@inproceedings{lonke-etal-2025-anthroset,
title = "{A}nthro{S}et: a Challenge Dataset for Anthropomorphic Language Detection",
author = "Lonke, Dorielle and
Bloem, Jelke and
Sommerauer, Pia",
editor = "Przyby{\l}a, Piotr and
Shardlow, Matthew and
Colombatto, Clara and
Inie, Nanna",
booktitle = "Proceedings of Interdisciplinary Workshop on Observations of Misunderstood, Misguided and Malicious Use of Language Models",
month = sep,
year = "2025",
address = "Varna, Bulgaria",
publisher = "INCOMA Ltd., Shoumen, Bulgaria",
url = "https://aclanthology.org/2025.ommm-1.3/",
pages = "27--39",
abstract = "This paper addresses the challenge of detecting anthropomorphic language in AI research. We introduce AnthroSet, a novel dataset of 600 manually annotated utterances covering various linguistic structures. Through the evaluation of two current approaches for anthropomorphism and atypical animacy detection, we highlight the limitations of a masked language model approach, arising from masking constraints as well as increasingly anthropomorphizing AI-related terminology. Our findings underscore the need for more targeted methods and a robust definition of anthropomorphism."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="lonke-etal-2025-anthroset">
<titleInfo>
<title>AnthroSet: a Challenge Dataset for Anthropomorphic Language Detection</title>
</titleInfo>
<name type="personal">
<namePart type="given">Dorielle</namePart>
<namePart type="family">Lonke</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jelke</namePart>
<namePart type="family">Bloem</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Pia</namePart>
<namePart type="family">Sommerauer</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-09</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of Interdisciplinary Workshop on Observations of Misunderstood, Misguided and Malicious Use of Language Models</title>
</titleInfo>
<name type="personal">
<namePart type="given">Piotr</namePart>
<namePart type="family">Przybyła</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Matthew</namePart>
<namePart type="family">Shardlow</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Clara</namePart>
<namePart type="family">Colombatto</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nanna</namePart>
<namePart type="family">Inie</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>INCOMA Ltd., Shoumen, Bulgaria</publisher>
<place>
<placeTerm type="text">Varna, Bulgaria</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>This paper addresses the challenge of detecting anthropomorphic language in AI research. We introduce AnthroSet, a novel dataset of 600 manually annotated utterances covering various linguistic structures. Through the evaluation of two current approaches for anthropomorphism and atypical animacy detection, we highlight the limitations of a masked language model approach, arising from masking constraints as well as increasingly anthropomorphizing AI-related terminology. Our findings underscore the need for more targeted methods and a robust definition of anthropomorphism.</abstract>
<identifier type="citekey">lonke-etal-2025-anthroset</identifier>
<location>
<url>https://aclanthology.org/2025.ommm-1.3/</url>
</location>
<part>
<date>2025-09</date>
<extent unit="page">
<start>27</start>
<end>39</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T AnthroSet: a Challenge Dataset for Anthropomorphic Language Detection
%A Lonke, Dorielle
%A Bloem, Jelke
%A Sommerauer, Pia
%Y Przybyła, Piotr
%Y Shardlow, Matthew
%Y Colombatto, Clara
%Y Inie, Nanna
%S Proceedings of Interdisciplinary Workshop on Observations of Misunderstood, Misguided and Malicious Use of Language Models
%D 2025
%8 September
%I INCOMA Ltd., Shoumen, Bulgaria
%C Varna, Bulgaria
%F lonke-etal-2025-anthroset
%X This paper addresses the challenge of detecting anthropomorphic language in AI research. We introduce AnthroSet, a novel dataset of 600 manually annotated utterances covering various linguistic structures. Through the evaluation of two current approaches for anthropomorphism and atypical animacy detection, we highlight the limitations of a masked language model approach, arising from masking constraints as well as increasingly anthropomorphizing AI-related terminology. Our findings underscore the need for more targeted methods and a robust definition of anthropomorphism.
%U https://aclanthology.org/2025.ommm-1.3/
%P 27-39
Markdown (Informal)
[AnthroSet: a Challenge Dataset for Anthropomorphic Language Detection](https://aclanthology.org/2025.ommm-1.3/) (Lonke et al., OMMM 2025)
ACL