@inproceedings{baroud-etal-2025-beyond,
title = "Beyond De-Identification: A Structured Approach for Defining and Detecting Indirect Identifiers in Medical Texts",
author = {Baroud, Ibrahim and
Raithel, Lisa and
M{\"o}ller, Sebastian and
Roller, Roland},
editor = "Habernal, Ivan and
Ghanavati, Sepideh and
Jain, Vijayanta and
Igamberdiev, Timour and
Wilson, Shomir",
booktitle = "Proceedings of the Sixth Workshop on Privacy in Natural Language Processing",
month = apr,
year = "2025",
address = "Albuquerque, New Mexico",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.privatenlp-main.7/",
doi = "10.18653/v1/2025.privatenlp-main.7",
pages = "75--85",
ISBN = "979-8-89176-246-6",
abstract = "Sharing sensitive texts for scientific purposes requires appropriate techniques to protect the privacy of patients and healthcare personnel. Anonymizing textual data is particularly challenging due to the presence of diverse unstructured direct and indirect identifiers. To mitigate the risk of re-identification, this work introduces a schema of nine categories of indirect identifiers designed to account for different potential adversaries, including acquaintances, family members and medical staff. Using this schema, we annotate 100 MIMIC-III discharge summaries and propose baseline models for identifying indirect identifiers. We will release the annotation guidelines, annotation spans (6,199 annotations in total) and the corresponding MIMIC-III document IDs to support further research in this area."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="baroud-etal-2025-beyond">
<titleInfo>
<title>Beyond De-Identification: A Structured Approach for Defining and Detecting Indirect Identifiers in Medical Texts</title>
</titleInfo>
<name type="personal">
<namePart type="given">Ibrahim</namePart>
<namePart type="family">Baroud</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lisa</namePart>
<namePart type="family">Raithel</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sebastian</namePart>
<namePart type="family">Möller</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Roland</namePart>
<namePart type="family">Roller</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-04</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Sixth Workshop on Privacy in Natural Language Processing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Ivan</namePart>
<namePart type="family">Habernal</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sepideh</namePart>
<namePart type="family">Ghanavati</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Vijayanta</namePart>
<namePart type="family">Jain</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Timour</namePart>
<namePart type="family">Igamberdiev</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Shomir</namePart>
<namePart type="family">Wilson</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Albuquerque, New Mexico</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-246-6</identifier>
</relatedItem>
<abstract>Sharing sensitive texts for scientific purposes requires appropriate techniques to protect the privacy of patients and healthcare personnel. Anonymizing textual data is particularly challenging due to the presence of diverse unstructured direct and indirect identifiers. To mitigate the risk of re-identification, this work introduces a schema of nine categories of indirect identifiers designed to account for different potential adversaries, including acquaintances, family members and medical staff. Using this schema, we annotate 100 MIMIC-III discharge summaries and propose baseline models for identifying indirect identifiers. We will release the annotation guidelines, annotation spans (6,199 annotations in total) and the corresponding MIMIC-III document IDs to support further research in this area.</abstract>
<identifier type="citekey">baroud-etal-2025-beyond</identifier>
<identifier type="doi">10.18653/v1/2025.privatenlp-main.7</identifier>
<location>
<url>https://aclanthology.org/2025.privatenlp-main.7/</url>
</location>
<part>
<date>2025-04</date>
<extent unit="page">
<start>75</start>
<end>85</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Beyond De-Identification: A Structured Approach for Defining and Detecting Indirect Identifiers in Medical Texts
%A Baroud, Ibrahim
%A Raithel, Lisa
%A Möller, Sebastian
%A Roller, Roland
%Y Habernal, Ivan
%Y Ghanavati, Sepideh
%Y Jain, Vijayanta
%Y Igamberdiev, Timour
%Y Wilson, Shomir
%S Proceedings of the Sixth Workshop on Privacy in Natural Language Processing
%D 2025
%8 April
%I Association for Computational Linguistics
%C Albuquerque, New Mexico
%@ 979-8-89176-246-6
%F baroud-etal-2025-beyond
%X Sharing sensitive texts for scientific purposes requires appropriate techniques to protect the privacy of patients and healthcare personnel. Anonymizing textual data is particularly challenging due to the presence of diverse unstructured direct and indirect identifiers. To mitigate the risk of re-identification, this work introduces a schema of nine categories of indirect identifiers designed to account for different potential adversaries, including acquaintances, family members and medical staff. Using this schema, we annotate 100 MIMIC-III discharge summaries and propose baseline models for identifying indirect identifiers. We will release the annotation guidelines, annotation spans (6,199 annotations in total) and the corresponding MIMIC-III document IDs to support further research in this area.
%R 10.18653/v1/2025.privatenlp-main.7
%U https://aclanthology.org/2025.privatenlp-main.7/
%U https://doi.org/10.18653/v1/2025.privatenlp-main.7
%P 75-85
Markdown (Informal)
[Beyond De-Identification: A Structured Approach for Defining and Detecting Indirect Identifiers in Medical Texts](https://aclanthology.org/2025.privatenlp-main.7/) (Baroud et al., PrivateNLP 2025)
ACL