@inproceedings{ronningstad-etal-2025-mixed,
title = "Mixed Feelings: {Cross-Domain} Sentiment Classification of Patient Feedback",
author = "R{\o}nningstad, Egil and
Storset, Lilja Charlotte and
M{\ae}hlum, Petter and
{\O}vrelid, Lilja and
Velldal, Erik",
editor = "Johansson, Richard and
Stymne, Sara",
booktitle = "Proceedings of the Joint 25th Nordic Conference on Computational Linguistics and 11th Baltic Conference on Human Language Technologies (NoDaLiDa/Baltic-HLT 2025)",
month = mar,
year = "2025",
address = "Tallinn, Estonia",
publisher = "University of Tartu Library",
url = "https://aclanthology.org/2025.nodalida-1.58/",
pages = "537--543",
ISBN = "978-9908-53-109-0",
abstract = "Sentiment analysis of patient feedback from the public health domain can aid decision makers in evaluating the provided services. The current paper focuses on free-text comments in patient surveys about general practitioners and psychiatric healthcare, annotated with four sentence-level polarity classes - positive, negative, mixed and neutral - while also attempting to alleviate data scarcity by leveraging general-domain sources in the form of reviews. For several different architectures, we compare in-domain and out-of-domain effects, as well as the effects of training joint multi-domain models."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="ronningstad-etal-2025-mixed">
<titleInfo>
<title>Mixed Feelings: Cross-Domain Sentiment Classification of Patient Feedback</title>
</titleInfo>
<name type="personal">
<namePart type="given">Egil</namePart>
<namePart type="family">Rønningstad</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lilja</namePart>
<namePart type="given">Charlotte</namePart>
<namePart type="family">Storset</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Petter</namePart>
<namePart type="family">Mæhlum</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lilja</namePart>
<namePart type="family">Øvrelid</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Erik</namePart>
<namePart type="family">Velldal</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-03</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Joint 25th Nordic Conference on Computational Linguistics and 11th Baltic Conference on Human Language Technologies (NoDaLiDa/Baltic-HLT 2025)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Richard</namePart>
<namePart type="family">Johansson</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sara</namePart>
<namePart type="family">Stymne</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>University of Tartu Library</publisher>
<place>
<placeTerm type="text">Tallinn, Estonia</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">978-9908-53-109-0</identifier>
</relatedItem>
<abstract>Sentiment analysis of patient feedback from the public health domain can aid decision makers in evaluating the provided services. The current paper focuses on free-text comments in patient surveys about general practitioners and psychiatric healthcare, annotated with four sentence-level polarity classes - positive, negative, mixed and neutral - while also attempting to alleviate data scarcity by leveraging general-domain sources in the form of reviews. For several different architectures, we compare in-domain and out-of-domain effects, as well as the effects of training joint multi-domain models.</abstract>
<identifier type="citekey">ronningstad-etal-2025-mixed</identifier>
<location>
<url>https://aclanthology.org/2025.nodalida-1.58/</url>
</location>
<part>
<date>2025-03</date>
<extent unit="page">
<start>537</start>
<end>543</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Mixed Feelings: Cross-Domain Sentiment Classification of Patient Feedback
%A Rønningstad, Egil
%A Storset, Lilja Charlotte
%A Mæhlum, Petter
%A Øvrelid, Lilja
%A Velldal, Erik
%Y Johansson, Richard
%Y Stymne, Sara
%S Proceedings of the Joint 25th Nordic Conference on Computational Linguistics and 11th Baltic Conference on Human Language Technologies (NoDaLiDa/Baltic-HLT 2025)
%D 2025
%8 March
%I University of Tartu Library
%C Tallinn, Estonia
%@ 978-9908-53-109-0
%F ronningstad-etal-2025-mixed
%X Sentiment analysis of patient feedback from the public health domain can aid decision makers in evaluating the provided services. The current paper focuses on free-text comments in patient surveys about general practitioners and psychiatric healthcare, annotated with four sentence-level polarity classes - positive, negative, mixed and neutral - while also attempting to alleviate data scarcity by leveraging general-domain sources in the form of reviews. For several different architectures, we compare in-domain and out-of-domain effects, as well as the effects of training joint multi-domain models.
%U https://aclanthology.org/2025.nodalida-1.58/
%P 537-543
Markdown (Informal)
[Mixed Feelings: Cross-Domain Sentiment Classification of Patient Feedback](https://aclanthology.org/2025.nodalida-1.58/) (Rønningstad et al., NoDaLiDa 2025)
ACL
- Egil Rønningstad, Lilja Charlotte Storset, Petter Mæhlum, Lilja Øvrelid, and Erik Velldal. 2025. Mixed Feelings: Cross-Domain Sentiment Classification of Patient Feedback. In Proceedings of the Joint 25th Nordic Conference on Computational Linguistics and 11th Baltic Conference on Human Language Technologies (NoDaLiDa/Baltic-HLT 2025), pages 537–543, Tallinn, Estonia. University of Tartu Library.