
approaches that learn from disaggregated la-
bels, leading to the question of what factors
most influence the performance of these mod-
els. While dataset characteristics are a critical
factor, the choice of evaluation metric is equally
crucial, especially given the fluid and evolving
concept of perspectivism. A model considered
state-of-the-art under one evaluation scheme
may not maintain its top-tier status when as-
sessed with a different set of metrics, highlight-
ing a potential challenge between model per-
formance and the evaluation framework. This
paper presents a performance analysis of anno-
tator modeling approaches using the evaluation
metrics of the 2025 Learning With Disagree-
ment (LeWiDi) shared task and additional met-
rics. We evaluate five annotator-aware models
under the same configurations. Our findings
demonstrate a significant metric-induced shift
in model rankings. Across four datasets, no sin-
gle annotator modeling approach consistently
outperformed others using a single metric, re-
vealing that the "best" model is highly depen-
dent on the chosen evaluation metric. This
study systematically shows that evaluation met-
rics are not agnostic in the context of perspec-
tivist model assessment.

1 Introduction

The primary aim of perspectivism in (NLP) is to
preserve and leverage the diverse, subjective de-
cisions of individual annotators, both in the mod-
eling process and in the subsequent evaluation of
those models (Frenda et al., 2024; Cabitza et al.,
2023). Given the variety of annotator representa-
tion methods, a key challenge lies in how to effec-
tively incorporate annotator-specific information

during model training to capture these unique per-
spectives (Mostafazadeh Davani et al., 2022). The
efficacy of such annotator modeling techniques is
influenced by several critical factors. A founda-
tional element is the annotation paradigm used to
create the dataset (Rottger et al., 2022). Further-
more, the performance is heavily dependent on the
dataset’s statistical properties, including the num-
ber of training instances required to reliably model
an annotator, the volume of annotations per an-
notator, the degree of inter-annotator agreement
(IAA), and the number of annotations per instance.
Sarumi et al. (2024) showed that the number of
contributions from an annotator and the IAA are
particularly crucial statistics to consider.

While existing approaches capture annotator di-
versity to varying extents, their evaluation has pre-
dominantly relied on conventional metrics like the
F1-score (Uma et al., 2021; Plepi et al., 2022; Sul-
livan et al., 2023; Welch et al., 2022; Sarumi et al.,
2025a) and in some cases Cross Entropy, especially
for soft label prediction (Leonardelli et al., 2023).
It has been argued, however, that such metrics are
insufficient as they often collapse multiple valid
perspectives into a single ground truth, failing to
truly reflect the goals of a perspectivist evaluation
(Rizzi et al., 2024). As part of our submission to
LeWiDi 2025, we present a comparative study of
different annotator modeling approaches. We ana-
lyze how their performance shifts when assessed
using a range of evaluation metrics, including those
provided by the organizers. Our aim is to advance a
more nuanced view within the perspectivist frame-
work. We hypothesize that the performance of a
given modeling approach is not absolute but is con-
tingent upon the evaluation metric used. A model
that is best performing under one metric may not
perform as well under another, especially when
applied to datasets with different underlying statis-
tical properties and task natures. To investigate this,
we implemented five distinct modeling approaches
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and evaluated them on the perspectivist subtask (B)
using additional evaluation metrics.

2 Background and Summary

One of the primary challenges of the 2025 edition
of the LeWiDi shared task is the two concurrent
tasks designed to model and evaluate variations in
annotations (Leonardelli et al., 2025). Task A, the
soft label approach, focused on predicting the prob-
ability distribution of labels for each instance and
Task B, the perspectivist approach, focused on pre-
dicting the individual label assigned by each anno-
tator. The organizers introduced four new datasets
and adopted a tailored evaluation framework for
each, rather than relying on a single unifying met-
ric.

The Conversational Sarcasm Corpus (CSC)
(Jang and Frassinelli, 2024), consists of con-
text—response pairs rated for sarcasm on a Likert
scale from 1 to 6, with soft label evaluation based
on Wasserstein distance and perspectivist evalu-
ation based on Mean Absolute Distance (MAD).
The MultiPico (MP) dataset (Casola et al., 2024)
is a crowdsourced multilingual irony detection re-
source containing post-reply pairs from Twitter
and Reddit, annotated with binary labels across 11
languages. The datasets also contained annotator
metadata such as gender, age, nationality, and stu-
dent or employment status. Evaluation for the soft
label task used Manhattan distance, while the per-
spectivist task used the error rate. The Paraphrase
Detection (PAR) dataset (MaiNLP Lab, 2025) con-
tains question pairs collected from Quora and an-
notated on a Likert scale from -5 to +5, with each
annotator providing a brief explanation for their
score, as in CSC, evaluation for the soft task used
Wasserstein distance and for the perspectivist task
used MAD. Finally, the VariErrNLI dataset (Weber-
Genzel et al., 2024) was designed for error detec-
tion by distinguishing between annotation mistakes
and legitimate human label variation in natural lan-
guage inference; it includes both labels and annota-
tor explanations and was evaluated using the same
metrics as the MP dataset. In this study, we used
the official training and validation splits provided
by the organizers, and our final models performed
inference on the unlabeled test sets. The Dataset
statistics are presented in Table 1.

3 System Overview

Our system architecture for the LeWiDi task is il-
lustrated in Figure 1. Following dataset preprocess-

ing, which involves the extraction and organization
of the dataset along with annotator metadata, we
designed an embedding pipeline that begins with
pre-computations from a transformer model. For
the MP dataset, we obtained high dimentional em-
beddings from XLM-RoBERTa model' because of
the multilingual properties of the dataset. For other
datasets, we employed the all-MiniLM-L12-v2
model,” from the Sentence-Transformers library. In
our setup, after obtaining the embeddings for each
sentence pair, the model’s vocabulary was dynam-
ically extended with two special tokens. The first
token represents enrichment features, computed by
calculating cosine similarity, Manhattan distance,
and Euclidean distance, as well as element-wise
multiplication and difference, to capture multiple
similarity features between corresponding sentence
pairs. The second token represents annotator fea-
tures, following the strategies we developed for
annotator modeling. For every annotator ID, we
create three annotator tokens: a user ID token
which uses the user-id of each annotator, a user
passport token derived from annotator metadata,
and a composite token linking the annotator to its
label patterns. The user passport token incorporates
all available information about the annotator. In ad-
dition to these three tokens, we explored their com-
binations with the composite token, specifically,
composite with user ID and composite with user
passport resulting in five annotator modeling ap-
proaches. Previously, these approaches were used
for a single-sentence setup (Sarumi et al., 2024).
We performed feature fusion, combining the dif-
ferent annotator strategies with the enrichment fea-
tures (Sarumi et al., 2025b), which served as a
constant base for the fusion. The resulting vector
representation serves as input to our model, which
includes two residual blocks to mitigate gradient
vanishing, followed by a three-layer Multi-Layer
Perceptron (MLP) and a multi-head self-attention
mechanism designed to capture different aspects of
the combined features. The model then branches
into two types of prediction heads: a soft head for
predicting the probability distribution of a label,
and hard head, dedicated to predicting the specific
label for an individual annotator. The soft head is
trained with the Kullback—Leibler Divergence loss
(KLDivLoss), while the hard head is trained with

"Multilingual XLM-RoBERTa model, Hugging Face
Transformers library.

%all-MiniLM-L12-v2 model Sentence-Transformers li-
brary.
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cross-entropy loss (CrossEntropyLoss). This ar-
chitecture allows the model to simultaneously and
jointly learn the label distributions and annotator-
specific predictions.

4 Experimental Setup

Our system used the datasets provided by the orga-
nizers. Table 1 presents the statistics for the train-
ing and development splits of each dataset. Build-
ing on existing work, we implemented slightly
modified variants of some annotator modeling tech-
niques, as described earlier, and introduced a new
approach, the User Passport Model. This model
leverages extended annotator demographic profiles,
making use of rich metadata.

All five annotator modeling approaches were
trained on each dataset using a unified framework:
consistent annotator representations, feature enrich-
ment strategies, and training procedures were ap-
plied across datasets. We obtained precomputed
sentence embeddings from SBERT all-MiniLM-
L12-v2 for all datasets, with the exception of the
MP dataset, for which XLM-RoBERTa embed-
dings were used. These embeddings were concate-
nated with the enrichment features and annotator
representations to form the combined input repre-
sentation.

The downstream model employed a multi-layer
perceptron (MLP) backbone, extended with a multi-
head self-attention mechanism (two heads), which
we implemented from scratch. The first head (“soft
head”) was designed to predict label distributions
and the second head (“hard head”), aligned with
the perspectivist approach, was designed to predict
the individual annotator labels. The two objectives
were jointly optimized with a combined loss func-
tion, enabling the model to learn both soft and hard
targets concurrently.

4.1 Methods

Here we describe the various annotator modelling
approaches we implemented, drawing on existing
literature as well as the new methods we introduced,
namely the User Passport and Composite User Pass-
port modelling techniques.

User-ID Token The User ID Token approach uses
a single, unique special token for each annotator,
using its ID as provided. This token serves as a
lightweight identifier. The model learns a specific
embedding for each of these tokens, which helps it

understand that a particular annotation is tied to a
particular user (Plepi et al., 2022).

User-Passport Token The User Passport is a
unique special token that represents an individual
annotator based on their demographic metadata,
encoded as a trainable embedding. We dynami-
cally process the annotator metadata file, which
contains all available demographic information for
each annotator. During training, the model implic-
itly encodes the demographic traits associated with
each passport token, effectively creating a passport
that captures the annotator’s profile. This passport
token is appended to the input text, enabling the
model to make predictions while being aware of
the specific annotator’s profile.

Composite Token The Composite approach uses
a special token whose embedding is computed as
the average embedding of all instances in which
an annotator assigned a specific label. The model
learns an embedding for each composite token, cap-
turing the annotator’s characteristic judgment style
and linking them directly to their specific type of
annotation. (Plepi et al., 2022; Sarumi et al., 2024)

Composite+User-ID Token The Composite User
ID approach combines the strengths of the previous
two methods by appending both the unique User ID
token and the Composite User Token to the input
text. This provides the model with richer context,
enabling it to capture both the annotator’s indi-
vidual identity and their characteristic judgment
style for a given label. This dual-token strategy
strengthens the link between annotator identity and
annotator behaviour.

Composite+User-Passport Token The Composite
User Passport Token combines the User Passport
and the Composite Token by appending both the
relevant composite token for the given annotator
and the corresponding User Passport token to the
input text. This creates a robust representation of
the annotator, capturing both their demographic
profile and their characteristic judgment style.

4.2 Evaluation Metrics

Following the definitions of the two tasks A and B,
focused on predicting the probability distribution of
a value (soft labels) and the individual hard labels
of annotators, respectively, the performance of our

221



#A  #l N Al CL K-

CSC 872 6,332 33+ 14 4.54£0.01 212+ 76.73 0.34

MP 506 15,022 150+0.76  5.04£0.01 293+431.81 0.26

PAR 4 450 450+ 0.00 4.00£ 0.00 108+ 45.49 0.09
VariErr NLI 4 434 419+ 453 3.86£0.04 177+£111.58 -0.06

Table 1: Dataset statistics including the number of annotators (A), the number of total instances (I), the average number of
annotations per annotator (N), average annotations per instance (A/I), the average context length (CL), the agreement as measured

by Krippendorff’s alpha. (The statistics are based only on train and dev splits).
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Figure 1: System architecture

system was primarily evaluated using the official
metrics specified by the organizers. However, we
also used additional evaluation metrics, not because
they are inherently more suitable for the tasks, but
to investigate whether the annotator model that per-
forms best under one metric remains the best when

evaluated with a different metric considering how
dynamic it is for models to learn from disagreement.
This allowed us to assess the sensitivity of model
performance to evaluation criteria across different
annotator modeling strategies. For the perspectivist
task (Task B), we further analyzed model perfor-
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mance using individual F1 scores and ROC-AUC
scores. The CSC and Paraphrase datasets were
evaluated using the official soft evaluation metric:
Average Wasserstein Distance (AW D). As seen
in equation (7).

min
761—‘ Piyti)

AWD = - Z Zme K]

h=1k=1
(1

For the perspectivist evaluation of the same
datasets, the Mean Absolute Distance (M AD) be-
tween the actual labels and the predictions were
measured. (i)

1S 1 bk — pil
MAD = — S =N Lek Z kL 100 (2
NZa ; @

=1 k=1

The MultiPico and VariErr-NLi datasets, were
evaluated with the average Manhattan distance
(AverageM D) in the Soft evaluation, see the equa-
tion (4i7), while the hard evaluation was based on
Error rates computation as in equation (7v) with
slight modification as multi-label average MD and
multi-label error rate for the VariErr-NLi dataset.

AverageM D =

1 N n
N SN pik—tixl 3

i=1 k=1

and

1 Y 1<
AverageER = N Z (1 - Z ik — Pz‘,k|>
=1 k=1
“4)

4.3 Training

The training was performed using the AdamW op-
timizer, with a fixed learning rate of 1 x 1073, A
cosine annealing learning rate scheduler was ap-
plied with Tj,,x = 10. We trained our models for
10 epochs, with early stopping based on the min-
imum validation soft metric and maximum hard
metric as the case may be, using a patience of 5.
The batch size was set to 16, and training used a sin-
gle NVIDIA A100 40GB GPU. The loss functions
combined KL divergence and Jensen-Shannon di-
vergence for the soft label head, and cross-entropy
loss for the hard label heads.

5 Results

For the evaluation of the LeWiDi shared task, two
categories of metrics were used: soft label met-
rics and perspectivist metrics. In the soft label
evaluation, the probability distribution (soft label)
predicted by the system was compared against the
distribution derived from human annotations. A
lower distance between the predicted and human
soft labels indicated better performance, with a per-
fect prediction yielding a distance of zero. For the
CSC and PAR datasets, Wasserstein distance was
used, while for the MP and VariErrNLI datasets,
Manhattan distance was applied. In the perspec-
tivist evaluation, the focus was predicting individ-
ual annotators labels. Performance was measured
using Mean Absolute Distance (MAD) between
predicted and actual annotator labels. Although
participants could submit multiple runs, our late
entry into the competition allowed only one submis-
sion before the evaluation phase closed. Based on
the evaluation scores posted on the Leadersboard,
our scores for the soft and the perspectivist tasks are
shown in Table 6 where we compared our system’s
performance to the top-performing models on the
leaderboard, including teams Opt-ICL (Leonardelli
et al., 2025; Sanghani et al., 2025). These results
placed us between 9th and 10th on the leaderboard
based on average score. Our submission was based
on our composite model, which, with the addition
of more hidden layers, improved results for most
datasets except PAR. Post-evaluation results from
our improved models, computed using the Cod-
abench platform, are presented in Table 2. Results
based on the dev splits, which were not processed
through Codabench, are reported in Table 3. Addi-
tional evaluations using traditional metrics such as
F1-score and ROC-AUC are reported in Tables 4
and 5 respectively.

6 Discussion

The performance of annotator modeling techniques
is not universal but is highly dependent on the char-
acteristics of the dataset and the focus of the eval-
uation metric. We observe key differences in how
models learn and perform on datasets with varying
numbers of annotators, annotation strategies and
subjective levels.

On the MP dataset, characterized by a large pool
of annotators (>500), the highest number of in-
stances, and the longest average context length,
cf. Table 1 the Composite + User Passport model
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Task A (Soft) Task B (Hard)

Method CSC MP PAR VariErrNLI CSC MP PAR  VariErrNLI
User-1D Token 1.171 0519 3.320 0.59 0.241  0.322 0.350 0.350
User Passport Token 1171 0510 3.280 0.590 0.247 0.322  0.340 0.350
Composite Token 1.185 0.508 3.300 0.590 0.249 0.323 0.310 0.350
Composite + User-ID 1.193  0.533 3.300 0.600 0.248 0.336  0.340 0.350
Composite + User Passport  1.175  0.538  3.280 0.610 0.246  0.353  0.290 0.350

Table 2: Results for different annotator modeling approaches (Post Evaluation computed on Codabench). The specific
evaluation metrics vary by task and dataset. Task A (Soft) metrics are Wasserstein Distance (CSC, PAR), Soft-Manhattan
Distance (MP), and Soft-Multi-Label-Manhattan Distance (VariErrNLI). Task B (Hard) metrics are Mean Absolute Distance
(CSC, PAR), Hard-Error rate (MP), and Hard-MultiLabel-Error rate (VariErrNLI). For all metrics, lower values are better. Best
results are shown in bold.

Task A (Soft) Task B (Hard)
Method CSC MP PAR  VariErrfNLI CSC MP PAR VariErrNLI
User-ID Token 1.278 0.513 2.812 0.885 0.228 0.323  3.620 0.705
User Passport Token 1.288 0.537 2.786 0.901 0.232  0.330 3.620 0.705
Composite Token 1212 0.529 2.891 0.878 0.229 0.324  3.460 0.695
Composite + User-ID 1.177  0.538 2.999 0.889 0.227 0.324 3.660 0.705
Composite + User Passport  1.253  0.524 2.846 0.881 0.226 0.318 3.620 0.705

Table 3: Results for different annotator modeling approaches (Post Evaluation (ours)). Dataset abbreviations are: CSC, MP,
PAR, and VariErrNLI. The specific evaluation metrics vary by task and dataset. Task A (Soft) metrics are Wasserstein Distance
(CSC, PAR), Soft-Manhattan Distance (MP), and Soft-Multi-Label-Manhattan Distance (VariErrNLI). Task B (Hard) metrics
are Mean Absolute Distance (CSC, PAR), Hard-Error rate (MP), and Hard-MultiLabel-Error rate (VariErrNLI). For all metrics,
lower values are better. Best results are shown in bold.

Method CSC MP PAR  VariErrNLI
User-ID Token 23.1 325 08.8 70.5
User Passport Token 234 346 14.5 70.5
Composite Token 232 38.0 16.5 69.5
Composite + User-ID  23.8 36.8 11.1 70.5
Composite + User Passport 234 39.1 11.3 70.5

Table 4: Full dataset result F1 scores on the individual annotator labels for each annotator representation method and dataset
for the Task B

Method CSC MP  VariErrNLI
User-ID Token 67.2 52.7 88.5
User Passport Token  66.4  60.4 90.1
Composite Token 649  60.2 87.8
Composite + User-ID 652 60.6 88.9
Composite + User Passport 654  61.8 88.1

Table 5: Full dataset result ROC scores on the individual annotator labels for each annotator representation method and dataset
for the Task B

consistently performed best across all evaluation
strategies, including minimising the error rate, truth
prediction measured by the F1-Score, and its clas-
sification ability measured by the ROC-AUC score,
however, this was not observed on other datasets.
A key characteristic of this annotator technique is
its use of all demographic information available
from the corpus metadata, which contributes to its
robustness. The MP dataset has more demographic
information than the other datasets.

In contrast, on the CSC dataset, Composite +
User Passport performed best when error rate was
being measured, further strengthening the ability
of the model to minimise error, especially on large
datasets; however, the CSC dataset has less demo-
graphic information than the MP dataset. We see
the impact of this without their composite token
in the ROC scores for CSC and VariErrNLI where
User-1D token performs best for the CSC and User
Passport performs best for VariErrNLI.
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CSC MP PAR  VariErrNLI
Soft Task
Baseline (Random) 1.543  0.687  3.350 0.676
Ours 1.393  0.551 3.136 1.000
Top Submission 0.746 0422 0.983 0.233
Perspectivist Task
Baseline (Random) 0.352  0.499  0.367 0.497
Ours 0291 0326 0418 0.345
Top Submission 0.156  0.289  0.080 0.124

Table 6: Leaderboard Evaluation Results. Best overall results are underlined.

Error Rate MAD F1 ROC
User ID Token v v
User Passport Token v v
Composite Token v v v
Composite User ID vV
Composite Passport v v v v
Legend

csc v

MP v

PAR v

VAR Vv

Table 7: Performance shift analysis of Anotator models across different evaluation metrics for (Task B-Perspectivist approach)

The VariErrNLI dataset is highly subjective, with
an agreement score of -0.06 and a very small num-
ber of annotators, with each annotator annotating
more than 95% of the total instances. The User
Passport model performs well while measured with
ROC score, which suggests the model is particu-
larly strong at capturing distinct classification fea-
tures of the data, which did not translate to larger
datasets. Across the datasets, all except VariErrNLI
struggled with the F1 score evaluation, plateauing
at 70.5, except for the composite model, with re-
duced performance and a slight reduction in error
rate. This shows that different models capture dif-
ferent aspects of data. Some better account for in-
dividual labels in highly subjective corpora, which
may preserve minority labels, while others output
high scores in large corpora sometimes aggregating
towards majority labels. Therefore, in modeling
perspectives, there is a need for careful consider-
ation of what has been measured vis-a-vis the mi-
nority and majority classes. An optimal model will
ultimately harness the strength of different evalua-
tion strategies.

7 Conclusion

Previous works have established that certain statis-
tics, particularly the number of annotations per an-
notator and the IAA, are critical to the performance
of annotator modeling approaches. Apparently,
these factors reflect underlying dataset character-
istics. Although prior findings were often based
on evaluations using individual macro F1 scores,
our observations as shown in Tables 1 and 7, con-
firm perspectivism even in evaluation and dataset
characteristics. All datasets in our study exhibit
low Krippendorft’s alpha scores, indicating high
disagreement among annotators with VariErrNLI
dataset with the highest disagreement score of neg-
ative alpha value.

In conclusion, the choice of evaluation metric
significantly influences which annotator modeling
approach emerges as the best-performing model,
with focus on the Task B Perspectivist Evaluation.
Across CSC, MP, PAR, and VAR, no single ap-
proach consistently ranked highest across all met-
rics. Composite+User Passport ranked best con-
sistently on the MP dataset but with lower scores
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when compared across corpora. These results con-
firm that model rankings are not metric-agnostic; a
model optimised for one evaluation metric may not
retain its advantage when assessed with another, un-
derscoring the need for further work that assesses
and harnesses the strength of perspectivist systems
while leveraging integrated evaluation approaches.

Limitations

A limitation of our system was the absence of task-
specific fine-tuning with a pre-trained language
model. We hypothesize that this approach could
significantly improve the results. The models we
implemented were also slight variants of existing ar-
chitectures, specifically adapted for this shared task.
A full implementation of these models, without the
modifications we made for the competition, could
also lead to further performance gains. These two
represent areas for future work and potential im-
provements in addition to exploring an integrated
perspectivist evaluation system. Our code is pub-
licly available on GitHub?.
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Opt-ICL at LeWiDi-2025:
Maximizing In-Context Signal from Rater Examples via Meta-Learning
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Abstract

Many natural language processing (NLP) tasks
involve subjectivity, ambiguity, or legitimate
disagreement between annotators. In this pa-
per, we outline our system for modeling human
variation. Our system leverages language mod-
els’ (LLMs) in-context learning abilities, along
with a two-step meta-learning training proce-
dure for 1) post-training on many datasets re-
quiring in-context learning and 2) specializing
the model via in-context meta-learning to the
particular data distribution of interest. We also
evaluate the performance of our system sub-
mission to the Learning With Disagreements
(LeWiDi) competition, where it was the overall
winner on both tasks. Additionally, we perform
an ablation study to measure the importance of
each system component. We find that including
rater examples in-context is crucial for our sys-
tem’s performance, dataset-specific fine-tuning
is helpful on the larger datasets, post-training
on other in-context datasets is helpful on one of
the competition datasets, and that performance
improves with model scale.

1 Introduction

Natural language processing (NLP) evaluations typ-
ically assume that there is a single correct answer
(a.k.a., “ground truth") and view annotator disagree-
ment as a source of noise to be eliminated, gener-
ally attributing rating variation to poor instructions,
incomplete task specification, or noisy data. How-
ever, oftentimes annotator disagreement can be a
useful signal of subjectivity, ambiguity, or multi-
ple reasonable interpretations (Aroyo and Welty,
2015). Properly integrating this disagreement can
be important for robustness, uncertainty calibration,
and representing multiple viewpoints. To address
this, more and more have argued for focusing on
methods for integrating human variation into eval-
uation and modeling (Basile et al., 2021; Gordon
et al., 2022), including annotations from people
from diverse backgrounds (Kirk et al., 2024; Aroyo

Yejin Choi
Department of Computer Science
Stanford University
yejinc@stanford.edu

et al., 2023), and aligning Al systems with pluralis-
tic values (Sorensen et al., 2024).

In order to inspire work towards these goals, the
Learning With Disagreements (LeWiDi) compe-
tition (Leonardelli et al., 2025) consists of four
datasets across two tasks for modeling disagree-
ment: one task for predicting how a particular an-
notator’s ratings (“perspectivist" task) and one for
predicting the distribution of labels that a pool of
annotators gave (“soft label" task). In this system
paper, we outline our system submission.

Our system (Opt-ICL, for Optimizing In-Context
Learning) takes a fully perspectivist approach, try-
ing to predict how an individual annotator rated
each instance and then aggregating individual pre-
dictions into a distribution for the soft task. It pri-
marily leverages LLMs’ in-context learning ability
(Brown et al., 2020; Xie et al., 2022), including an
annotator’s train ratings directly in-context at infer-
ence time. On top of a pre-trained autoregressive
language model, we additionally perform two steps
of training: post-training in order to enhance the
models’ in-context learning abilities and teach a
unified prompt format (or, Spectrum Tuning, see
Sorensen et al. 2025b), and dataset-specific fine-
tuning. Both training steps can be seen as forms of
meta-learning (Vanschoren, 2018; Min et al., 2022),
where the model is tasked with learning how best
to fit to the in-context rater examples.

Our main contributions include: our proposed
system for modeling disagreement (§3), which was
the overall winner on both competition tasks,
and an ablation study outlining the effect of each
system component (§4).

In particular, we find that:

* Including rater examples in-context is crucial
for performance;

* Dataset-specific fine-tuning is helpful on
larger datasets;
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PERSPECTIVIST TASK MP CSC Par VEN Average Rank
(error rate |) (abs. dist. ) (abs. dist. |) (error rate )

Ours 289 (1) 156 (1) 119 (2) 270 (2) -

Best other team .300 (2) 172 (2) .080 (1) 124 (1) -

Most frequent label baseline 316 .239 362 .345 -
Random label baseline 499 352 367 497 -

Ours (rank) 1 1 2 (2-way tie) 2 (4-way tie) 1.5(1)
Best other team (name) DeMeVa (2) DeMeVa (2) twinther (1) twinther (1) DeMeVa 2 (2)
SOFT TASK MP CSC Par VEN Average Rank

(Manbh. dist. |) (Wass. dist. |)  (Wass. dist. |)  (Manh. dist. |)

Ours 422 (1) 746 (1) 1.20 (1) 449 (3) -

Best other team 428 (1) 792 (1) 983 (1) 233 (1) -

Most frequent label baseline 518 1.17 3.23 595 -
Random label baseline .687 1.54 3.35 .676 -

Ours (rank) 1 (2-way tie) 1 (2-way tie) 1 (3-way tie) 3 (3-way tie) 1.51)

Best other team (name)

PromotionGo (1)

DeMeVa (1)

twinther (1)

twinther (1)

DeMeVa 2.75 (2)

Table 1: Competition final results. Our system had an average rank of 1.5 on both the perspectivist and soft tasks,
and was the overall winner for both tasks. First place result bolded, second place underlined for each dataset. The
competition organizers determined ties by a two-sided Wilcoxon signed-rank test with the rank leader on item-level

scores, failing to reject a difference above o = .05 (see Appendix B).

* Post-training on other in-context perspec-
tivist datasets (Spectrum Tuning) significantly
helped on one dataset;

¢ Performance scales with model size, but size
alone does not compensate for dataset-specific
training.

2 Background and Task Summary

The Learning With Disagreements competition
(LeWiDi, Leonardelli et al. 2025) aims to evaluate
machine learning systems’ ability to engage with
and model human variation. The competition spans
four datasets which contain subjective judgments
where raters may disagree:

e the MultiPIco dataset (MP) (Casola et al.,
2024), in which workers label whether or not
a short exchange from Twitter/Reddit is ironic
(binary);

e the Conversational Sarcasm Corpus (CSC)
(Jang and Frassinelli, 2024), involving
a 1-6 Likert scale for rating the level of
sarcasm of a response given a context (6-way
classification);

* A paraphrase detection dataset (Par) (as of
yet unpublished, shared by conference orga-
nizers) from Quora Question Pairs where an-
notators rate how strongly the questions are
paraphrases of each other on a Likert scale

from -5 to 5, along with an explanation (11-
way classification); and

e the VariErrNLI (VEN) dataset (Weber-
Genzel et al., 2024), on which annotators
reannotate premise/hypothesis pairs for
entailment. Annotators could assign one or
more labels from entailment, neutral, and
contradiction and provide an explanation
(3 binary classifications, with at least one
positive label).

In addition, some basic demographic information
is provided about annotators for all datasets.

For dataset statistics, see Table 2. Notably, MP
and CSC are much larger datasets than Par and
VEN: the MP/CSC train data contains 50k/25k rat-
ings from 506/872 annotators, while Par/VEN con-
tain 1.6k/1.5k ratings from 4/4 annotators respec-
tively.

Using these datasets, the competition constitutes
two tasks: a “soft labeling" task, where the goal is
to predict a probability distribution over possible
labels that best match the human annotator label
distribution and a “perspectivist” task, where the
goal is to take on the perspective on an individual
annotator and predict that particular annotator’s
label given prior demonstrations from that rater
and (optionally) some demographic information.

For scoring submissions, the two binary datasets
(MP/VEN) evaluate the soft task with Manhattan

229



TRAIN SPLIT MP CSC Par VEN
# Ratings 60,471 25,574 1,600 1,505
# Instances 12,017 5,628 400 388
# Annotators 506 872 4 4

# Mean Rat./Ann. 119.5 29.4 400 360.8
# Min Rat./Ann. 10 21 400 348
# Max Rat./Ann. 147 38 400 373
DEV SPLIT MP CSC Par VEN
# Ratings 15,178 3,186 200 187
# Instances 3,005 704 50 50
# Annotators 506 850 4 4
TEST SPLIT MP CSC Par VEN
# Ratings 18,693 3,224 200 199

# Instances 3,756 704 50 50
# Annotators 506 860 4 4

Table 2: Dataset statistics across train, dev, and test
splits for the four LeWiDi datasets. MP and CSC are
much larger across the total number of ratings and the
number of annotators.

distance and the perspectivist task with error rate.
The two Likert scale datasets (CSC/Par) are eval-
uated using Wasserstein distance for the soft task
and absolute distance for the perspectivist task.
For additional information on the competition
setup, please refer to Leonardelli et al. (2025).

3 System Overview

Our system consists of three components:

1. Spectrum Tuning (or SpecT, Sorensen et al.
2025b): Post-training an autoregressive large
language model (LLM) on a collection of
datasets with human variation, stochasticity,
or epistemic uncertainty;

2. Dataset-specific fine-tuning on in-context
demonstrations from each rater; and

3. Inference with in-context annotator informa-
tion and training demonstrations.

Specifically, our
google/gemma-3-12b-pt
et al., 2025) language model.

system  uses the
(Gemma Team

3.1 Prompt Structure

Our method depends on LLMs’ ability to do in-
context learning (Brown et al., 2020; Xie et al.,
2022). We adopt the prompting structure from
Sorensen et al. (2025b), which has three com-
ponents: a description (including a task descrip-
tion/any annotator demographics), inputs (the in-
stance to rate), and outputs (the given rating). For
example, here is a prompt from Par:

Given a pair of questions from Quora Question
— Pairs (QQP), assign a Likert scale score
< from -5 to 5 indicating how strongly the
< questions are paraphrases of one another,
— and provide a short explanation for your
<~ score.

Annotator demographics: annotator_id: Annl;
—» Gender: Male; Age: 26; Nationality: Chinese
< ; Education: master student

{"question1”: "What are some things new
— employees should know going into their
— first day at Exact Sciences?”, "question2":
< "What are some things new employees should
< know going into their first day at Garmin

— ?", "lang": "en"}

<start_of_turn>{"paraphrase_rating”: -1,
"explanation”: "The companies are
different."}<end_of_turn>

{"question1”: "Who are the everyday heroes and
< heroines of life?"”, "question2”: "What was
<> everyday life like under Nazi rule?”, "lang
— ": "en"}

<start_of_turn>{"paraphrase_rating”: -5,
"explanation”: "Q1 asks about everyday heroes

and heroines. Q2 is aobut everyday life under
nazi rule”}<end_of_turn>
{"question1”: "What does 'sandiaga' mean?”,
— question2”: "What does \u@64a\u@639\ud646\
<> u@64a mean?”, "lang": "en"}
<start_of_turn>{"paraphrase_rating”:...

n

The output of interest (in this case, a paraphrase
rating and explanation) is wrapped in special to-
kens <start_of_turn>/<end_of_turn>. While
the LeWiDi competition evaluates only a systems’
ability to predict the Likert/binary score, we in-
clude all rating data in the prompt (including the
explanations) with the reasoning that 1) the rater’s
stated reasoning may contain predictive informa-
tion for new examples and 2) training on the rating
and the explanation concurrently may be helpful.

When predicting how a given rater may respond
to a particular instance (e.g., the “perspectivist”
approach), we include their demographics at the
beginning of the prompt, put as many example
train ratings as will fit into context, and append the
instance to evaluate at the end of the context.

Throughout the paper, we use a maximum con-
text length of 3,000 tokens. With this limit, we are
able to fit about 16 in-context examples for MP, 29
for CSC, 35 for Par, and 29 for VEN (See Table 3).

3.2 Spectrum Tuning: Post-Training for
In-Context Steerability

Given this prompt structure, we post-train a lan-
guage model on a large collection of > 40 datasets
involving human variation, epistemic uncertainty,
or stochasticity, as described in Sorensen et al.
(2025b). The post-training technique consists of
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DATASET MP CSC Par VEN

In-Context Examples per Rater Prompt

Mean 15.8 28.6 35.0 29.1

Min 1 21 32 27

Max 32 37 41 31
Prompt Length (tokens)

Mean 25421 24921 2,717.1 2,707.3

Min 182 1,647 2,688 2,649

Max 2,798 2,776 2,757 2,769

Table 3: Prompt length and number of in-context exam-
ples used during inference across datasets.

unifying the datasets into the common descrip-
tion/input/output format, removing any local de-
pendencies by shuffling the in-context examples,
and fine-tuning with cross-entropy loss only on
the output/<end_of_turn> tokens (a.k.a., the high-
lighted tokens in the example Par prompt). This
post-training is meant to enhance the models’ in-
context learning abilities, teach the model to focus
on predicting only the output tokens wrapped in
the scaffolding, and improve calibration. For addi-
tional details, please refer to Sorensen et al. (2025b)
and App. D.

3.3 Dataset-Specific Training

Once we have the post-trained ICL model, we spe-
cialize the model to the particular dataset on which
we plan to do inference. We do so by templatizing
the entire train dataset in our prompt format, where
all ratings in a given context are from the same rater,
and performing additional supervised fine-tuning
with cross-entropy loss on just the output tokens
(same format and loss as SpecT, just with data only
from target inference dataset). On MP/CSC, we
include one training sequence per annotator, and
on Par/VEN, which only have four annotators each,
we batch into groups of 20 (Par)/30 (VEN) ratings
per prompt and train on multiple sequences per
annotator.

This could be seen in a way as meta-learning for
the specific dataset (Vanschoren, 2018; Min et al.,
2022), with each rater being a different “task" to
which the model has to adapt in-context.

3.4 In-Context Inference

With the dataset-specific specialized model, we
then do inference for each test instance / rater pair
1) by adding randomly-selected train examples into
context until we hit a maximum token budget and 2)
putting the target test instance at the end. We then

directly calculate the model’s probability of each
label given the rater prompt, which is tractable due
to there only being a small set of possible outputs.

Since MP and CSC’s possible outputs all differ
by only the initial token, only one forward pass per
test rating was required. However, VEN and Par’s
outputs span multiple tokens, and thus required
multiple forward passes in order to estimate the
entire output probability distribution. Finally, we
normalize the probability distribution to sum to one,
removing probability mass on any token sequences
that do not result in a valid label.

At the end, we have a probability estimate for all
possible outputs for each test rater/instance combi-
nation.

3.5 From Probabilities To Submission

Up until this point we have taken a wholly perspec-
tivist approach to predicting (a distribution over)
how each rater will respond to each test instance.
However, the perspectivist task requires a single
answer candidate, and the soft task requires an
distributional estimate of the entire population of
raters will rate an instance.

For the perspectivist task, we submit the single
response that minimizes the corresponding evalu-
ation loss. For the two binary datasets, we submit
the argmax response.! For the two Likert datasets,
we make the assumption that our label distribution
estimate is well-calibrated, and submit the 50th per-
centile (median) Likert response of the distribution
as this minimizes the expected absolute distance
given draws from our distribution estimate.

For the soft task, the optimal distribution to
submit under the evaluation criteria (Manhat-
tan/Wasserstein) depends on how well-calibrated
our probability estimates are. Here, rather than
assuming a well-calibrated distribution, we exper-
iment with a few approaches and submit the one
that has the best dev set performance, which are as
follows: MP/Par: the averaged distributions for all
test raters who annotated the instance; CSC/VEN:
an equal average of 1) the averaged distributions
and 2) the averaged perspectivist single-answer sub-
missions.

4 Results

We now outline how our system performed com-
pared to others in the competition. Then, we ablate
'With the added constraint for VEN that each rater submits

at least one positive annotation from entailment, neutral, and
contradiction.
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PERSPECTIVIST TASK MP CSC Par VEN
(error rate ) (abs. dist. ) (abs. dist. ) (error rate |)

Opt-ICL (SpecT + SFT + Demographics + ICL) 289 (1) A56 (1) A19(1) 270 (1)
Prompt ablations

no demographics 295 (2) 156 (1) A22 (1) .268 (1)

no many-shot ICL (one example) 305 (3) 185 (3) 216 (3) 321 (2)
Training Ablations

no SFT 316 (4) 191 (3) 123 (1) 257 (1)

no SpecT .303 (3) 157 (1) 120 (1) 247 (1)

no SFT, no SpecT (12B-pt) 336 (5) 192 (3) 129 (1) 243 (1)
Model Size ablations (no train)

1B-pt (no SFT, no SpecT) .341 (6) 219 (5) .308 (4) 429 (3)

4B-pt (no SFT, no SpecT) 351 (7) 201 (4) 174 (2) 314 (2)

12B-pt (no SFT, no SpecT) 336 (5) .192 (3) 129 (1) 243 (1)

27B-pt (no SFT, no SpecT) 312 (4) 176 (2) 120 (1) 246 (1)
SOFT TASK MP CSC Par VEN

(Manh. dist. |) (Wass. dist. |) (Wass. dist. |) (Manh. dist. )

Ours (SpecT + SFT + Demographics + ICL) 422 (1) 746 (1) 1.20 (1) 449 (1)
Prompt ablations

no demographics 430 (2) 751 (1) 1.17 (1) 458 (1)

no many-shot ICL (one-example) 448 (3) 851 (2) 2.27 (3) 484 (1)
Training Ablations

no SFT 486 (5) 963 (3) 1.15(1) 446 (1)

no SpecT 450 (3) 749 (1) 1.21 (1) 418 (1)

no SFT, no SpecT (12B-pt) .507 (6) 959 (3) 1.21 (1) 427 (1)
Model Size ablations (no train)

1B-pt (no SFT, no SpecT) S511(7) 1.13 (5) 324 (4) 703 (3)

4B-pt (no SFT, no SpecT) .526 (8) 1.03 (4) 1.75 (2) 519 (2)

12B-pt (no SFT, no SpecT) .507 (6) 959 (3) 1.21 (1) 427 (1)

27B-pt (no SFT, no SpecT) 462 (4) 875 (2) 1.11 (1) 413 (1)

Table 4: Ablation study results for a hypothetical competition between all entries shown, with the rank in parentheses.
First place is bolded, second place is underlined. Ties are determined sequentially by a two-sided Wilcoxon signed-
rank test on item-level scores, failing to reject a difference with the rank leader above o = .05 significance, as in the
actual competition (see Appendix B for details). To see the results presented visually, also see Fig. 1.
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the components of our system to determine the
effect of each on task performance.

4.1 LeWiDi Competition Results

Our system was the overall winner on both tasks.
The final results can be seen in Table 1. For MP
and CSC, our system had the lowest (best) scores
for both the perspectivist and the soft tasks. We
tied for second across the perspectivist evaluations
for Par and VEN, tied for first on Par (soft), and
got third on VEN (soft). Our average rank for the
perspectivist and soft tasks was 1.5/1.5, which was
the lowest overall rank across all teams, meaning
our system was the overall winner for both the
perspectivist and soft tasks.

4.2 System Ablations

What was the effect of each component of our sys-
tem? To answer this, we ablate 1) the continued
model training via gradient descent, 2) the prompt
components, and 3) the size of the underlying LLM.
We ablate the components and report the raw scores
along with the rankings of a hypothetical competi-
tion between the ablated systems. Results can be
found in Table 4 and Figures 1.

As a note, the MP and CSC datasets were much
larger (3.8k/704 test instances) than the Par/VEN
datasets (50/50 test instances). This allows us to
make more confident comparisons for the MP/CSC
results and affects the size of the available training
data for model training.

In-context rater examples were crucial. In the
inference prompts, we included many demonstra-
tion ratings per annotator (average: 16/29/35/29
across MP/CSC/Par/VEN, c.f. Table 3). To ablate
the effect of the examples, we experimented with
only including a single rater demonstration. Across
all dataset/task combinations, we saw a substan-
tial performance degradation when restricting to
only one example (statistically significant across
7/8 comparisons). This suggests that our system
relies heavily upon the inclusion of these in-context
demonstrations and the models’ in-context learning
ability.

Interestingly enough, this is true even for the Par
dataset, where we include the annotator ID in the
demographic description.” Even though the model
theoretically should be able to connect the annota-

2Due to an oversight that was not realized until after the
conclusion of the competition, annotator ID was not included
in the prompt for the other datasets.

tor instances from its training data to that annota-
tor through the annotator ID, performance substan-
tially dropped when omitting the in-context exam-
ples (perspectivist: .119—.216, soft: 1.20—2.27).
In other words, in our case, the model is much bet-
ter able to leverage rater examples when provided
concretely in-context at inference time, as opposed
to relying on its “soup” of model weights updated
via gradient descent.

Demographics did not significantly help. Omit-
ting the rater demographics, on the other hand,
did not cause a significant drop in performance
on CSC/Par/VEN, and caused only a slight drop in
performance on MP. This suggests that the system
was not able to significantly leverage sociodemo-
graphics in order to improve predictivity, in line
with prior work (Orlikowski et al., 2025; Sorensen
et al., 2025a).

Dataset-specific fine-tuning was important for
the large datasets. For MP and CSC, omitting
dataset-specific fine-tuning caused a significant
drop in performance on both the perspectivist and
soft tasks. We hypothesize that this dataset-specific
fine-tuning helped mainly due to 1) (meta-)learning
patterns of how to utilize in-context examples; 2)
building better priors over how the average rater
approaches the task; and 3) specializing to the in-
stance data distribution.

Dataset-specific fine-tuning did not, however,
make a significant difference on Par/VEN. We hy-
pothesize that the difference in result is largely
due to dataset size, with only 400/388 annotations
for Par/VEN in the training data. We also used
the same hyperparameters for all datasets, and did
not particularly adapt them to squeeze more out of
the smaller dataset. Further optimization may be
able to extract more signal, but machine learning
systems generally struggle more in this low-data
regime.

Spectrum Tuning significantly helped on MP.
Applying SpecT did significantly help on both MP
tasks (perspectivist: .303—.289, soft: .450—.422),
but did not significantly help or hurt on the other
datasets. We are not sure why it significantly
helped in some cases and did not others, but it
is not due to any additional irony detection training
data, as that was not included in the SpecT training
mix (see Appendix D).

Performance improves with model size, but size
alone does not compensate for dataset-specific
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Figure 1: Ablation study results. Perspectivist Task: For MP/VEN, error rate is reported, and for CSC/Par, absolute
distance is reported (lower is better for both). Soft Task: For MP/VEN, Manhattan distance is reported, and for
CSC/Par, Wasserstein distance is reported (lower is better for both). Error bars indicate 95% confidence intervals,
computed as = 1.96 times the standard error of the mean of instance-level scores. Our system performance is shown
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training. Due to computational constraints, we
did not replicate our entire system (with Spec-
T/SFT) across multiple model sizes. However, we
did evaluate the pretrained models of the gemma-3
model family (1B/4B/12B/27B) on which our 12B
system was based in order to get a feel for the im-
portance of model size. In general, we observe the
expected trend that bigger is better. However, there
does seem to be a particular jump in performance
from 1B to 4B. Additionally, on the larger datasets
where dataset-specific SFT helped (MP/CSC), our
12B system outperforms the 27B system without
SpecT/SFT.

5 Discussion and Conclusion

In summary, our system was able to perform
strongly across the board and was the overall win-
ner on both tasks. However, it did perform par-
ticularly well (1st) on MP and CSC, which had
many unique annotators and larger training datasets,
and performed less well on Par/VEN (perspectivist:
2nd on Par, 2nd on VEN; soft: 1st on Par, 3rd on
VEN), which had only four annotators each and
much smaller training sets.

Our approach has many advantages, including:
1) a single model for each dataset, 2) potential
adaptation at test time to new raters; 3) strong per-
formance even in the limited data regime; 4) no
dataset-specific assumptions; 5) same system for
perspectivist and soft tasks. However, some limita-
tions include expensive inference (see App A.3),>
as prompt lengths are quite long in order to con-
tain in-context rater examples and that the method
is unable to effectively leverage additional rater
demonstrations that do not fit in the context win-
dow.

In our ablation study, we found that in-
context demonstrations are crucial for performance,
dataset-specific tuning helps given enough data,
Spectrum Tuning helped on MP, and performance
improves with model size (but scale alone does not
make up for dataset-specific training).

Some interesting directions for future work in-
clude: 1) how performance scales with the num-
ber of in-context rater examples (including going
beyond 3,000-token prompts), 2) whether select-
ing particular in-context examples at inference can
outperform random selection, 3) the effect of in-
cluding rater explanations on performance, 4) how

3 Although, this could be further optimized with techniques
such as prompt caching (Gim et al., 2024).

well the approach generalizes to free-text / non-
categorical tasks, and 5) methods to better extract
dataset-specific signal from smaller datasets (e.g.,
Par/VEN).
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A Implementation details

A.1 General Details

* All experiments were carried out using 1-4
80GB A100s.

* For all experiments, since the gemma-3-pt
models (Gemma Team et al., 2025)
do not have a trained embedding for
<start_of_turn>/<end_of_turn>, we
copy over the (un/)embedding weights for
these tokens from the gemma-3-it models, as
in (Sorensen et al., 2025b).

* Our SpecT model is an early version of the
model from (Sorensen et al., 2025b). For more
details, see App. D.

A.2 Dataset-specific SFT hyperparameters

Training hardware: 4 80GB A100s
max_length: 1024
per_device_train_batch_size: 1
gradient_accumulation_steps: 4

learning_rate: 1e-6

A.3 Inference Details

All inference
80GB A100.

was done on a single
MP needed a single for-
ward pass per test rating: (p({"0","1"}),
CSC also needed a single forward pass,
(p({"1", "2", "3", "4" "5  "6"}), Par
required three forward passes, (p({" ","” -"}),
P77, m2r, e, sy,
p({"@"’ ”1“’ “2“’ ”3”’ “4“’ ”5”}|" ”))’

This was not well optimized however, and could
potentially be sped up with methods such as prompt
caching (Gim et al., 2024) or vLLM (Kwon et al.,
2023).

B Tie calculation

For calculating ties/significance, we used the com-
petition organizer’s code for the Wilcoxon signed-
rank test to compare entries, as follows: "For each
of the four datasets and tasks, to determine rank-
ing, we compared each team to the leading system
within a cluster using the Wilcoxon signed-rank
test on item-level results from the test sets. Teams
were compared sequentially to the leader, and as
long as no statistically significant difference was
observed, they were assigned the same rank. This
process continued until a team showed statistically
distinct performance, at which point a new rank
was introduced." (quoted from the competition or-
ganizers (Leonardelli et al., 2025))

and VEN required four forward passes
p({"entailment”,"contradiction”, "neutral”}),
(p({"entailment”,"contradiction”, "neutral”}),

p({" neutral”, " contradiction”, "}"}|"entailment”),
p({" entailment”, " contradiction”, "3}"}|"neutral”),
p({" entailment”, " neutral”, "3}"}|"contradiction”)).

The approximate run time for each inference
pass on the entire test set was:

e MP: 23 hours, 30 minutes;
¢ CSC: 4 hours;
¢ Par: 11 minutes;

¢ VEN: 11 minutes;
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C Prompts

Here, we include example prompts for the four
datasets.
lewidi_csc_sarcasm_detection_individual

Given a conversational context and response,
<> rate how sarcastic the response is on a 1-6
— scale.

Annotator demographics: Gender: Female; Age: 26

{"context”: "Steve has been going out non-stop
< for the past two months because he needs a
— distraction from his recent breakup. You
<> are worried that he might be becoming a bit
— too destructive. Steve says, \"ugh, worst
— hangover yet. I feel like crap.\"", "
— response”: "maybe try some selfcare”, "lang
<~ ": "en"}

<start_of_turn>3<end_of_turn>

{"context”: "You and Steve have long been
< planning to go to a new bar in town. But,
> he has canceled on you three times without

> telling you why. And just now, he calls you
<~ and says, \"I'm so sorry, but I'm gonna
< have to bail again. Next time?\"", "
— response”: "yeah let me know when you've
< made the plans”, "lang"”: "en"}

<start_of_turn>1<end_of_turn>

{"context”: "Steve talks about the differences
> between two types of dinosaurs for an hour.
<> You absolutely don't care about the topic
<~ .", "response”: "anyways... next topic”, "
< lang”: "en"}

<start_of_turn>1<end_of_turn>

{"context": "Steve borrowed your spare phone

charger two months ago. Then he took your

toaster a month ago. He did not return any

(%

(SN

< of them. And now, Steve says, \"can I

— borrow your suitcase? I need one for my

— trip next week.\"", "response”: "not really,

<~ 1 think I'm going to need it on the

—» weekend”, "lang": "en"}
<start_of_turn>3<end_of_turn>
{"context"”: "Steve bought a really expensive

< pair of shoes as a treat to himself for
<> having finished a big project at work. The
— shoes go very well with his outfit today.”,

<> "response”: "nice shoes!”, "lang”: "en"}
<start_of_turn>1<end_of_turn>
{"context”: "Steve recently changed jobs. He is

< annoyed because he needs to deal with some
— bureaucracy regarding his health insurance.
— He says, \"I should have just stayed at my
< old job. If it hadn't been for this new
< job, I wouldn't have had to deal with so
< much crap.\"", "response”: "maybe that's
<> something you should've researched before
— but potentially ask for help or spend some
time actually figuring this out.”, "lang":
"en"}

)

lewidi_mp_irony_detection_individual

Given a post-reply pair from social media (
— Twitter/Reddit), determine whether the
< reply is ironic given the post. Context
< includes platform source, reply depth level,
< language variety, and language code.
— Binary irony detection task.

Annotator demographics:
{"post”: "My company have basically said we can
<> work from home if we feel safer doing so...
but only with our direct manager's
approval.\nBut no one has the stones to
make the first move on my team. Plenty of
other teams have people at home now. But my
team get the vibe our manager would be a
bit shit if we started.\nHonestly I would
definitely feel safer. I can work 100%
remote, and my office is giant open plan
with nearly 1000 people who are constantly
travelling for work, so if this actually
kicks off it'll be a fair nightmare for
spreading.”, "reply”: "Just bite the bullet
and ask better safe than sorry worst they
can say is no."”, "source”: "reddit”, "level
": "1.0", "language_variety”: "ie", "lang":
"en"
<start_of_turn>@<end_of_turn>
{"post”: "I\u2019ve heard it all now. Albanese
— has described himself as being \
> u201cEconomically Literate\u201d.”, "reply”:
"@USER Of course he is. Don't forget he
said he was an economic adviser to Bob
Hawke. Trouble is Bob didn't know that and
neither did anybody else.”, "source": "
twitter”, "level”: "1.0", "language_variety
": "au", "lang": "en"}
<start_of_turn>1<end_of_turn>
{"post”: "Bit worried about it actually. Work in
health care and I have asthma. If I do
get it. I am going to be as sick as
anything.”, "reply”: "Fingers crossed you
don't! I work in retail and surrounded by
people who decide that shopping is the best
idea when suffering with colds and
sickness bugs. A bit like the health care
sector cos I worked there too!", "source”:
"reddit”, "level”: "1.0", "language_variety
" "gb", "lang": "en"}
<start_of_turn>0<end_of_turn>
{"post": "Can't get it without being anti-

R A R

(LEL LY

USSR

< national.”, "reply”: "Nah , everyone will
<> get it"”, "source”: "reddit”, "level”: "1.0",
—» "language_variety”: "in", "lang": "en"}

lewidi_par_paraphrase_detection_individual

Given a pair of questions from Quora Question
—» Pairs (QQP), assign a Likert scale score
< from -5 to 5 indicating how strongly the
< questions are paraphrases of one another,
— and provide a short explanation for your
<~ score.

Annotator demographics: annotator_id: Anni;
<> Gender: Male; Age: 26; Nationality: Chinese
— ; Education: master student

{"question1”: "What are some things new
— employees should know going into their
— first day at Exact Sciences?”, "question2":
— "What are some things new employees should
<> know going into their first day at Garmin
— ?", "lang": "en"}

<start_of_turn>{"paraphrase_rating”: -1,
"explanation”: "The companies are
different."}<end_of_turn>

{"question1”: "Who are the everyday heroes and
> heroines of 1life?"”, "question2”: "What was
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<> everyday life like under Nazi rule?”, "lang

(SN II: "enll}
<start_of_turn>{"paraphrase_rating”: -5,
"explanation”: "Q1 asks about everyday heroes

and heroines. Q2 is aobut everyday life under
nazi rule”3}<end_of_turn>

{"question1”: "What does 'sandiaga' mean?”,
— question2”: "What does \u@64a\u@639\u0646\
<> u@64a mean?”, "lang": "en"}

<start_of_turn>{"paraphrase_rating"”: -1,
"explanation”: "The words to be translated are
different."}<end_of_turn>

{"question1”: "What is the best way to become a
<> voracious reader?”, "question2”: "What is a
< voracious reader?”, "lang": "en"}

<start_of_turn>{"paraphrase_rating"”: -3,
"explanation”: "Q1 is about how to become a
voracious reader. Q2 is about what is a
voracious reader."}<end_of_turn>

{"question1”: "How do I believe in myself more?",
— "question2": "How can I believe in myself
— ?", "lang": "en"}

<start_of_turn>{"paraphrase_rating”: 3,
"explanation”: "The person in Q2 might not
believe in themselves at all. The person in Q1
might have already believed in
themselves."”}<end_of_turn>

{"question1”: "What is does \"get swoll\"” mean
< and where does it stem from?”, "question2":
<~ "Where did leafy get his name from?", "
< lang”: "en"}

n

lewidi_varierrnli_nli_detection_individual

Given a premise and hypothesis from MNLI corpus,
<> assign one or more labels from {Entailment,
< Neutral, Contradiction} indicating the
< logical relationship between them, and
< provide an explanation for your reasoning.

Annotator demographics: Gender: Female; Age: 22;
< Nationality: Chinese; Education: master
— student

{"context”: "Even if auditors do not follow such
— other standards and methodologies, they

may still serve as a useful source of

guidance to auditors in planning their work
under GAGAS.", "statement”: "GAGAS
requires strict compliance for auditors to
— follow.”, "lang”: "en"}
<start_of_turn>{"nli_label”: "entailment"”,
"explanation”: "The context suggests that
auditors need to plan their work under
GAGAS. "}<end_of_turn>

{"context”: "In May 1967, Gallup found that the
— number of people who said they intensely
< disliked RFK--who was also probably more
< intensely liked than any other practicing
<> politician--was twice as high as the number
< who intensely disliked Johnson, the
< architect of the increasingly unpopular war
<~ in Vietnam."”, "statement”: "Due to his
<> attitudes on cheesecake, RFK was more
— disliked than Johnson.”, "lang"”: "en"}

<start_of_turn>{"nli_label”: "neutral”,
"explanation”: "The reason why RFK was more
disliked than Johnson is not mentioned in the
context."}<end_of_turn>

{"context”: "It was made up to look as much like
< an old-fashioned steam train as possible.”,

—>
(SN
—>
oy

— "statement”: "It was built in the modern

— era to look like something built in the

< past.”, "lang”: "en"}
<start_of_turn>{"nli_label”: "entailment”,

"explanation”: "The context mentions the

building of an old-fashioned train, the word

old-fashioned would only be used in the modern

era. So the statement is true."}<end_of_turn>
{"context"”: "Today it is possible to buy cheap

< papyrus printed with gaudy Egyptian scenes

<> in almost every souvenir shop in the

< country, but some of the most authentic are

<> sold at The Pharaonic Village in Cairo

< where the papyrus is grown, processed, and

<> hand-painted on site.”, "statement”: "The

— Pharaonic Village in Cairo is the only

<> place where one can buy authentic papyrus.”

— "lang”: "en"}

D SpecT Implementation

The model used in our system was an early version
of the model from Sorensen et al. (2025b). The
differences between our submission version and
the final model are 1) a slightly modified prompt
structure (see examples for details), 2) a slightly
smaller dataset mix (see App. D), and 3) an earlier
hyperparameter set.

Hyperparameters:

* Training hardware: 4 80GB A100s

* max_length: 1024

e per_device_train_batch_size: 1

e gradient_accumulation_steps: 512
e learning_rate: 3e-6

Here is the subset of datasets from Sorensen et al.
(2025b) that were used in training our system:

ambient_ambiguity_detection
ambient_disambiguation
ambient_interpretation_labels
ambient_linguist_annotations
ambient_premise_hypothesis
babynames

bare_enron

bare_gsm8k

bare_hotpot

bare_lcb

binomial

cards

categorical
changemyview_categories
changemyview_posts
chatbotarena_assistant
chatbotarena_individual_prefs
chatbotarena_prompts
coinflip

dices

diffuse_distribution
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flight
generativesocialchoice_freetext
generativesocialchoice_validation
geometric

geometric_beta

globaloga
gsm8k_answer_from_question
gsm8k_question
gsm8k_question_answer
gsm8k_question_from_answer
habermas_categorical
habermas_individual
habermas_individual_categorical
habermas_opinions
habermas_question

haikus

hatespeech_comment
hatespeech_individual
helpsteer

hypergeometric

imdb

issuebench
jeopardy_answer_prediction
jeopardy_question_generation
multinomial
negative_binomial
netflix_individual_ratings
netflix_individual_views
newsgroups

normal

novacomet_hypothesis
novacomet_premise
numbergame_individual
numbergame_perc
opinionga_individual
opinionga_questions
polis_comment

polis_vote

poisson

popquorn_individual
popquorn_og_categorical
prism_prompts
prism_prompts_individual
pubmed
titanic_all_variables
titanic_survival_prediction
valueconsistency
valueprism_misc
valueprism_situation
valueprism_vrd
valueprism_vrds_noncontextual
wvs_individual

zipfian
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Abstract

This paper presents our system for the Learn-
ing with Disagreements (LeWiDi-2025) shared
task (Leonardelli et al., 2025), which targets the
challenges of interpretative variation in multi-
lingual irony detection. We introduce a uni-
fied framework that models annotator disagree-
ment through soft-label prediction, multilingual
adaptation and robustness-oriented training.
Our approach integrates tailored data augmen-
tation strategies (i.e., lexical swaps, prompt-
based reformulation and back-translation) with
an ensemble learning scheme to enhance sen-
sitivity to contextual and cultural nuances. To
better align predictions with human-annotated
probability distributions, we compare multiple
loss functions, including cross-entropy, Kull-
back—Leibler divergence and L1 loss, the latter
showing the strongest compatibility with the
Average Manhattan Distance evaluation metric.
Comprehensive ablation studies reveal that data
augmentation and ensemble learning consis-
tently improve performance across languages,
with their combination delivering the largest
gains. The results demonstrate the effectiveness
of combining augmentation diversity, metric-
compatible optimisation and ensemble aggre-
gation for tackling interpretative variation in
multilingual irony detection.

1 Introduction

Irony is a complex linguistic phenomenon in which
the intended meaning of an utterance diverges from,
or even contradicts, its literal expression. It often
relies on contextual incongruity, implicit stance, or
shared background knowledge, making it highly
dependent on both linguistic and pragmatic cues.
This complexity renders irony detection a particu-
larly challenging task for computational systems,
especially when extended to multilingual and mul-
ticultural contexts where the expression and inter-
pretation of irony may vary substantially.

In such settings, human annotators frequently
disagree on whether a given utterance is ironic.

This disagreement stems not only from the inherent
ambiguity of language but also from differences
in cultural norms, humour styles, and pragmatic
expectations. The MultiPiCo (Multilingual Per-
spectivist Irony Corpus, MP) (Casola et al., 2024),
used in the LeWiDi-2025 shared task (Leonardelli
et al., 2025), explicitly captures this variability by
providing soft labels (i.e., empirical distributions
over annotator judgments) rather than single hard
labels. Modelling these distributions requires sys-
tems capable of representing annotation uncertainty
and preserving distributional information in both
training and inference phases.

We address this challenge by adopting a perspec-
tivist framing of irony detection that emphasises
multilingual generalisation and probabilistic super-
vision. Our system is built upon a multilingual
transformer, such as XLM-R (Conneau et al., 2020),
and incorporates several task-specific strategies: (1)
a document representation pipeline that encodes
post—reply pairs to preserve conversational context;
(2) three targeted data augmentation methods to
increase data diversity while maintaining seman-
tic fidelity: swap, prompt and translation; (3) an
ensemble training scheme to improve robustness
and reduce variance; and (4) the use of an L1 loss
function to directly optimise for the task’s evalua-
tion metric, average Manhattan Distance, which
better reflects annotator agreement patterns than
conventional cross-entropy loss.

Our contributions are as follows:

* A multilingual irony detection system that
models soft labels using a transformer-based
architecture aligned with human annotation
distributions;

* Novel data augmentation techniques tailored
to multilingual context-dependent irony detec-
tion;

* An ensemble-based training strategy that im-
proves prediction stability under consistent
modelling assumptions;
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» Empirical evidence supporting the use of Man-
hattan Distance as both an evaluation and op-
timisation target for soft-label learning.

Our system is designed to be robust, inter-
pretable and adaptable across languages and cul-
tural contexts, offering insights for future work on
perspectivist approaches to subjectivity-driven lan-
guage understanding tasks.

The source code for this paper is publicly avail-
able on GitHub!.

2 Related Work

Irony and Sarcasm Detection. Detecting irony
and sarcasm in text has been a long-standing chal-
lenge in computational linguistics due to its re-
liance on implicit meaning, context, and cultural
cues. Early approaches relied on handcrafted fea-
tures such as sentiment contrast or punctuation pat-
terns (Davidov et al., 2010; Reyes et al., 2013).
With the rise of deep learning, more robust methods
using recurrent networks and attention mechanisms
were introduced (Ghosh and Veale, 2016; Tay et al.,
2018). Recent work has explored context-aware
transformers, modelling not just the utterance but
also conversational history or speaker intent (Bam-
man and Smith, 2021). While effective in mono-
lingual settings, extending irony detection to multi-
lingual and multicultural contexts remains an open
problem, especially under limited annotated data.

Soft Labels and Annotator Disagreement.
Standard supervised learning assumes a single
ground truth label per instance, but tasks involv-
ing subjectivity, such as irony detection, frequently
involve disagreement among annotators. This
has motivated soft-label learning approaches that
model the label distribution rather than a hard ag-
gregated majority vote (Pavlick and Kwiatkowski,
2019). Soft supervision helps systems reflect un-
certainty and align more closely with human per-
ception. Galstyan and Cohen (2008) and Rizzi et al.
(2024) provide comprehensive analyses of training
objectives under soft labels, highlighting the inad-
equacy of cross-entropy loss and advocating for
distance-based losses such as Manhattan Distance.
These insights directly inform our use of L1 loss in
both training and evaluation.

Multilingual Modelling and Data Augmenta-
tion. Multilingual pretraining has significantly
advanced NLP systems’ ability to generalise across

"https://github.com/YhzyY/LeWiDi2025

languages. Models such as mBERT (multilingual
BERT) and XLM-R (XLM-RoBERTa) have shown
strong performance in zero-shot and few-shot cross-
lingual transfer (Pires et al., 2019; Conneau et al.,
2020). In tasks like irony detection, where training
data may be imbalanced across languages, data aug-
mentation becomes especially valuable. Prior work
has applied back-translation (Sennrich et al., 2016),
prompt-based reformulations (Bao et al., 2020) and
contextual rewrites to enhance diversity. In line
with these, we adopt a multilingual data augmenta-
tion framework that includes swapping discourse
segments, prompt injection, and LLLM-based trans-
lation to increase robustness across languages and
cultural contexts.

3 System Overview

We consider the irony detection problem as a bi-
nary classification task. Given a set of dialogues

D composed of post-reply pairs (xl(,i,)st,xﬁézﬂy),

D = {(zé@st,xiégly) N |, N is the total number
of instances in D. Each instance is annotated
with a probability distribution over labels y@ ¢
[0,1]™, where n is the number of annotators and
Z;”:l yj@ = 1. The task is to train a model fy
that maps each input pair to a predicted soft label
distribution y() = fy(z(?)), such that the average
Manbhattan Distance between predictions and target
distributions is minimised.

3.1 Document Representation

To model the pragmatic and contextual signals that
characterise irony, we use x1m-roberta-base2, a
multilingual transformer pretrained on 100+ lan-
guages. Each instance is represented as a concate-
nation of the post and its corresponding reply. To-
kenisation is handled using the official Hugging
Face tokeniser, preserving the consistency of sub-
word units with the model’s pretraining.

Let x+ = [post] + [SEP] + [reply] denote
the tokenised input string. This is encoded into con-
textualised embeddings by the transformer encoder
and passed through a linear projection followed by
a softmax to produce the output distribution ¥ .

3.2 Dataset Preprocessing

We use the official training and development splits
provided by the shared task organisers. Each in-
stance consists of a "post", a "reply", and a soft

2https://huggingface.co/FacebookAI/
xlm-roberta-base
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label distribution aggregated from multiple annota-
tors. Instances are preprocessed and wrapped into
a custom PyTorch dataset class, MPDataset, which
encodes each post-reply pair jointly. This allows
the model to account for discourse-level semantics
essential for detecting irony.

3.3 Data Augmentation

To enhance robustness and reduce overfitting, we
apply three task-specific data augmentation strate-
gies, forming an augmented training set:

Dtrain =DU A(D) (1)

where A denotes the augmentation pipeline. The
following methods are used:

Swap. We reverse the order of the post and reply
in each input sequence. This exposes the model to
discourse variation and helps it focus on content
and tone rather than fixed positional patterns.

Prompt-based Reformulation (Prompt). We
prepend an instruction-style prompt to the input:

“Given the following post: [post] and
reply: [reply], determine whether irony
can be detected.”

This method conditions the model on the task and
improves generalisation, particularly in multilin-
gual settings where implicit task signals vary.

Translation. Using gpt-3. 5-turbo’, we trans-
late the original input into the nine target languages
(Arabic, Dutch, English, French, German, Hindi,
Italian, Portuguese and Spanish). Each translated
version is treated as an augmented instance, inherit-
ing the original soft label. This expands the dataset
9-fold and promotes cross-lingual robustness. The
prompt ensures consistency and tone preservation:

“Translate its ‘text’ part into 9
languages: Arabic, Dutch, English,
French, German, Hindi, Italian,

Portuguese and Spanish. Pay attention:
the translation should preserve the
ironic tone in the original dialogues.”

3.4 K-fold Ensemble Strategy

To further increase robustness, we use an ensemble
training setup. The dataset is randomly shuffled and
split into K equally sized subsets {D;, ..., Dk }.
For each subset, we train an independent model

3https://platform.openai.com/docs/models/
gpt-3.5-turbo

fék). The final prediction for an instance is the
unweighted average of all K outputs:

K

1
= I @) )
k=1

y=
This approach reduces variance and helps the
system better handle ambiguity and soft supervi-
sion (Lakshminarayanan et al., 2017).

3.5 Training and Optimisation

We use Hugging Face’s Trainer to train the model
with a standard configuration (batch size, learning
rate, epochs) tuned empirically. All models are
fine-tuned on the task-specific data using the L1
loss.

Assume N denote the number of training in-
stances and n for the number of classes, let y@') =
fo(z(?) be the predicted distribution and y(?) the
target distribution. Following Rizzi et al. (2024),
we use an evaluation metric between these two dis-
tributions, Average Manhattan Distance (AvgMD),
defined as:

3)

1)§i) . 3/§i)

1 N n
AngD:NZZ

i=1 j=1

To align the optimisation with this metric, we
train the model using the LI Loss:

1 N n

i=1 j=1

“)

Z}éi) . Z/;i)

This loss provides a more faithful learning sig-
nal than cross-entropy in soft-label scenarios, espe-
cially for modelling disagreement among annota-
tors (Rizzi et al., 2024).

4 Dataset and Experimental Setup

We use the MultiPiCo (MP) corpus (Casola et al.,
2024), a multilingual dataset comprising short
post—reply exchanges collected from Twitter and
Reddit. Each reply is annotated in the context of the
preceding post by approximately five crowd work-
ers. Annotators label whether the reply is ironic,
resulting in a binary classification task. Instead
of collapsing annotations into hard labels, the cor-
pus provides soft labels (i.e., distributions over the
two classes) to preserve inter-annotator disagree-
ment and enable models to learn from nuanced and
perspectivist supervision.
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The MP corpus spans nine languages: Arabic,
Dutch, English, French, German, Hindi, Italian,
Portuguese and Spanish. This makes it particu-
larly well-suited for evaluating systems in multilin-
gual and cross-cultural settings. The distribution of
training, development, and test instances for each
language is shown in Table 1.

Table 1: Number of training, development, and test
instances per language in the MP corpus.

Language #Train #Dev #Test

Arabic 1,399 363 419
Dutch 637 147 216

English 1,920 489 590
French 1,137 276 347
German 1,513 358 504
Hindi 505 132 149
Italian 646 159 195
Portuguese 1,286 325 383
Spanish 2,974 756 953

We strictly adhered to the official data splits pro-
vided by the shared task organisers for training,
development and evaluation. No external resources
or additional data were used at any stage. This en-
sures that our system is evaluated under the same
constraints as other submissions, and that perfor-
mance comparisons remain valid.

We use the hyperparameters provided in the
transformers library for the x1m-roberta-base
model. Training is performed using the Adam opti-
miser with a linear learning rate schedule and early
stopping based on validation loss. All preprocess-
ing, tokenisation and batching are handled using
the Hugging Face framework.

5 Results

Our system achieved competitive performance in
the LeWiDi-2025 shared task, highlighting the ef-
fectiveness of its multilingual architecture and soft-
label modelling approach. In the following subsec-
tions, we present detailed evaluations, including
augmentation and loss function ablations, ensem-
ble comparison, as well as cross-lingual analyses.
All the following experiments are using the same
training arguments, the only differences between
them are the data augmentation methods, loss func-
tion, and ensemble method. Due to the absence of
publicly released gold labels for the test set, most
validation results were obtained via the Codabench
evaluation platform. Language-wise analyses (Sec-
tion 5.4) could not be conducted on the hidden test

set; for these, we report results on the development
set instead.

5.1 Effect of Data Augmentation

We evaluated the impact of each proposed augmen-

tation strategy (swap, prompt and translation), as
well as their combinations. Table 2 reports the aver-
age Manhattan Distance (AvgMD; lower is better)
for systems trained under different augmentation
settings. All experiments in this section use the L1
loss function without ensemble methods, ensuring
that the effects of data augmentation are measured
in isolation. Results show that combining augmen-
tation methods consistently outperforms individual
ones, with the best performance obtained by using
all three techniques or the swap+translation pair-
ing. Among single strategies, translation yields
the largest gain over the baseline, while swap
and prompt produces only marginal improvements.
This suggests that semantic-preserving transforma-
tions (e.g., translation) contribute more than struc-
tural manipulations when modelling irony across
languages.

Table 2: AvgMD for different data augmentation config-
urations.

Augmentation AvgMD
All Combined 0.407
Swap + Translation 0.407
Prompt + Translation ~ 0.410
Translation 0.411
Swap + Prompt 0.428
No Augmentation 0.451
Prompt 0.464
Swap 0.473

5.2 Effect of Loss Function

We next compared three loss functions, cross-
entropy (CE), L1 and KL divergence, on the base-
line system without data augmentation and en-
semble. (Figure 1). L1 loss achieved the low-
est AvgMD, outperforming CE by 0.034 abso-
lute points, confirming its suitability for align-
ing predictions with human-annotated distributions
in the presence of label uncertainty. KL diver-
gence performed substantially worse, likely due
to over-sensitivity to distribution mismatches in
low-resource or highly ambiguous cases. These
results motivate our final system design, which in-
tegrates L1 loss with combined data augmentation
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to maximise robustness and cross-lingual generali-
sation.

| o.ass
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Figure 1: Performance using different loss functions (no
augmentation).

5.3 Effect of Ensemble Training

We assess the impact of the ensemble approach
using the L1 loss function in combination with
different data augmentation settings. The ensemble
is constructed by randomly shuffling the training
set and partitioning it into five equally sized subsets
(K = 5), each used to train an independent model.
During inference, all models produce soft-label
predictions on the test set, which are then averaged
to form the final output. This averaging mitigates
variance, reduces prediction noise, and improves
robustness, particularly in the presence of noisy
or ambiguous labels such as those found in irony
detection.

Table 3 compares the ensemble results with their
single-model counterparts under identical loss and
augmentation settings. In all configurations, the en-
semble achieves a lower AvgMD. The largest gain
occurs with swap augmentation, which achieves
the highest AvgMD. When no ensemble was ap-
plied, its AvgMD drops by 0.049 (from 0.473 to
0.424). Even the smallest gain, observed with
swap+prompt augmentation, still yields a reduction
of 0.008. These consistent improvements highlight
the ensemble’s ability to capture complementary
decision patterns from models trained on different
data partitions, leading to more stable and accurate
soft-label estimations.

Table 3: AvgMD improvements from applying the en-
semble method under different data augmentation set-
tings.

Augmentation w/o Ensemble w/ Ensemble AAvgMD
All Combined 0.407 0.396 -0.011
Swap + Translation 0.407 0.396 -0.011
Prompt + Translation 0.410 0.394 -0.016
Translation 0411 0.392 -0.019
No Augmentation 0.451 0.417 -0.034
Swap + Prompt 0.428 0.420 -0.008
Prompt 0.464 0.428 -0.036
Swap 0.473 0.424 -0.049

5.4 Cross-lingual Performance

We assess the system’s ability to generalise across
the nine target languages using the best-performing
configuration for single model(L1 loss with all
combined data augmentations). Figure 2 reports
AvgMD per language. Performance is better for
English and Dutch (AvgMD < 0.4), which have
relatively larger training sets and higher lexical
similarity to other European languages in the cor-
pus. Spanish and Arabic also perform well despite
linguistic differences, suggesting the model effec-
tively leverages cross-lingual transfer. In contrast,
Portuguese, French, German and Italian exhibit
higher AvgMD values, indicating reduced agree-
ment with human annotations. These discrepancies
may stem from smaller data sizes, domain-specific
lexical variation, or cultural differences in the ex-
pression of irony. Overall, results highlight both
the promise and the unevenness of cross-lingual
generalisation in perspectivist irony detection.
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Figure 2: AvgMD per language (lower is better) using
L1 loss and all augmentations.

5.5 Overall Result

Under the L1 loss setting without any data augmen-
tation or ensemble, the baseline system achieves an
AvgMD of 0.451. As shown in the augmentation
ablation study, incorporating data augmentation
yields consistent performance improvements, with
the best-performing augmentation strategy being
the one combined with swap, prompt and trans-
lation, which attains an AvgMD of 0.407. This
confirms that certain augmentation combinations,
particularly those leveraging complementary lin-
guistic variations, can effectively reduce the diver-
gence from human soft labels.

When further integrating the ensemble method,
the results demonstrate an even more pronounced
improvement. In all cases, the ensemble con-
sistently reduces AvgMD compared to their non-
ensemble counterparts, as discussed in the ensem-
ble ablation analysis. The optimal configuration is
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achieved using the translation augmentation with
ensemble, which delivers the lowest AvgMD of
0.392 across all experiments. This outcome aligns
with our earlier explanation that ensembles, by ag-
gregating predictions from models trained on di-
verse data subsets, capture richer and more com-
plementary decision patterns, thereby achieving
superior alignment with annotator distributions.

6 Conclusions

We presented a unified system for the LeWiDi-
2025 shared task that addresses the challenges of
annotator disagreement in multilingual irony detec-
tion. Our approach integrates complementary data
augmentation strategies, loss functions tailored to
the evaluation metric, and an ensemble framework
to improve alignment with human-annotated soft
labels. Experiments demonstrate that the combina-
tion of augmentation and ensemble learning yields
substantial reductions in Average Manhattan Dis-
tance over strong baselines, with L1 loss proving
particularly effective for soft-label prediction under
this metric. These findings underscore the value of
jointly leveraging data diversity, metric-compatible
optimisation, and model aggregation to better cap-
ture interpretative variation in multilingual and cul-
turally nuanced NLP tasks. Future work will ex-
plore more context-aware augmentation methods
and adaptive ensemble schemes to further enhance
cross-lingual robustness.

Limitations

While our system demonstrates strong performance
in reducing divergence from annotator distribu-
tions, several limitations remain. First, our data
augmentation strategies, though effective, are pri-
marily heuristic and may not fully capture the full
range of linguistic or cultural variability present in
real-world irony. Second, the ensemble approach,
while improving performance, increases compu-
tational cost during both training and inference,
which may limit scalability in resource-constrained
settings. Third, our experiments focus on multilin-
gual but not truly cross-lingual transfer scenarios;
future work should investigate whether the pro-
posed framework generalizes effectively to unseen
languages or domains. Finally, although L1 loss
proved advantageous for the given metric, its effec-
tiveness for other evaluation criteria remains to be
systematically assessed.

Ethical Statements

This study builds upon publicly released datasets
provided by the competition organizers, which in-
clude multilingual social media content originally
collected from platforms such as X and Reddit. All
data used are anonymised and intended for research
purposes only. We do not introduce any additional
user-generated content or external datasets beyond
the official competition resources.

Given the subjective nature of irony and the per-
spectivist framing of this task, we acknowledge
the potential for cultural and linguistic biases to
influence both human annotations and model pre-
dictions. Our system is trained to align with ag-
gregated soft labels that reflect annotator disagree-
ment, however, it may still reflect dominant cultural
interpretations embedded in the training data. Ad-
ditionally, the use of multilingual large language
models such as xIm-roberta-base and gpt-3.5-turbo
may introduce biases inherited from their pretrain-
ing corpora. We encourage careful downstream
use of such models and stress the importance of
transparency, cultural sensitivity, and critical eval-
uation when deploying irony detection systems in
real-world applications.
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Abstract

Annotator-provided information during label-
ing can reflect differences in how texts are un-
derstood and interpreted, though such variation
may also arise from inconsistencies or errors.
To make use of this information, we build a
BERT-based model that integrates annotator
perspectives and evaluate it on four datasets
from the third edition of the Learning With Dis-
agreements (LeWiDi) shared task. For each
original data point, we create a new (text, an-
notator) pair, optionally modifying the text to
reflect the annotator’s perspective when addi-
tional information is available. The text and
annotator features are embedded separately and
concatenated before classification, enabling
the model to capture individual interpretations
of the same input. Our model achieves first
place on both tasks for the Par and VariErrNLI
datasets. More broadly, it performs very well
on datasets where annotators provide rich in-
formation and the number of annotators is rela-
tively small, while still maintaining competitive
results on datasets with limited annotator infor-
mation and a larger annotator pool.

1 Introduction

Human language is often subjective and open to
interpretation. In many NLP tasks, it’s common for
annotators to disagree sometimes for good reasons.
But most traditional models ignore this variation
and treat all labels as if there’s only one correct
answer. As a result, they may miss out on useful
minority viewpoints and become less adaptable.
The third edition of the Learning With Dis-
agreements (LeWiDi) shared task at EMNLP 2025
(Leonardelli et al., 2025) focuses on a critical chal-
lenge: building models that learn from disagree-
ments rather than ignore them. The main objective
of the task is to provide a unified evaluation frame-
work for learning from disagreements. It introduces
a benchmark including four datasets annotated with
both soft labels and perspectivist annotations. Here,

soft labels represent probability distributions over
possible classes, capturing the degree of annotator
disagreement, while perspectivist predictions aim
to recover the individual label choices of each an-
notator. Participating teams are evaluated based on
how accurately their models predict both types of
outputs.

In our approach, we built a simple but effective
BERT-based model (Devlin et al., 2019) that makes
use of annotator perspectives during training. In-
stead of collapsing multiple labels into one, we
create a separate training instance for each anno-
tator’s view and combine it with their background
information. This way, the model learns to un-
derstand how different kinds of annotators might
interpret the same input differently. Our approach
performed well across all four shared task datasets.
It was especially effective on tasks that involved
a small set of annotators and provided natural lan-
guage explanations alongside their labels.

2 Task Summary

2.1 Dataset

The LeWiDi 2025 shared task provides four diverse
datasets across different NLP tasks. Each dataset is
accompanied by annotator metadata, including ba-
sic demographic information about the annotators
who provided the labels. See Table 1 for dataset
statistics and Table 2 for available annotator meta-
data fields.

* The Conversational Sarcasm Corpus (CSC)
(Jang and Frassinelli, 2024): A dataset of con-
text—response pairs rated for sarcasm, with
ratings from 1 to 6.

e The MultiPico dataset (MP) (Casola et al.,
2024): A crowdsourced multilingual irony de-
tection dataset. Annotators were tasked to de-
tect whether a reply was ironic in the context
of a brief post-reply exchange on social media.
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Table 1: Dataset statistics, including task type, instance counts for each split, and annotator information. Unseen
annotators refer to annotators whose metadata is not provided.

Dataset CSC MP Par VariErrNLI
Task Sarcasm Detection | Irony Detection | Paraphrase Detection | Natural Language Inference
No. of Instances
Train 5628 12017 400 388
Dev 704 3005 50 50
Test 704 3756 50 50
Annotator Details
Total annotators 840 506 4 4
Annotators / instance 4,6 2-21 4 2,3,4
Unseen annotators 12 0 0 0
Field Description Datasets
Annotator ID Unique identifier All
Age Annotator’s age at the time of annotation All
Gender Self-identified gender All
Nationality Annotator’s nationality MP, Par, VariErrNLI
Education Highest level of education completed Par, VariErrNLI
Ethnicity (simplified) | The ethnicity of the annotator MP
Country of birth Annotator’s country of birth MP
Country of residence | Annotator’s current country of residence MP
Student status Whether the annotator is a student MP
Employment status Annotator’s employment status MP

Table 2: Annotator metadata available across datasets.

Languages include Arabic, German, English,
Spanish, French, Hindi, Italian, Dutch, and
Portuguese.

* The Paraphrase Detection dataset (Par): !
A dataset of question pairs for which annota-
tors rated whether the two questions are para-
phrases of each other on a Likert scale. In
addition to labels, annotators also provided
short explanations for their choices.

e The VariErr NLI dataset (VariErrNLI)
(Weber-Genzel et al., 2024): A dataset origi-
nally designed for automatic error detection,
distinguishing between annotation errors and
legitimate human label variation in Natural
Language Inference. Annotators also included
short textual explanations for their choices.

2.2 Tasks

The LeWiDi 2025 shared task defines two official
evaluation settings. To ensure comparability with
the leaderboard, we adopt the same metrics:

Task A (Soft Label Prediction): Given multiple
annotator labels per instance, the goal is to predict a
probability distribution over possible labels. Mod-
els are evaluated on how close the predicted label

!The dataset is maintained by the MaiNLP lab and is not
yet published.

distribution is to the empirical human label distri-
bution. Manhattan distance is used for binary label
datasets (MP, VariErrNLI), and Wasserstein dis-
tance is used for ordinal label datasets (Par, CSC).

Task B (Perspectivist Prediction): This task fo-
cuses on predicting the individual labels assigned
by each annotator. For binary label datasets (MP,
VariErrNLI), performance is measured using error
rate; for ordinal label datasets (Par, CSC), absolute
distance is used.

3 Method

3.1 System Overview

Our model aims to capture how individual annota-
tors see things differently. As shown in Figure 1,
we convert each original sample into multiple train-
ing instances, each paired with information from
a specific annotator. This lets the model pick up
on patterns in how different people label the same
text.

Dataset Construction: Instead of treating each
sample as a single data point, we decompose it
into multiple (text, annotator) pairs. Depending
on the dataset, adjustments are applied to the in-
put text (e.g., incorporating annotator explanations
or source metadata) so that the model can capture
how different annotators interpret the same input.
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Figure 1: Representation of our BERT with Annotator Information

Detailed processing steps for each dataset are de-
scribed in Section 3.2.

Input Representation: We encode the input text
using a pretrained BERT model to obtain contex-
tualized embeddings. In parallel, the annotator
metadata is processed through a projection layer
to produce a fixed-size feature vector. These two
representations are then concatenated and passed
to a classification layer.

Target Construction: Each (text, annotator) pair
is treated as a distinct training sample with its cor-
responding label. This setup enables the model to
learn from individual annotator perspectives.

Model Variants: We use MiniLM-L12-H384-
uncased (Wang et al., 2020) for the CSC,
Par, and VariErrNLI datasets, while DistilBERT-
multilingual-cased (Sanh et al., 2019) is employed
for MP, which contains multilingual samples.

Training Setup: We train the model using soft
label supervision, comparing predictions to full
label distributions. Optimization is performed us-
ing AdamW (Loshchilov and Hutter, 2019), with
dropout, early stopping, and a learning rate sched-
uler to enhance training stability.

Baselines: We compare against three baselines:
the official baseline from the organizers, a TF-IDF
+ Random Forest (Louppe, 2015) model, and a
plain BERT model that doesn’t use any annotator
information. (furthur described in subsection ??)

3.2 Text Processing

In all four datasets, each input sample is repre-
sented as a pair of textual fields, which we denote
as S1 and S2. The concrete meaning of these fields
depends on the dataset:
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* CSC: S1 = context (the situation preceding
the response), S2 = response.

* MP: S1 =post, S2 = reply to the post.
e Par: S1 = Question 1, S2 = Questio n2.

* VariErrNLI: S1 = context (premise), S2 =
statement (hypothesis).

These are concatenated using the [SEP] token:
S1 [SEP] S2

For the Par and VariErrNLI datasets, which in-
clude brief natural language explanations written
by annotators, we append the explanation (Exp) of
the corresponding annotator after a second [SEP]
token:

S1 [SEP] S2 [SEP] Exp

For the MP dataset, which contains a source
metadata field indicating the origin of the input
(Reddit or Twitter), we prepend the source before
the main text sequence to help the model disam-
biguate the context. This follows prior work on
topic infusion (Sullivan et al., 2023):

Source [SEP] S1 [SEP] S2

Text Processing in Baseline Models: For the fine-
tuned BERT baseline (which does not utilize anno-
tator information), we concatenate all available an-
notator explanations (if present) and append them
to the input sequence. This applies to datasets such
as Par and VariErrNLI. For the TF-IDF + Random
Forest baseline, we use the same input samples as
in our main model, with tokenization performed
using TF-IDF vectorization.



3.3 Annotator Metadata Encoding

Annotator metadata is encoded by combining one-
hot encoding for categorical features and standard
scaling for numerical ones. Missing or invalid val-
ues are imputed using the mode. The resulting
feature vectors are concatenated into a single meta-
data representation for each annotator. For the MP
dataset, we apply Principal Component Analysis
(PCA) (Shlens, 2014), retaining 99.5% of the vari-
ance, to reduce the dimensionality from 91 to 31.

4 Experiment Setup
4.1 Comparison Models

We compare the Most Frequent baseline provided
by the organizers with three approaches for model-
ing annotator disagreements and perspectives:

Organizer Baseline (Most Frequent): Two vari-
ants are provided by the organizers. (1) For Soft
Label Evaluation, the mean label distribution over
the training set is used as the prediction for all
test items. (2) For Perspectivist Evaluation, each
annotator’s most frequent label is assigned across
all items. Predictions are then evaluated using the
respective metrics.

TF-IDF + Random Forest (TF-IDF + RF): For
CSC, Par, and VariErrNLI, we extract TF-IDF fea-
tures from the input text using Tfidf Vectorize and
concatenate them with the annotator vectors. For
Par and VariErrNLI, where the number of annota-
tors is relatively small, we train an individual Ran-
dom Forest regressor for each annotator to better
reflect their subjective labeling tendencies. In con-
trast, for CSC, which includes over 800 annotators,
we train a single model using soft labels aggregated
across annotators. Due to the multilingual nature
of MP, this model is not applicable there.

Fine-tuned BERT (No annotator Information):
This baseline ignores annotator identity and treats
each instance as a single aggregated sample. We
fine-tune a BERT-based encoder using soft labels
as targets. Specifically, we use MiniLM-L12-H384-
uncased (Wang et al., 2020) for CSC, Par, and Vari-
ErrNLI; and DistilBERT-multilingual-cased (Sanh
et al., 2019) for MP. This setup serves as a di-
rect comparison point for evaluating the impact
of annotator-aware modeling.

Fine-tuned BERT with Annotator Information
(Main Model): The model described in subsec-
tion 3.1. It takes annotator information into account

by treating each (text, annotator) pair as a distinct
training sample. We encode the text using a BERT-
based model and transform the annotator features
via a projection layer. The two representations are
then concatenated before classification.

For both BERT-based models, we use Hugging-
Face’s AutoTokenizer (Wolf et al., 2020) associ-
ated with the respective pretrained encoder for text
tokenization.

All models are trained using soft label supervi-
sion for Task A. For models that incorporate an-
notator information, we average predictions across
annotators to obtain the final output. Predictions for
Task B are then derived directly from the outputs
of Task A. In contrast, models without annotator
information generate a single output distribution,
from which Task B labels are obtained via argmax.

4.2 Loss Function

For the CSC and Par datasets, which contain or-
dinal labels, we use Kullback-Leibler (KL) diver-
gence loss for our model and the BERT baseline.
The TF-IDF + Random Forest(RF) model is eval-
uated using the Wasserstein distance as a perfor-
mance metric. For the MP and VariErrNLI datasets,
which involve binary classification tasks, we use L.1
loss for training. The TF-IDF + RF model for these
datasets is evaluated using the Manhattan distance
as a performance metric.

4.3 Evaluation Measures

Evaluation metrics are tailored to each dataset and
task, and we follow the official definitions and eval-
uation scripts provided by the LeWiDi shared task
organizers.

Soft Evaluation (Task A):
* CSC, Par: Average Wasserstein Distance
* MP: Average Manhattan Distance

* VariErrNLI: Average Multilabel Average
Manbhattan Distance

Perspectivist Evaluation (Task B):

* CSC, Par: Average Normalized Absolute Dis-
tance

* MP: Average Error Rate

* VariErrNLI: Average Multilabel Error Rate
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Metric Summary: The evaluation metrics are
designed to capture both aggregate performance
(how well predicted distributions align with the
overall human label distribution) and perspectivist
performance (how well individual annotator per-
spectives are recovered). For brevity, we omit ex-
plicit formulas for commonly used metrics such
as Manhattan Distance and Error Rate (and their
multilabel variants). For readability, the metrics
are presented in summarized form rather than with
full mathematical expressions.

Wasserstein Distance (WD): Measures the ef-
fort required to transform one distribution into an-
other, assuming ordinal classes:

n n

WD(p,t) = min(py,x) - |h — k|

h=1k=1

where p and ¢ are discrete distributions over n ordi-
nal categories.

Average Wasserstein Distance (AWD): Let p(?)
and () denote the predicted and target distributions
for sample i, then:

N
1 N
- (1) 4@
AWD N ;_1 WD(p'",t")

The average Wasserstein Distance is O in the case
of a perfect match.

Normalized Absolute Distance (NAD): For a
sample 4, let t; = [t;1,...,%; ] be the target la-
bels and p; = [pi 1, ..., Piq] the predictions for a
annotators. The Normalized Absolute Distance is
defined as:

S

LK ik — pik
S
=1

where s is the Likert scale range. A value of 0
indicates perfect agreement.

Average Normalized Absolute Distance (ANAD):
The final score is obtained by averaging NAD over
all N samples:

N

1 .

ANAD = § 1: NAD(i)
1=

5 Result

We report system performance across all datasets
and evaluation tasks in Table 3, using the metrics

described in Section 4.3. Our model consistently
outperforms baseline methods on the VariErrNLI
and Par datasets, and shows modest improvements
over baselines on CSC and MP. According to the of-
ficial LeWiDi 2025 leaderboard?, our system ranks
top-5 on both tasks for the CSC and MP datasets,
and achieves 1st place on both tasks for the Par and
VariErrNLI datasets. These rankings are consistent
across both Task A (soft evaluation) and Task B
(perspectivist evaluation).

6 Further Analysis

We conducted further analysis to understand how
incorporating annotator information affects model
performance. Overall, models that leverage anno-
tator information tend to outperform those that do
not.

For the Par and VariErrNLI datasets, both of
our annotator-aware models (TF-IDF + RF and
our proposed BERT-based model) consistently sur-
passed the organizers’ baselines and the BERT-
based models without annotator information. With
a small and fixed set of annotators, the models can
more easily capture individual behavior, helping
them understand consistency in how samples are
labeled. Additionally, the inclusion of textual ex-
planations allows the models to learn multiple per-
spectives from each annotator, resulting in richer,
more multi-dimensional instance representations
and reducing ambiguity compared to using raw
labels alone.

In contrast, for the MP and CSC datasets, us-
ing annotator information did not lead to much
improvement. These datasets only provide basic
metadata (e.g., age, gender), and the number of
annotators is much larger, making it harder for
the model to learn how each annotator behaves.
Moreover, some annotator attributes were missing
or not provided for certain examples, so we filled
in missing values using the mode for each field.
This imputation may have introduced noise and re-
duced the effectiveness of annotator-aware model-
ing. Still, in MP, the model with annotator features
performs slightly better. In the case of CSC, our
proposed model performed worse than the BERT
model that does not use annotator information. A
likely explanation is that many annotators in CSC
lack associated metadata. As a result, we had to fill
in missing values with default values, which may

*More information about the shared task and leaderboard
is available at https://le-wi-di.github.io/.
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Table 3: System performance across datasets. Task A is evaluated using WD (Wasserstein Distance) and MD
(Manhattan Distance). Task B is evaluated using NAD (Normalized Absolute Distance) and ER (Error Rate).
Arrows | indicate lower values represent better performance. The Baseline model is provided by the organizers.
Best performance for each dataset and metric is highlighted in bold.

Model CSC MP Par VariErrNLI
WD() NAD{) | MD({) ER{) | WD{) NAD{) | MD{) ER{)
Baseline 1.169 0.238 0.518 0.316 3.23 0.36 0.59 0.34
TF-IDF + Random Forest 0.87 0.247 X X 1.2 0.34 0.42 0.24
BERT - without annotator information 0.835 X 0.48 X 2.04 X 04 X
BERT - with annotator information 0.86 0.228 0.45 0.319 0.98 0.08 0.23 0.12
have introduced noise into the input representation ~ Limitations

and negatively affected the model’s performance.
These results highlight a general challenge: when
the annotator pool is large and metadata is sparse
or missing, modeling individual annotator behavior
may become difficult.

Model rankings in Task B largely reflect those
in Task A, indicating that understanding annotator
behavior contributes to overall prediction quality.
While annotator-aware modeling benefits datasets
with small, information-rich annotator pools, gener-
alizing to larger, sparse pools remains challenging.
These results suggest that the approach is most ef-
fective when annotator numbers are limited and
data is semantically rich, but its effectiveness may
decrease as the pool grows and label distributions
become sparse, highlighting an open question for
future research.

7 Conclusion

In this work, we presented a model that predicts
labels for each (text, annotator) pair, aiming to cap-
ture individual annotator perspectives rather than
just aggregated labels. We evaluated our method on
four datasets covering sarcasm detection, irony de-
tection, paraphrase detection, and natural language
inference. Our results show that including annota-
tor information often leads to better performance,
especially in datasets where annotator perspectives
are clearly defined and consistent. However, for
datasets with many annotators or missing metadata,
the improvement is less clear, and in some cases,
using annotator features may introduce noise.

Overall, our findings suggest that modelling in-
dividual perspectives is a promising direction for
tasks involving subjective annotation. Future work
may explore more advanced architectures or evalu-
ate on additional datasets to further understand the
benefits and limitations of this approach.

Our model has several limitations. First, some
datasets (e.g., CSC) lack annotator metadata, re-
quiring us to use dummy or average values, which
may negatively affect the model’s accuracy. Sec-
ond, our model does not scale well to datasets with
a large number of annotators, since each (text, an-
notator) pair is treated as a separate input. Third,
we use a simple architecture that concatenates text
and annotator embeddings, without exploring more
advanced approaches like attention or expert mix-
tures. Lastly, we did not compare our approach
against some strong solutions such as multi-task
learning (Fornaciari et al., 2021), which could pro-
vide useful insights.
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Appendix A: Hyperparameter Details

TF-IDF + Random Forest. For CSC, we
use TfidfVectorizer(max_features=4000) for
tokenization. For Par and VariErrNLI, we
use TfidfVectorizer(max_df=0.7, min_df=2,
ngram_range=(1, 3)). Random Forest hyperpa-
rameters (n_estimators, max_depth) are selected
via grid search using the validation set.

BERT-based Models. All transformer-based
models are optimized using AdamW (weight
decay=0.01). Training is done with soft label re-
gression.

CSC and MP: We train for 5 epochs with early
stopping based on validation loss. We set dropout
rate to 0.4, batch size to 32, and learning rate to
2e-5. We use ReducelLROnPlateau (mode="min’,
factor=0.5, patience=1) . Texts are tokenized
with max_len=128.

Par and VariErrNLI: Models are trained for
up to 30 epochs with early stopping. Batch size
is 16, dropout rate is 0.3 and learning rate is 2e-5.
Texts are tokenized with max_len=128.

Classification Head: We use a linear layer fol-
lowed by a dropout layer and another linear projec-
tion to the output logits.

Annotator Projection Layer: Annotator meta-
data is passed through a linear layer followed by a
ReLU activation to obtain a fixed-size embedding
vector.

Annotator Projection Sizes: 5 (CSC), 32 (MP),
16 (Par), 16 (VariErrNLI). The size of the text repre-
sentation corresponds to the encoder’s hidden size
(e.g., 384 for MiniLM).
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Uncertain (Mis)Takes at LeWiDi-2025:
Modeling Human Label Variation With Semantic Entropy
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Abstract

The VariErrNLI task requires detecting the de-
gree to which each Natural Language Infer-
ence (NLI) label is acceptable to a group of
annotators. This paper presents an approach
to VariErrNLI which incorporates measures of
uncertainty, namely Semantic Entropy (SE), to
model human label variation. Our method is
based on the assumption that if two labels are
plausible alternatives, then their explanations
must be non-contradictory. We measure SE
over Large Language Model (LLM)-generated
explanations for a given NLI label, which rep-
resents the model uncertainty over the semantic
space of possible explanations for that label.
The system employs SE scores combined with
an encoding of the inputs and generated expla-
nations, and reaches a 0.31 Manhattan distance
score on the test set, ranking joint first in the
soft evaluation of VariErrNLIL!

1 Introduction

Annotator disagreement has recently received more
attention in NLP research (Fornaciari et al., 2021;
Leonardelli et al., 2021; Sandri et al., 2023). Hu-
man label variation has consequences for the data,
modeling, and evaluation in ML tasks (Plank,
2022). The question of data quality is related to dis-
tinguishing legitimate human label variation, which
stems from different interpretations or opinions,
from errors. In the context where a single label is
correct, the problem of determining annotation re-
liability has been addressed by Hovy et al. (2013),
who propose to evaluate the trustworthiness of each
annotator in predicting the correct label. Allowing
human label variation adds a layer of difficulty to
determining whether annotations are valid, since
every combination of labels may be correct. Some
work has used the difference between annotator en-
tropy and model entropy to predict which instances

'The code is available at https://github.com/
ieva-raminta/uncertain-mis-takes

Andreas Vlachos
University of Cambridge
av308@cam.ac.uk

may require more annotations in an active learning
setup (Baumler et al., 2023).

In this work we propose to solve the VariErrNLI
task with Uncertainty Quantification (UQ), specifi-
cally Semantic Entropy (SE) (Farquhar et al., 2024).
This approach expands on the work by Baumler
et al. (2023) by including the semantics of the input
as well as sampled Large Language Model (LLM)-
generated explanations, and applies it to predicting
the soft labels themselves rather than quantifying
additional annotation needs. SE has mostly been
employed to detect hallucinations (Farquhar et al.,
2024), where a prediction with a high SE is inter-
preted as likely to have been hallucinated, given
that the model is uncertain over the semantic space
of the output. This is in line with prior work on UQ,
which focuses on model calibration (Gupta et al.,
2006) and detecting noisy training data (Northcutt
etal., 2021). Stalifinaité et al. (2025) propose to use
uncertainty metrics such as similarity-sensitive en-
tropy (Cheng and Vlachos, 2024) for detecting bias
in machine translation, by leveraging the fact that
uncertainty can also arise from ambiguity (Baan
et al., 2024). Models should be uncertain not only
when they are not apt, but also when the input is
ambiguous, where uncertainty is caused by more
than one output being acceptable.

2 Task Summary

Weber-Genzel et al. (2024) introduced the Natu-
ral Language Inference (NLI)-inspired task Vari-
ErrNLI, which contains both 1) valid annotator
disagreement and 2) annotation errors. The dataset
builds on the ChaosNLI (Nie et al., 2020) dataset,
which is composed of NLI items with soft la-
bels. A subset of ChaosNLI instances is annotated
from scratch in two rounds by Weber-Genzel et al.
(2024), with four annotators providing initial NLI
labels, and then returning to evaluate their own as
well as their peers’ judgments in a second round.
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Annotations that are self-corrected are interpreted
as errors and are not included in the gold label sets.

VariErrNLI is one of the tasks in the LeWiDi
shared task (Leonardelli et al., 2025). In this paper
we discuss a system that solves VariErrNLI with
soft label prediction. That is, for an instance of
VariErrNLI, we predict the acceptance rate of each
label after the second round of annotation. This
creates a multilabel binary classification setup with
soft targets, where the score for each label reflects
the proportion of annotators who accepted it. The
example below illustrates an instance where after
the second round of annotations, half the annota-
tors believe that the entailment label is appropriate,
three quarters of the annotators accept Neutral as
a valid label, and none support the Contradiction
label:

Context: “The next year, he built himself a palace,
Tolani, which can still be toured in Honolulu."
Statement: “Lolani was built in only 1 year."
Labels: Entailment: 0.5, Neutral: 0.75, Contradic-
tion: 0.0

In the shared task, systems are evaluated with
soft labels, measuring how well the predicted label
distribution matches the acceptability ratings of the
different possible interpretations for each instance,
as introduced by Uma et al. (2022). Specifically,
Manhattan distance is used to measure the differ-
ence between the predicted and target distributions,
which has been shown to be particularly reliable
for binary classification (Rizzi et al., 2024).

3 System Overview

[ <Context> + <Statement> }—»
; Text

Encoder

Semantic @

Entropy

<Entailment Explanation>

<Neutral Explanation>

uolesausy
uoneue|dxy
uswirejug

<Contradiction Explanation>

Figure 1: System pipeline: 1. An Explanation Genera-
tion (llama3-8B) model generates explanations for each
combination of <Context>, <Statement>, and one of
Entailment, Neutral, Contradiction labels; 2. Semantic
Entropy is calculated for each set of explanations for
a given instance using an Entailment model (finetuned
bart-large-nli); 3. A Text Encoder (bart-large-nli) is used
to embed the combination of <Context>, <Statement>
and explanations for each label; 4. Soft scores are pre-
dicted from the SE and Text Encoder outputs.

The goal of our system is to be able to quantify
the ambiguity in the NLI instances. We postulate
that if an instance is ambiguous, the explanations
for different labels are likely to not entail one an-
other. For instance, in the example from Section 2,
an explanation for the Entailment label could read
“The context states that he built himself a palace
next year, which means that he finished it within
the year", whereas the Neutral label could be ex-
plained with “He may have started to build the
palace the next year, but we do not know when he
finished it". These explanations do not entail each
other, which is indicative of ambiguity in the in-
stance. In contrast, explanations for an instance
which has only one valid interpretation should only
have explanations which entail one another.

Thus, we build a pipeline that uses SE over the
explanations for different labels, with the goal of
representing the ambiguity of an instance. Pre-
dictive Entropy (PE) for an input x is calculated
by taking the Shannon entropy of the model’s pre-
dicted probability distribution over labels. SE is an
extension of PE, which is calculated by sampling
multiple model outputs, clustering them into sets of
sequences of tokens that express the same meaning,
and measuring the entropy between the clusters
c (Farquhar et al., 2024):

SE(z) =—> P(c|z)logP(c|z) (1)

Clustering is performed in such a way that any
two samples are attributed to the same cluster if and
only if they entail one another. The SE of model
predictions is higher for instances where more than
one interpretation is valid, as more contradictory
generated explanations are likely to appear.

We combine the outputs of SE with an embed-
ding of the input and generated explanations for
each label. Figure 1 illustrates the full pipeline.

4 Experimental Setup
4.1 Models

This section describes the models used in each com-
ponent of the pipeline.

Explanation Generation. First, to generate the
explanations for each NLI label, we use llama3-
8B (Al@Meta, 2024), chosen for its balance of
efficiency and reasoning capabilities. The instruc-
tions for the model are as follows: “You are an NLI
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assistant. Given a statement, context, and a judg-
ment label (Entailment, Neutral, or Contradiction),
explain why the label is appropriate.\n\n <Exam-
ples>\n\n Now consider the following example:\n
Statement: <Statement>\n Context: <Context>\n
Judgment: Contradiction\n Explanation:". <Ex-
amples> contains a 6-shot list of instances with
explanations, two for each label.?

Text Encoder. Second, for embedding the inputs
along with the generated explanations, we use bart-
large-nli (Lewis et al., 2019). bart-large-nli is fine-
tuned on the NLI task, which is highly relevant
to the task we are solving, namely predicting soft
scores for each NLI label.

Entailment. Third, the calculation of Semantic
Entropy over the LLM-generated explanations re-
quires an entailment model for the clustering step.
We use bart-large-nli for this step as well. However,
we further finetune bart-large-nli on the gold ex-
planations in the VariErrNLI dataset. The data pre-
processing for this step is described in Section 4.2.
The LLM-generated explanations in our system
pipeline are clustered by the finetuned bart-large-
nli model to calculate SE.

Semantic Entropy. We follow the implementa-
tion of Semantic Entropy by Farquhar et al. (2024).
We sample 128 generated explanations for all three
NLI labels, cluster them together if and only if
they entail each other, and calculate SE over the
clusters obtained. We calculate seven SE scores,
corresponding to each member of the powerset of
NLI labels: ((Entailment), (Neutral), (Contradic-
tion), (Entailment, Neutral), (Entailment, Contra-
diction), (Neutral, Contradiction), and (Entailment,
Neutral, Contradiction)). This formulation allows
us to isolate the contribution of each label to the
total semantic uncertainty by comparing entropy
values across subsets.

4.2 Data

For training the Text Encoder we use the full
ChaosNLI dataset (Nie et al., 2020) and generate
explanations for each label with an LLM.

For training the Entailment model for clustering
explanations in SE calculation, we use the gold
explanations from VariErrNLI dataset. Each data
point is a set of two explanations from a single
instance. We assume that two explanations have
the Entailment relation if they explain the same

*Please see Appendix A for the full list of examples.

label, and that two explanations have a Neutral re-
lationship if they explain different labels but the
annotators accept each others’ judgments, and fi-
nally that two explanations are Contradictory if the
annotators reject each others’ judgments.

4.3 Configurations

Table 1 presents the different configuration values
that we experiment with. We model the task as
either a classification or regression task. In the
regression setup we directly predict the probability
of a given label being accepted, whereas in the
classification task we either predict one of seven
real values for each label: (0.0, 0.25, 0.33, 0.5, 0.66,
0.75, 1.0) or predict one of 20 combinations of real
values which sum to one: ((0.0, 0.0, 1.0), (0.0, 0.25,
0.75), (0.0, 1.0, 0.0), (0.25, 0.0, 0.75), etc).> The
classes cover the observed soft label distributions.

For the real-valued prediction setup we use either
KL divergence or MSE loss, while for classification
we use Cross Entropy loss, and we also experiment
with a cross label loss function that incorporates
dependencies between labels in multi-label classifi-
cation (Ferreira and Vlachos, 2019).

Hyperparameter Values

classification, multilabel
classification, regression
0.1,0.3,0.5

Cross Entropy, Cross
Label, KL Divergence,

Learning Objective

Dropout
Loss Function

MSE
Learning Rate le-1to le-5
Weight Decay le-2 to le-6
Unfrozen Layers 0,1,2,3
Scheduler step LR, cosine, linear, re-

duce on plateau

SE embedding size 8, 16

fusion layer size 128, 256

feature combination method concatenation, fusion, fu-
sion MLP

Entropy Penalty (3) 0, 0.05, 0.1

Temperature Annealing 1.0,1.5,2.0

Regularise Against Mean (A) 0, 0.05, 0.1

Sum < 1 Penalty (v) 0, 0.05, 0.1

Table 1: Search space for hyperparameter values, regu-
larisation terms, and other model specifications.

We explore several regularisation methods in
order to ensure that the predicted scores do not
diverge from the targets. To begin with, in ini-
tial runs we observed rather similar predictions
for instances where they should differ, and thus

3Please see Appendix B for the full list of the most com-
mon combinations of the binary soft labels.
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experiment with (1) entropy penalty, which encour-
ages the model to generate more diverse outputs
by penalising low entropy (Grandvalet and Bengio,
2004) and (2) temperature annealing (Kirkpatrick
et al., 1983; Hinton et al., 2015). Similarly, with
many scores appearing close to the mean distribu-
tion of the target values, we add a (3) regularisation
against the mean (Szegedy et al., 2016; Pereyra
et al., 2017). Finally, in order to ensure that the
sum of the predicted scores is no lower than one,
we add a (4) penalty to the loss whenever the sum
of the three scores is below one. All the penalties
are applied to the loss, except for the temperature
annealing, which is directly applied to the logits.

N C
»Centropy =p3- Z Dbij log Dij 2
i=1 j—1
exp(zi/T)
P = = 3)
P T el T)
1 N
L‘mean =A NZHPZ—DHQ (4)
=1
N C
Lam = v Zmax(oa 1- Zpij) (%)
i=1 Jj=1

We use three different methods to combine the
text embeddings with SE information. The first one
is straightforward concatenation. The second one
is a fusion model, where both representations are
projected onto the same shape and summed with
weights that are learned during training. The third
one is a fusion Multilayer Perceptron (MLP), where
the representations are first concatenated, followed
by an MLP layer that learns non-linear interactions
between the text and entropy modalities.

5 Results

Our best score on the test set is 0.31 Manhattan dis-
tance (lower is better), which is ranked number one
in the LeWiDi VariErrNLI task (soft evaluation). It
is substantially better than the most frequent base-
line score of 0.59, and is only surpassed by a sys-
tem that reaches 0.23, however the difference is
not statistically significant. The configuration that
led to the best score of our system is described in
Appendix C.

We assess the contribution of each component
of our pipeline by running an ablation study and
excluding one of: the Semantic Entropy features

Best Score by Model

No SE* 0.54
No clustering (PE)* 0.51
No explanations* | | 0.46

o ity | o
of Entailment modelt
Combined (concat) |
Combined (fusion ) | ==
Combined fusion) |
No Text Encoder | ©>*

0.0 0.1 0.2 0.3 0.4 0.5
Manhattan Distance

Figure 2: Ablation study results on the development
set. Statistical significance between each model and the
next best score is marked with * (p < 0.05 for all three
labels), and T (p < 0.05 for at least one of the labels).

altogether, the clustering step for SE, the finetun-
ing of the Entailment model, the complete Text
Encoder output or the generated explanations. The
results on the development set provide us with ad-
ditional insights into the workings of the system
(see Figure 2). We find that the SE component con-
tributes the most to the performance of the model,
as the performance drops from 0.37 to 0.54 in Man-
hattan distance without it. Furthermore, we find
that the generated explanations as well as finetun-
ing of the Entailment model are also instrumental
in our pipeline. In addition, we find that the meth-
ods for incorporating different types of input do
not significantly impact the outcomes. We further
discover that the best result on the development set
is achieved by completely excluding Text Encod-
ing features. However, this SE-only model does
not yield the best score on the test set, which we
interpret as an indication that the model overfits.

6 Conclusion

This work presents an approach to soft label NLI,
which proves to yield competitive results. The ab-
lation study shows that SE is the most important
module of the system, highlighting its versatility
beyond hallucination detection and signal for fur-
ther annotation needs. In future work this approach
could be more specifically applied to detecting an-
notation errors by learning the different Semantic
Entropy patterns associated with annotations that
are incompatible with valid interpretations. The
proposed method can further be applied to other
tasks that include generation and ambiguity.
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Limitations

The main limitation of this study is the require-
ment of an LLM for the explanation generation
step. First, generating multiple explanations and
calculating SE involves sampling and clustering
steps that are computationally expensive, which
may limit scalability or real-time applicability in
practical settings. Second, our method relies on the
quality of the explanations generated by the LLMs
or alternatively on human generated explanations,
which is labour-intensive.
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A Examples for 6-shot Setup

The following is a list of six examples, two for each
label, and their corresponding explanations:

"Statement: Everything can be found inside a
shopping mall." "Context: Enter the realm of shop-
ping malls, where everything you’'re looking for
is available without moving your car.”" "Judgment:
Entailment" "Explanation: The context implies that
the shopping mall has everything one might look
for, as it can be found without moving your car.”

"Statement: The matter of whether or not the
Mass is a sacrifice for the remission of sins is con-
troversial." "Context: As for the divisive issue of
whether the Mass is a sacrifice for the remission
of sins, the statement affirms that Christ’s death
upon the cross ..." "Judgment: Entailment"” "Expla-
nation: The context states that the Mass being a
sacrifice for the remission of sins is divisive, which
can be interpreted as a synonym for controversial.”

"Statement: Most rock concerts take place in the
Sultan’s Pool amphitheatre.” "Context: In the sum-
mer, the Sultan’s Pool, a vast outdoor amphitheatre,
stages rock concerts or other big-name events."
"Judgment: Neutral" "Explanation: The context
does not specify whether it is most or only some
rock concerts that are staged in the Sultan’s Pool."

"Statement: This information was developed
thanks to extra federal funding." "Context: Addi-
tional information is provided to help managers
incorporate the standards into their daily opera-
tions." "Judgment: Neutral" "Explanation: The
context does not indicate where the information
came from, which may or may not be federal fund-
ing."”

"Statement: He had recently seen pictures de-
picting those things." "Context: He hadn’t seen
even pictures of such things since the few silent
movies run in some of the little art theaters." "Judg-
ment: Contradiction" "Explanation: If the pronoun
"he’ and the object 'those things’ refer to the same
things in the statement and the context, then the
statement negates the context. "

"Statement: Octavius Decatur Gass refers to
four people. " "Context: One opportunist who
stayed was Octavius Decatur Gass. " "Judgment:
Contradiction” "Explanation: The context names
one person as Octavius Decatur Gass, and does

"

not mention additional referrents.

B Score Combinations

Table 2 presents the most common combinations
of binary soft labels.
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Combination Count

((1.0,0.0),(1.0,0.0),(0.0,1.9)) 30
((1.0,0.0),(0.75,0.25),(0.25,0.75)) 40
((1.0,0.0),(0.0,1.0),(1.0,0.0)) 36
((0.75,0.25),(1.0,0.0),(0.25,0.75)) 33
((1.0,0.0),(0.5,0.5),(0.5,0.5)) 32
((0.0,1.0),(1.0,0.0),(1.0,0.0)) 26
((0.5,0.5),(1.0,0.0),(0.5,0.5)) 24
((1.0,0.0),(0.25,0.75),(0.75,0.25)) 17
((0.25,0.75),(1.0,0.0),(0.75,0.25)) 15
((1.0,0.0),(0.33,0.67),(0.67,0.33)) 12
((0.75,0.25),(0.75,0.25),(0.5,0.5)) 10

((0.67,0.33),(1.0,0.0),(0.33,0.67))
((0.75,0.25),(0.25,0.75),(1.0,0.0))
((1.0,0.0),(0.67,0.33),(0.33,0.67))
((0.75,0.25),(0.5,0.5),(0.75,0.25))
((0.5,0.5),(0.75,0.25),(0.75,0.25))
((0.25,0.75),(0.75,0.25),(1.0,0.0))
((0.5,0.5),(0.5,0.5),(1.0,0.0))

((0.33,0.67),(1.0,0.0),(0.67,0.33))
((0.33,0.67),(0.67,0.33),(1.0,0.0))

NDWULUnANN I

Table 2: Frequency of label distribution combinations

C Best Configuration

The best performing variant of our system had the
following configuration: a multilabel classification
task with seven classes for each label, cross-label
loss, embedding dimension of 16 for the entropy
module, using fusion MLP to combine the text and
entropy features in a layer of size 256, dropout of
0.1, learning rate of le-5, weight decay of le-0,
step LR scheduler, all embedding layers frozen,
no regularisation against mean penalty, entropy
penalty (3 = 0.05), no temperature annealing, no
sum < 1 penalty.

262



Author Index

Abedin, Zain Ul, 15
Abercrombie, Gavin, 63
Abeynayake, N. R., 87, 242
Alber, Helen, 75

Anselma, Luca, 27
Arsenteva, Iuliia, 142
AfBenmacher, Matthias, 75

Balestrucci, Pier Felice, 27
Basile, Valerio, 27, 133, 182
Bischl, Bernd, 75

Bosco, Cristina, 27

Braun, Daniel, 219

Casola, Silvia, 182

Cercas Curry, Amanda, 63
Chew, Rob, 100
Chierchiello, Elisa, 27
Choi, Yejin, 228

Cimiano, Philipp, 47

Cui, Xia, 87, 242

Dal Bianco, Guilherme, 133
Dang, Anh, 171

Di Palma, Eliana, 27
Dinkar, Tanvi, 63

Dorr, Bonnie J., 37

Dubois, Caroline, 142

Eckman, Stephanie, 100

Fersini, Elisabetta, 182
Fleisig, Eve, 47
Flek, Lucie, 15
Frassinelli, Diego, 182

Goldzycher, Janis, 1
Gongalves, Marcos André, 133
Gruber, Cornelia, 75

Hanbury, Allan, 1

Homan, Christopher M., 196, 208
Hovy, Dirk, 63

Huang, Ziyi, 87, 242

Ignatev, Daniil, 111, 171

Jaitly, Navdeep, 123

Jang, Hyewon, 182
Javadi, Vahid Sadiri, 15
Jayaweera, Chathuri, 37
Jesus, Samuel B., 133
Junior, Wanderlei, 133

Kauermann, Goran, 75
Kern, Christoph, 100
Klein, Dan, 47
Kreuter, Frauke, 100

Le Goff, Philippe, 142
Leonardelli, Elisa, 182
Li, Nan, 171

Ma, Bolei, 100
Mazzei, Alessandro, 27

Neidhardt, Julia, 1
Nguyen, Nguyen Huu Dang, 249

Oliverio, Michael, 27
Orlikowski, Matthias, 47

Pachinger, Pia, 1

Pandita, Deepak, 196, 208
Paperno, Denis, 111

Patti, Viviana, 27

Pavlovic, Maja, 182

Peng, Siyao, 153, 182

Planitzer, Anna M., 1

Plank, Barbara, 75, 100, 153, 182
Plantin, Sylvie, 142

Poesio, Massimo, 111, 182

Rieser, Verena, 63
Rizzi, Giulia, 182
Ruiz, Tomas, 153

Sarumi, Olufunke O., 219
Sawkar, Mandira, 196, 208
Schwemmer, Carsten, 153
Shetty, Samay U., 196, 208
Sorensen, Taylor, 228
Stalitinaité, Ieva Raminta, 256

Tanguy, Ludovic, 142
Thin, Dang Van, 249



Vlachos, Andreas, 256 Yaschuk, Shane Kaszefski, 171
Weerasooriya, Tharindu Cyril, 196, 208 Zhang, Yizhe, 123

Welch, Charles, 219
Wong, Hugh Mee, 171

264



	Title page
	Sponsors
	Copyright
	Introduction
	Organizing Committee
	Program Committee
	Keynote Talk: Cultural Awareness in Multilingual Language Models - A Perspectivist Personal Perspective
	Table of Contents
	A Disaggregated Dataset on English Offensiveness Containing Spans
	CINEMETRIC: A Framework for Multi-Perspective Evaluation of Conversational Agents using Human-AI Collaboration
	Towards a Perspectivist Understanding of Irony through Rhetorical Figures
	From Disagreement to Understanding: The Case for Ambiguity Detection in NLI
	Balancing Quality and Variation: Spam Filtering Distorts Data Label Distributions
	Consistency is Key: Disentangling Label Variation in Natural Language Processing with Intra-Annotator Agreement
	Revisiting Active Learning under (Human) Label Variation
	Weak Ensemble Learning from Multiple Annotators for Subjective Text Classification
	Aligning NLP Models with Target Population Perspectives using PAIR: Population-Aligned Instance Replication
	Hypernetworks for Perspectivist Adaptation
	SAGE: Steering Dialog Generation with Future-Aware State-Action Augmentation
	Calibration as a Proxy for Fairness and Efficiency in a Perspectivist Ensemble Approach to Irony Detection
	Non-directive corpus annotation to reveal individual perspectives with underspecified guidelines: the case of mental workload
	BoN Appetit Team at LeWiDi-2025: Best-of-N Test-time Scaling Can Not Stomach Annotation Disagreements (Yet)
	DeMeVa at LeWiDi-2025: Modeling Perspectives with In-Context Learning and Label Distribution Learning
	LeWiDi-2025 at NLPerspectives: The Third Edition of the Learning with Disagreements Shared Task
	LPI-RIT at LeWiDi-2025: Improving Distributional Predictions via Metadata and Loss Reweighting with DisCo
	McMaster at LeWiDi-2025: Demographic-Aware RoBERTa
	NLP-ResTeam at LeWiDi-2025:Performance Shifts in Perspective Aware Models based on Evaluation Metrics
	Opt-ICL at LeWiDi-2025: Maximizing In-Context Signal from Rater Examples via Meta-Learning
	PromotionGo at LeWiDi-2025: Enhancing Multilingual Irony Detection with Data-Augmented Ensembles and L1 Loss
	twinhter at LeWiDi-2025: Integrating Annotator Perspectives into BERT for Learning with Disagreements
	Uncertain (Mis)Takes at LeWiDi-2025: Modeling Human Label Variation With Semantic Entropy

