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Message from the Organising Committee

The workshop on Patent and Scientific Literature Translation (PSLT) focuses on the translation of patent
documents and any kind of technical and scientific literature. This workshop series began in 2005 at the
tenth Machine Translation Summit, and we are delighted to have the eleventh edition of the workshop in
Geneva, Switzerland at the twentieth Machine Translation Summit.

Machine translation technologies have advanced drastically in this decade through deep learning techni-
ques. We are now at a turning point from Neural Machine Translation with the encoder-decoder fra-
mework to Large Language Model-based Translation with the decoder-only architecture. This transition
is not limited to translation; we can use Large Language Models to assist writing and to proofread techni-
cal and scientific literature. In the PSLT workshop this year, we will discuss our future of the translation
of technical and scientific documents and the multilingual dissemination of novel technical achievements
and scientific findings beyond the language barrier.

This workshop features two keynote talks by Ryota Murakami (Japan Patent Office; JPO) and Bruno
Pouliquen (World Intellectual Property Organization; WIPO). Mr. Murakami will present JPO’s activi-
ties for their patent information platform. Mr. Pouliquen will present WIPO Translate and their activities
in the intellectual property field. The workshop also accepted two technical papers about scientific lite-
rature translation. We hope we can share ideas and insights related to the focus of this workshop.

We express our sincere appreciation to the keynote speakers and the paper authors as well as the program
committee members and the organizing committee members of the MT Summit 2025. We also apprecia-
te the help of AAMT/Japio Special Interest Group on Patent Translation for organizing this workshop.
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Takashi Tsunakawa
Isao Goto
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Keynote Talk
Initiatives Related to Machine Translation at the Japan
Patent Office

Ryota Murakami
Japan Patent Office

Abstract: The Japan Patent Office (JPO) provides IT services to users for accessing patent information,
and through the J-PlatPat platform, English machine translation is offered, which is publicly accessible
to both domestic and international users. Recently, J-PlatPat has been updated to improve functiona-
lity for users, enhancing various features. Additionally, the JPO is creating bilingual dictionaries and
parallel corpora for higher-priority languages to expand machine translation capabilities. They are also
conducting research on the effectiveness of improving translation quality through training the machine
translation engine, and the research reports are publicly available. In this presentation, he will discuss
the updates to J-PlatPat, report on the results of the research project related to machine translation, and
outline the initiatives regarding machine translation of patent information at the JPO.



Keynote Talk
Advancing Patent and Scientific Literature Translation:
WIPO Translate and other tools available at WIPO

Bruno Pouilquen
World Intellectual Property Organization

Abstract: In this presentation, Mr. Bruno Pouliquen from the World Intellectual Property Organiza-
tion (WIPO) will discuss the advancements in patent and scientific literature translation, with a focus on
WIPO’s in-house tool: WIPO Translate. This is specifically trained for patents and is fully integrated
in WIPO search engine Patentscope, it currently covers 17 languages and is also used for non-patent
literature (NPL) translation. The presentation will delve into the development and application of WI-
PO Translate, highlighting its role in improving accessibility and understanding of intellectual property
across linguistic barriers. In addition, Mr. Pouliquen will present automatic classification using the In-
ternational Patent Classification (IPC) system, also used to classify NPL documents. He will also share
insights on WIPO’s experiments with image similarity, speech-processing and Large Language Models
(LLMs) in the intellectual property field.
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Abstract

This study investigates the translation per-
formance of two recent large language
models—ChatGPT-40 and DeepSeek-V3—in
translating English academic papers on lan-
guage, culture, and literature into Chinese at
the discourse level. Using a corpus of 11 aca-
demic texts totaling 3,498 sentences, we evalu-
ated translation quality through reference-free
automatic metrics (COMET-KIWI), lexical di-
versity indicators, and syntactic complexity
measures. Our findings reveal an interesting
contrast: while DeepSeek-V3 achieves higher
overall quality scores, GPT-40 produces transla-
tions with consistently greater lexical richness
(higher type-token ratio, standardized TTR, av-
erage sentence length, and word entropy) and
syntactic complexity across all five measured
metrics, such as Incomplete Dependency The-
ory Metric (IDT), Dependency Locality The-
ory Metric (DLT), Combined IDT+DLT Met-
ric IDT+DLT), Left-Embeddedness (LE), and
Nested Nouns Distance (NND). Particularly
notable are GPT-40’s higher scores in Left-
Embeddedness and Nested Nouns Distance
metrics, which are specifically relevant to Chi-
nese linguistic patterns. The divergence be-
tween automatic quality estimation and lin-
guistic complexity metrics highlights the mul-
tifaceted nature of machine translation quality
assessment.

1 Introduction

Quality estimation (QE) of machine translation
(MT) products has long been a key area of inter-
est to both MT developers and translation schol-
ars. A wide range of QE methods have been de-
veloped to provide information on improving and
selecting MT systems. At the same time, specific
features in machine-involved translation products,

© 2025 The authors. This article is licensed under a Creative
Commons 4.0 licence, no derivative works, attribution, CC-
BY-ND.
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such as high levels of semantic and syntactic liter-
ality and unidiomatic target language expressions,
have also attracted great research interest, offer-
ing implications for further understanding of MT
systems and the design of more reliable and valid
QE methods. For statistical and neural machine
translation (NMT) systems, MT outputs tend to
be easily influenced by source text structure, ex-
hibiting a stronger structural shining-through ef-
fect, lower level of target-text normalization and
reduced linguistic richness when compared to from-
scratch human translation products (Bizzoni et al.,
2020; Vanmassenhove et al., 2021). Those features,
referred to as "machine translationese", will fur-
ther bring an effect on downstream post-editors,
leading to "post-editese" — features distinguishing
post-editing products from from-scratch transla-
tion products, including lexical simplification and
more salient syntactic influence from the source
text (Toral, 2019).

The performance of large language models
(LLMs) applied to translation tasks has been proven
promising. LLLMs outperformed commercial NMT
models in various language pairs when it comes
to document-level translation (Kocmi et al., 2024;
Wang et al., 2023). Wang et al. (2023) found that
the strength of GPT-powered translation is more
salient when it comes to human evaluation, possi-
bly due to its advantage in contextual coherence
and naturalness of the target language. The better
ability of context awareness in GPT-powered trans-
lation over NMT systems is proved by Castilho
et al. (2023), who found the advantage in all tested
language pairs except a low-resource pair (English-
Irish). LLM-powered translation is also found to be
less literal compared to NMT systems when trans-
lating out of English (Raunak et al., 2023), showing
its potential in tackling issues of machine transla-
tionese. However, a comparison of translation error
types between ChatGPT and NMT systems found
more frequent over-translation and mistranslation
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errors in GPT-powered translation, suggesting the
problem of hallucinations in LLM-powered trans-
lation (Jiao et al., 2023).

Despite the research effort in investigating LLM-
powered translations, previous studies mostly fol-
lowed quality assessment methods used in assess-
ing MT outputs, either on a sentence level or on
a document level of a short length. Such a short
evaluation unit might prevent us from exploring
linguistic issues that will probably bring negative
effects to the users in real-life translation settings,
for example, cohesion and coherence issues. This
concern is particularly significant in the transla-
tion of academic papers, as these texts are typically
lengthy, feature complex syntactic structures, and
demand high accuracy in terminology. Rendering
academic papers on topics such as language, cul-
ture and literature is even more challenging. These
papers are often rich in cultural-loaded expressions,
wordplays, and quotations of literary works, mak-
ing them complex combinations of technical and
creative texts. Therefore, translating such papers
requires a high level of accuracy and creativity.

Previous research highlights that translators of-
ten face challenges in maintaining consistency,
choosing precise terminology, and adapting to
evolving technical language (Al-Smadi, 2022).
Moreover, the complexity of subject matter and
the need for adherence to proper academic style
make the translation process time-consuming and
meticulous (Paperpal, 2023). Ensuring high-quality
translations requires not only linguistic proficiency
but also careful proofreading and a deep under-
standing of the field’s specialized knowledge. If
LLMs can be effectively tested and proven capable
of handling these challenges, they could signifi-
cantly assist professional translators and streamline
the translation process by improving consistency,
reducing repetitive manual corrections, and assist-
ing with complex syntactic structures.

Therefore, there is a pressing need to explore
both LLM-powered MT capabilities and corre-
sponding QE methods at the discourse level. This
dual focus would not only advance the develop-
ment of more sophisticated translation technologies
but also ensure reliable quality assessment meth-
ods that can effectively evaluate long-form trans-
lations, considering factors such as terminology
consistency, cross-reference accuracy, and overall
document coherence.

The present paper reports a study on the perfor-
mance of LLM-powered MT products under the

context of academic translation. Our focus is on
comparing the performance of two non-reasoning
models, namely, ChatGPT-40 and Deepseek-V3,
in English-Chinese translation. Deepseek-V3 is
a free-access model recently released in Decem-
ber 2024. Although user feedback on the use of
Deekseek in translation tasks is generally positive,
experts in the language industry remain skeptical
of its translation capability, pointing out that it did
not outperform other mainstream LLMs in some
language pairs and domain-specific use cases (Sla-
tor, 2024). This calls for a systematic evaluation
of Deepseek-powered translation products before
reaching a solid conclusion on its translation per-
formance. The significance of this study lies in its
examination of Deepseek’s translation capabilities
since its recent launch. The investigation comes at
a critical moment in the way that machine transla-
tion increasingly handles complex document-level
tasks. This research addresses two notable gaps in
the current literature: First, it provides early em-
pirical evidence of Deepseek’s translation perfor-
mance, contributing to our understanding of emerg-
ing large language models; second, it offers a sys-
tematic comparison with ChatGPT at the discourse
level, moving beyond the more common sentence-
level evaluations. This comprehensive analysis at
the discourse level is particularly valuable as it
better reflects real-world translation scenarios and
reveals how these models handle broader context
and maintain consistency across longer texts.

2 Methodology

11 English open-access research papers published
in linguistic journals were selected as source texts
(STs) in this study. To facilitate the evaluation
process and ensure consistent comparison across
models, their titles, sub-titles, tables, figures, notes,
bibliography, acknowledgments, and appendices
were removed. This preprocessing step was neces-
sary to focus our analysis on the continuous prose
sections that form the core content of academic
papers, eliminating structural elements that might
be handled differently by LLM systems and poten-
tially skewing the comparative results.

The STs totaled 3,498 sentences (93,865 to-
kens), covering a range of topics including lan-
guage, culture, and literature. Examples appeared
in some articles that involve languages other than
English (1,044 tokens) were removed when calcu-
lating readability indices. Profiling of the STs is



reported in Table 1, in which the Flesch Reading
Ease score (RDFRE), the Flesch-Kincaid Grade
Level (RDFKGL), and the Coh-Metrix L2 Read-
ability (RDL2), as indicators of text complexity,
were calculated by the Coh-Metrix software (Mc-
Namara et al., 2014). Flesch Reading Ease score
(RDFRE) measures the readability of a text based
primarily on sentence length and word length (syl-
lable count). Lower RDFRE scores indicate more
complex text, while higher scores indicate more
easy-to-read text. In our data, ST1 has the low-
est RDFRE (18.206) and is described as the most
complex.

Flesch-Kincaid Grade Level (RDFKGL) esti-
mates the US school grade level required to under-
stand the text. Higher scores indicate that more ad-
vanced education is needed to comprehend the text.
For example, a score of 12 suggests a high school
senior level, while 16+ suggests college graduate
level. In our data, ST9 has the highest RDFKGL
(18.157), suggesting it requires post-graduate level
education to comprehend.

Coh-Metrix L2 Readability (RDL2) is specifi-
cally designed to assess text difficulty for second
language learners. It incorporates additional lin-
guistic features beyond sentence and word length,
including cohesion, syntactic complexity, and lexi-
cal diversity. Lower RDL2 scores indicate text that
would be more challenging for non-native speakers.
In our dataset, ST11 has the lowest RDL2 (7.161),
suggesting it would be particularly difficult for sec-
ond language readers.

Overall, the readability scores indicate that the
STs generally fall within the reading proficiency of
college to graduate students who are native English
speakers and are relatively difficult to comprehend
by L2 English speakers (Flesch, 1979).

The STs were translated by ChatGPT-40 and
Deepseek-V3 with the same prompt: "You are
a professional translator working with academic
texts. Translate this from English to Chinese:
ST". We chose the models for two reasons. First,
they are likely to be accepted by users in need
of English-Chinese machine translation. In a re-
cent survey among Chinese professional transla-
tors, 75.5% respondents reported use of ChatGPT
as translation aid (Shi et al., 2024). Deepseek-V3
is reported to achieve “performance comparable to
leading closed-source models, including ChatGPT-
40 and Claude-3.5-Sonnet, on a series of standard
and open-ended benchmark™ and “surpasses these
models in Chinese factual knowledge” (Liu et al.,

2024), showing its potential in conducting English-
to-Chinese translation tasks.

Second, they can generate the entire target text
more effectively than newer reasoning models. In
our pilot study, we tested the state-of-the-art reason-
ing model Deepseek-R1, released on January 20th.
We observed that the R1 model tended to omit parts
of sentences or entire sentences to a large extent
in its translations. As shown in Table 2, with the
same set of STs, the total target tokens generated
by DeepSeek-R1 amount to only 59.87% of the
mean total target tokens generated by ChatGPT-40
and DeepSeek-V3. The inclination of reasoning-
capable language models to omit sentences and
introduce creative elements during translation may
arise from a fundamental tension between their rea-
soning abilities and the need for translation fidelity.
As explored by He et al. (2024) in their study on
human-like translation strategies, these models can
emulate human translators by analyzing the ST
and generating background knowledge to guide
the translation process. This approach can lead to
what He et al. (2024) describe as “creative refor-
mulation,” where the model restructures content
based Liu et al. (2023) indicates that models with
strong reasoning capabilities may produce “logical
completions” during translation, potentially diverg-
ing from the original text in favor of outputs that
the model deems more contextually appropriate or
logically coherent. We plan to compare the transla-
tion performance of DeepSeek-R1 with OpenAl’s
recently released ChatGPT-4.5 model, which was
introduced on February 27, 2025 (OpenAl, 2025).
In this study, the responses of DeepSeek-R1 and
DeepSeek-V3 were generated from its official web-
site !

3 Automatic Quality Estimation

In this paper, we use COMET-KIWI 2 as the auto-
matic tool for QE, as it provides a more compre-
hensive and linguistically informed evaluation of
MT outputs. Unlike BLEU(Papineni et al., 2002),
which primarily measures lexical and syntactic sim-
ilarity based on n-gram overlaps, COMET-KIWI
captures deeper semantic relationships between the
source and translation. This ability allows it to
assess meaning more effectively, making it robust
to variations in word choice and paraphrasing that

1https ://chat.deepseek.com/
2ht’cps ://huggingface.co/Unbabel/
wmt22-cometkiwi-da
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ST index Topics RDFRE RDFKGL RDL2

ST1 Sociolinguistic scales 18.206 17.774  8.086
ST2 Food translation 35.401 14.666 11.857
ST3 Thought-language identification 33.758 14.407 12.575
ST4 Deceptive communication 38.201 14.584 10.488
STS Neurophenomenal space 39.854 12.810  9.662
STé6 Language-thought dependency 33.222 16.249 14.120
ST7 Pictorial assertion 48.425 12.644 17.876
ST8 Translation cognition 34.419 14.422  9.437
ST9 Translanguaging 23.568 18.157 10.062
ST10 Multilingualism & ethics 30.860 15.624  9.932
ST11 Poetic Technicity 37.566 13.524  7.161
Average 33.950 14.990 11.020

Table 1: Profiling of Source Texts

ST index ST Segment ST TT TT TT
count Tokens Tokens_DS R1 Tokens_DS V3 Tokens_GPT-40

ST1 70 2049 1668 1911 2057
ST2 271 7936 4034 6961 7490
ST3 650 15814 7220 13966 15620
ST4 310 8709 5401 8376 9102
ST5 347 7383 4856 6655 7048
STé6 199 6424 3961 5932 6167
ST7 418 10457 5908 9174 9521
STS 345 8862 4976 8097 8423
ST9 317 10998 4762 10048 10511
ST10 308 8447 5148 7486 7492
ST11 263 6786 4038 5386 6191
Total 3498 93865 51972 83992 89622

Table 2: Word Counts for different LLM models



traditional metrics often fail to recognize. Addi-
tionally, COMET-KIWI can function as a reference-
free QE model, meaning it does not require a high-
quality reference translation for comparison. This
is particularly valuable in real-world applications
and low-resource language settings where refer-
ence translations may not always be available. Re-
search has shown that COMET-based models, in-
cluding COMET-KIWI, correlate more strongly
with human evaluations than BLEU and other tra-
ditional metrics such as TER and METEOR(Rei
et al., 2022; Agarwal and Lavie, 2008). BLEU
often fails to capture fluency and adequacy effec-
tively, especially in cases where an NMT system
produces highly fluent yet paraphrased translations.
In contrast, COMET-KIWT’s deep learning-based
approach aligns more closely with how humans
assess translation quality, making it a more reliable
metric.

According to the results of overall COMET
scores at text level, DeepSeek-V3 (DS-V3) demon-
strates superior performance overall with an av-
erage COMET score of 0.7790, compared to
ChatGPT-40 (GPT-40)’s 0.7655. This 0.0135 point
advantage, while seemingly modest, is consistent
across nearly all texts (10 out of 11) and suggests a
meaningful difference in translation quality.

As shown in Figure 1, DS-V3 shows more con-
sistent performance across different STs. Its scores
range from 0.6847 to 0.8171, whereas GPT-40
shows greater variability, with scores ranging from
0.6514 to 0.8074. This suggests DS-V3 may offer
more reliable quality across diverse topics or text
complexity levels.

The relationship between text complexity (read-
ability) metrics and translation performance of the
LLMs demonstrates inconsistent patterns. As illus-
trated in Table 3, the weak to moderate correlations
between readability metrics and COMET scores
suggest that traditional measures of text difficulty
for human readers do not directly translate to dif-
ficulty for LLM-powered MT. The correlation be-
tween RDFRE and DS-V3 translation performance
(r = -0.31, p > 0.05) suggests a moderate nega-
tive relationship, though not statistically significant
given our relatively small sample size. For GPT-4o0,
this correlation is even weaker (r =-0.14, p > 0.05),
suggesting its performance may be influenced by
different factors altogether. Similarly, the correla-
tions between performance and other readability
metrics (RDFKGL: r = 0.25 for DS-V3,r=0.17
for GPT-40; RDL2: r =0.11 for DS-V3, r = 0.04

for GPT-40) fail to reach statistical significance,
further suggesting that these models may be less
sensitive to surface linguistic features and more
influenced by content complexity and contextual
factors.

The most revealing insights emerge from ex-
amining specific STs. ST3 (Thought-language
identification) exhibits the largest performance gap
(0.1292) between DS-V3 and GPT-40 despite hav-
ing only moderate complexity scores (RDFRE:
33.76, RDFKGL: 14.41, RDL2: 12.58). GPT-40’s
dramatic underperformance on this specialized lin-
guistic content indicates a significant weakness in
handling certain conceptual ambiguity.

Conversely, ST1 (Sociolinguistic scales), the for-
mally most complex text (lowest RDFRE: 18.206,
second lowest RDL2: 8.086), shows strong and
nearly identical performance from both models
(DS-V3: 0.8171, GPT-40: 0.8041). A likely expla-
nation is that ST1’s content domain may contain
terminology and concepts that are well-represented
in the training data of both models. Even though the
text is structurally complex, the semantic content
may be more accessible to these models compared
to other domains. Alternatively, the text may be
complex but internally consistent in its terminol-
ogy and logical reasoning patterns, making it more
manageable for the LLMs to translate despite its
high readability scores.

The correlation between performance gap and
readability measures is minimal (RDFRE: r=-0.11;
RDFKGL: r = 0.005; RDL2: r = 0.05; all p > 0.05),
reinforcing that domain-specific knowledge rather
than general readability differentiates these models’
translation performance. While COMET-KIWI and
similar QE metrics provide a general assessment
of MT quality of both LLMs, their performance in
terms of lexical diversity and syntactic complex-
ity is worth further investigation as part of their
translation quality evaluation (Yu, 2024).

4 Comparison of Lexical diversity
between DS-V3 and GPT-40

Lexical diversity refers to the variety and richness
of vocabulary used in a text, representing a cru-
cial factor in assessing translation quality (Kim,
2020). It is typically measured through metrics
such as type-token ratio (TTR), moving-average
TTR (MATTR), and measure of textual lexical di-
versity (MTLD) (McCarthy, 2005; Koizumi, 2012).
Previous studies have indicated that MT systems
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Figure 1: Comparison of Text-level Comet Score between DeepSeek-V3 (DS-V3) and ChatGPT-40 (GPT-40)

Readability DS-V3 GPT-40 Performance
Metric Score Score Gap
RDFRE -0.31 (p>0.05) -0.14(p>0.05 -0.11 (p>0.05)
RDFKGL 025(p>0.05) 0.17(p>0.05) 0.01 (p>0.05)
RDL2 0.11 (p>0.05) 0.04(p>0.05) 0.05(p>0.05)

Table 3: Correlation Between Readability Metrics and LLM Translation Quality

often produce outputs with lower lexical diversity
compared to human translations, exhibiting tenden-
cies toward vocabulary simplification and repeti-
tion(Fu and Nederhof, 2021). This phenomenon
is partly due to MT systems favoring the most
probable translations based on their training data,
which can lead to the reduction of alternative ex-
pressions and a conformity to well-documented
modes of expression. These patterns have been
documented across various language pairs and do-
mains, with earlier NMT systems particularly strug-
gling to maintain lexical richness when translat-
ing stylistically complex texts (Brglez and Vintar,
2022).

While advancements in LLMs promise improved
translation quality, their ability to maintain lexical
diversity remains an area of active investigation.
In this paper, we compare the lexical diversity of
translation outputs produced by GPT-40 and DS-
V3 at discourse level using our dataset of academic
papers on topics such as language, culture, and
literature. The translation of such papers demands
both precision and creativity, making them ideal
test sets for evaluating advanced LLMs’ ability to

maintain lexical richness while preserving semantic
accuracy.

We first calculate traditional lexical diversity
metrics using the WordSmith tool to analyze sur-
face linguistic features in the translated texts by
both GPT-40 and DS-V3. These metrics include
type-token ratio (TTR), which is the ratio of unique
words to total words; standardized type-token ratio
(STTR), which is TTR calculated per 1,000-word
segments to control for text length effects; and aver-
age sentence length (ASL), measured by the word
count of each target text segment corresponding to
a source text sentence.

To provide a more comprehensive assessment
of lexical diversity, we also incorporate word en-
tropy (WE) as an additional indicator. While TTR
and STTR measure vocabulary diversity based on
the proportion of unique words relative to total
words, they do not capture the randomness and un-
predictability of word usage within a text. Entropy,
derived from information theory (Shannon, 1948),
quantifies the degree of uncertainty in word distri-
bution, offering a more refined understanding of
lexical variation in the translated text. A higher



WE value indicates greater word unpredictability
and diversity, suggesting a richer and more varied
vocabulary, though potentially increasing reading
difficulty (Liu et al., 2022).

Our results of lexical diversity metrics, includ-
ing TTR, STTR, ASL, and WE show that GPT-
4o consistently outperforms DS-V3 across all four
lexical diversity metrics when translating English
academic papers on language, culture, and litera-
ture into Chinese. GPT-40 shows a notably higher
TTR (approximately 21.80% vs 19.99% for DS-
V3), which suggests its translations contain a richer
vocabulary variety. The average 9.06% higher TTR
indicates GPT-40 produces less repetitive transla-
tions than DS-V3 in our dataset.

In terms of STTR, GPT-40 maintains an advan-
tage (approximately 42.24 vs 39.08 for DS-V3).
The 8.08% higher STTR confirms that GPT-40’s
higher lexical diversity is consistent even when
controlling for text length.

For ASL, GPT-4o0 produces consistently longer
sentences (around 26.5 words compared to 22.3
words for DS-V3). This nearly 19% difference
in average sentence length aligns with our find-
ings in Table 2, which shows that when translat-
ing the same set of STs, GPT-40 generates 89,622
target tokens, while DS-V3 produces 83,922 to-
kens—representing 6.79% more target tokens over-
all. This consistent pattern across both sentence-
level and document-level measurements reinforces
the observation that GPT-40 tends to create more
elaborated translations.

Regarding WE, GPT-40 demonstrates slightly
higher word entropy (approximately 5.85 vs 5.74
for DS-V3). The 1.78% higher WE indicates GPT-
4o translations have a more balanced distribution
of word frequencies, leading to a richer and more
varied vocabulary. This suggests that GPT-40 tends
to produce more information-rich content with less
predictable word choices.

As illustrated in the radar chart of Figure 2,
the differences between these two models are not
uniform across all metrics. The most pronounced
differences appear in ASL and TTR, while WE
shows the smallest difference. This pattern not only
suggests that GPT-4o employs a broader vocabu-
lary range, but may also indicate that its translation
approach preserves more complex sentence struc-
tures of the original texts than DS-V3. We will
further examine this possibility through syntactic
complexity metrics in the following section.

5 Comparison of syntactic complexity
between translations of DS-V3 and
GPT-40

In this study, we computed five syntactic metrics
for each of the 3,498 segments in our dataset, in-
cluding the Incomplete Dependency Theory Met-
ric (IDT), Dependency Locality Theory Metric
(DLT), Combined IDT+DLT Metric IDT+DLT),
Left-Embeddedness (LE), and Nested Nouns Dis-
tance (NND). The IDT, DLT, and IDT+DLT met-
rics are based on linguistic complexity theories de-
rived from Gibson’s Incomplete Dependency The-
ory (IDT) and Dependency Locality Theory (DLT)
(Gibson, 1998; Gibson et al., 2000). The LE met-
ric is adapted with slight modifications from Coh-
Metrix analysis (Graesser et al., 2011), while NND
was introduced by Zou et al. (2021). LE and NND
were selected due to their relevance in capturing
syntactic differences between English and Chinese
(Fang, 2020).

Unlike previous studies that utilize categorical
proof nets (Moot and Retoré, 2012) for syntac-
tic representation, these metrics adopt universal
dependencies (De Marneffe et al., 2021). This
framework provides a consistent approach to an-
notating grammar, encompassing part-of-speech
tagging, morphological features, and syntactic de-
pendencies. Additionally, Blache’s reformulation
of Incremental Dependency Theory (IDT) and De-
pendency Length Theory (DLT) (Blache, 2011a,b)
is applied for analyzing dependency relations. To
parse segments in our dataset, Stanford Stanza (Qi
et al., 2020) is employed to generate dependency
trees. The decision to use dependency tree pars-
ing over categorical proof nets is primarily driven
by the availability of high-quality, scalable parsers
like Stanza, which support a wide range of lan-
guages. Furthermore, previous research has demon-
strated that dependency trees yield reliable and in-
terpretable results, reinforcing their suitability for
this study.

The definition and implementation of these
metrics are detailed in Zou (2024); Zou et al.
(2024). Developing these metrics allows us to as-
sess whether GPT-40 retains more syntactic com-
plexity of the STs compared to DS-V3. Addition-
ally, it enables us to examine whether the syntactic
complexity of the STs has a greater influence on
translations generated by GPT-40 versus DS-V3 in
the context of English-to-Chinese academic transla-
tions of papers on language, culture, and literature.
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Figure 2: Comparison of Lexical Diversity Between GPT-40 and DS-V3

The results shown in Figure 3 reveal that GPT-
4o consistently exhibits higher syntactic complex-
ity than DS-V3 across all five measured metrics.
These differences are statistically significant (p <
0.05) for all metrics, suggesting a systematic dif-
ference in the linguistic structures produced by the
two models. These differences may stem from the
models’ underlying architectures and training data.

Incomplete Dependency Theory (IDT) counts
the number of incomplete dependencies between
tokens. GPT-40 shows significantly higher average
IDT values (136.30) compared to DS-V3 (122.58),
representing a 10.07% difference. The higher IDT
values suggest that GPT-40’s outputs contain more
complex syntactic structures with greater numbers
of incomplete dependencies that span across the
target texts. This may manifest as more sophisti-
cated sentence constructions with multiple embed-
ded clauses or modifying phrases.

The Dependency Locality Theory Metric (DLT)
metric, which counts discourse referents (nouns,
proper nouns, and verbs) between a head token and
its longest leftmost dependent, is 5.28% higher in
GPT-40 (13.12) compared to DS-V3 (12.43). The
higher DLT values indicate GPT-40 produces target
texts with longer dependency distances containing
more nouns and verbs between head words and
their dependents, potentially creating greater pro-
cessing demands on target readers.

Not surprisingly, the combined metric shows the
values of GPT-40 (149.42) are on average 9.65%
higher than DS-V3 (135.01). This comprehensive
measure reinforces that GPT-40’s target texts con-

tain both more incomplete dependencies and more
discourse referents within those dependencies. The
significant higher values in this combined metric
suggest GPT-40’s tendency toward greater overall
syntactic complexity.

The Left-Embeddedness (LE) metric, which
counts non-verb tokens before the main verb,
shows a significant 9.89% higher value in GPT-40
(22.07) compared to DS-V3 (19.89). This differ-
ence is particularly meaningful for translations for
the English-to-Chinese language pair because Chi-
nese syntax fundamentally relies on left-embedded
structures where substantial information is placed
before the main verb. Topicalization in Chinese
requires placing important contextual elements at
the beginning of sentences, and temporal, locative,
and adverbial information naturally precedes the
predicate. GPT-40’s significantly higher LE score
might indicate it better captures this essential char-
acteristic of Chinese syntax, producing target text
that follows the natural information flow patterns
expected by the audience of native Chinese speak-
ers.

The Nested Nouns Distance (NND) metric
shows the largest percentage difference (13.20%)
between the two models, with GPT-40 scoring 3.54
compared to DS-V3’s 3.08. This metric is particu-
larly relevant for English-to-Chinese translation be-
cause Chinese noun phrases follow different struc-
tural patterns than English, with modifiers strictly
preceding the head noun. Chinese permits complex
nested nominal structures with multiple embedded
modifiers, and the distance relationships between
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nested nouns follow language-specific conventions.
GPT-40’s significantly higher NND suggests that it
might better replicates the characteristic distances
and relationships between nested nominal elements
in Chinese. This may contribute to more authentic-
sounding modifier structures and more natural nom-
inal phrases that align with native Chinese linguis-
tic expectations.

6 Discussion and Conclusion

This study has examined the performance of
ChatGPT-40 and DeepSeek-V3 in translating En-
glish academic papers on language, literature, and
culture to Chinese at the discourse level. Our
analysis reveals that DeepSeek-V3 demonstrates
better overall translation quality than ChatGPT-
40 according to automatic quality estimation re-
sults from COMET-KIWI. DeepSeek-V3 achieved
a higher average score (0.7790 versus 0.7655) and
showed more consistent performance across dif-
ferent source texts, suggesting it may offer more
reliable quality across diverse topics and complex-
ity levels.

Interestingly, despite its lower COMET-KIWI
scores, GPT-40 exhibits greater lexical richness ac-
cording to all four indicators we measured. GPT-40
consistently produced translations with higher type-
token ratio (21.80% versus 19.99%), standardized
type-token ratio (42.24 versus 39.08), average sen-
tence length (26.5 versus 22.3 words), and word
entropy (5.85 versus 5.74). This suggests GPT-40
translations contain a more varied vocabulary and

less repetitive language patterns than DeepSeek-
V3.

We also found that GPT-40’s translations
have greater syntactic complexity across all five
segment-level metrics we examined. The higher
values in Incomplete Dependency Theory (IDT),
Dependency Locality Theory (DLT), combined
IDT+DLT, Left-Embeddedness (LE), and Nested
Nouns Distance (NND) metrics indicate GPT-40
produces more complex syntactic structures. Par-
ticularly notable are the higher scores in LE and
NND, which were specifically selected as English-
Chinese pair-specific metrics.

The higher syntactic complexity in LE and NND
metrics might correspond to more authentic Chi-
nese patterns, but could alternatively reflect unnec-
essarily complicated structures that native speakers
would find awkward or unnatural. Whether this in-
creased complexity actually results in more natural-
sounding Chinese would require human evaluation
by native speakers of simplified Chinese, as syn-
tactic complexity metrics alone cannot definitively
determine naturalness or fluency in the target lan-
guage.

Our findings contribute to the growing body of
research on what we term "GenAlese" - the distinc-
tive linguistic characteristics of text generated by
large language models. Just as previous research
identified "translationese" in statistical and neural
MT outputs, our study suggests that different LLM
architectures may produce systematically different
translation patterns that could potentially be identi-



fied using the metrics we have developed.

The divergent performance patterns between
DeepSeek-V3 and GPT-4o reveal that distinct ar-
chitectural foundations and training methodologies
produce complementary translation strengths. This
finding suggests significant opportunities for devel-
oping specialized LLM translation agents tailored
to specific academic domains and communication
goals. Rather than pursuing a universal translation
approach, future systems could strategically lever-
age different architectural choices to optimize for
domain-appropriate quality dimensions, whether
terminological precision, syntactic naturalness, or
stylistic richness. Such purpose-built translation
agents could allow researchers and publishers to
select models that align with disciplinary conven-
tions, potentially transforming academic transla-
tion workflows by offering configurable balance
between content fidelity and linguistic sophistica-
tion based on contextual requirements.

While our study focused on English-to-Chinese
academic translation, the evaluation framework
combining automatic quality assessment with lex-
ical and syntactic complexity metrics provides a
methodological foundation that can be applied to
evaluate other language pairs, domains and sys-
tems. This multidimensional assessment approach
addresses the limitations of relying solely on auto-
matic metrics like COMET, which may not fully
capture the linguistic qualities that contribute to
translation effectiveness in specialized contexts.

For practitioners using LLMs in academic trans-
lation, our findings suggest that careful selection
of models based on text characteristics is crucial.
DeepSeek-V3 may be preferable for texts requir-
ing consistent overall quality, while GPT-40 might
offer advantages for texts where syntactic com-
plexity and lexical richness are valued. Our re-
sults also suggest potential benefits in combining
the strengths of different models. Practical work-
flows could leverage DeepSeek-V3’s overall qual-
ity while selectively incorporating GPT-40’s syn-
tactic capabilities for specific text types or sections.
Research into effective human-Al collaboration
protocols for academic translation could maximize
the strengths of both human translators and various
LLMs.

However, this study has several limitations that
should be acknowledged. The sample size for
discourse-level assessment is limited to 11 texts,
which might explain why some of the discourse-
level assessments did not reach statistical signifi-
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cance. Additionally, our analysis focused on non-
reasoning models, which may not represent the full
capabilities of the latest LLM-powered systems.

In future studies, we plan to increase the number
of texts analyzed to strengthen the statistical power
of our discourse-level assessments. We also in-
tend to further investigate reasoning-capable mod-
els such as DeepSeek-R1 and ChatGPT-4.5, which
may demonstrate different translation strategies
and capabilities. Further investigation into how
reasoning capabilities affect translation fidelity and
creativity could inform model selection and devel-
opment for different translation needs. Moreover,
incorporating human evaluation by native speakers
of simplified Chinese would provide valuable in-
sights into the perceived naturalness and acceptabil-
ity of translations with different lexical diversity
and syntactic complexity profiles.

In conclusion, this study reveals an interesting
integration of automatic quality estimation scores
and linguistic complexity metrics in LLM-powered
translation. While DeepSeek-V3 achieves higher
COMET scores, GPT-40 produces translations with
greater lexical diversity and syntactic complexity.
These findings suggest that different evaluation
methods may capture different aspects of trans-
lation quality, highlighting the need for comprehen-
sive assessment approaches that combine automatic
metrics, linguistic analysis, and human evaluation
to effectively leverage LLLMs for specialized trans-
lation tasks. This extends beyond the specific mod-
els evaluated, which also applies to quality assess-
ment of translations generated by other LLMs and
commercial neural machine translation systems.
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CO2 Emission Related to Experiments

Experiments were conducted using Google Cloud
Platform in region us-eastl, which has a carbon
efficiency of 0.37 kgCO2eq/kWh. A cumulative
of 120 hours of computation was performed on
hardware of type A100 PCle 40/80GB (TDP of
250W).

Total emissions are estimated to be 11.1
kgCO9eq of which 100 percents were directly off-
set by the cloud provider.

Estimations were conducted using the Machine-
Learning Impact calculator presented in (Lacoste
et al., 2019).
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Abstract

To enhance the accessibility of scientific lit-
erature in multiple languages and facilitate
the exchange of information among scholars
and a wider audience, there is a need for
high-performing specialized machine transla-
tion (MT) engines. However, this requires ef-
ficient filtering and the use of domain-specific
data. This study examines whether translation
quality improves when we increase training
data through combining two methods: (1) data
selection via topic filtering to identify relevant
sentences from larger corpora, and (2) more ef-
ficient use of data by exploiting fuzzy matches
(similar translations to a given input). We apply
these techniques both to sequence-to-sequence
MT models and off-the-shelf multilingual large
language models (LLMs) in three scientific dis-
ciplines, namely neuroscience, climatology and
mobility. Our results suggest that the combina-
tion of topic filtering and FM augmentation is
an effective strategy for training neural machine
translation (NMT) models from scratch, not
only surpassing baseline NMT models but also
delivering improved translation performance
compared to smaller LLMs in terms of the num-
ber of parameters. Furthermore, we find that
although FM augmentation through in-context
learning generally improves LLM translation
performance, limited domain-specific datasets
can yield results comparable to those achieved
with additional multi-domain datasets.

1 Introduction

The use of a lingua franca like English for schol-
arly communication is, on the one hand, beneficial
as it facilitates knowledge dissemination to a cer-
tain extent in the international research landscape.
On the other hand, it leads to inequalities among
researchers (in terms of understanding and writ-
ing) and scientific information written in different
© 2025 The authors. This article is licensed under a Creative

Commons 4.0 licence, no derivative works, attribution, CC-
BY-ND.

languages reaches a limited audience (Ramirez-
Castafieda, 2020; Bitetti and Ferreras, 2017). Ma-
chine translation (MT) is an important support for
mitigating this problem and improving knowledge
dissemination. For instance, with the support of
MT systems, providing translations of abstracts,
keywords, and full articles could become standard
practice for research programs spanning multiple
languages (Amano et al., 2021). More broadly,
adopting translation as a standard practice could
improve access to scientific research for scientists,
students, educators, policymakers, journalists, and
society as a whole (Steigerwald et al., 2022).

Translating scientific texts is challenging due to
specialized terminology, complex syntax, domain-
specific discourse, and the fluid boundaries of sci-
entific disciplines (Byrne, 2014). Moreover, these
unique characteristics of scientific literature and
the limited language resources for training MT sys-
tems further complicate the task for such systems.
In the Translations and Open Science project (Fior-
ini et al., 2023), which we refer to henceforth as
Ta0S, custom MT engines were trained for various
scientific disciplines. This effort showed that it is
challenging to collect parallel training data for sci-
entific disciplines, as many texts are only available
in one language (translation is not an activity that
is habitually applied in scholarly communication
because of disciplinary standards and because there
is a shortage of human resources).

In this paper, we approach the scarcity of sci-
entifically oriented parallel training data for the
English—French language direction by (1) apply-
ing data selection (using topic-based classifiers)
to efficiently filter larger corpora in order to iden-
tify potentially relevant training material for build-
ing sequence-to-sequence neural MT (NMT) mod-
els from scratch, and (2) exploiting fuzzy match
(FM) augmentation techniques (i.e. leveraging the
translation of sentences similar to a given input) to
make more efficient use of the available data for
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NMT models as well as off-the-shelf LLMs. In this
study, we mainly focus on training NMT models
from scratch and less to LLMs for various reasons:
LLMs (the training data of which are typically
unknown) may present data leakage and thus suf-
fer from unrepresentative evaluations; they require
more substantial computational infrastructure for
inference (NMT models can run on CPU, whereas
this is far less obvious for LLM models); and fi-
nally, the answers of instruct variants of LLMs
need some post-processing. Therefore, we do not
provide a comprehensive comparison between (pre-
trained) NMT models and LLMs: while fine-tuning
pre-trained NMT models and LLMs are common
and effective, we merely focus on out-of-the-box
translation capabilities of LLMs (i.e. zero-shot)
and through in-context learning.

2 Related Research

2.1 NMT and LLMs in Specialized Domains

Advancements in NMT, driven mainly by adopting
the transformer architecture (Vaswani et al., 2017a),
have greatly enhanced translation quality across
various domains. In recent years, further improve-
ments have been achieved in MT performance with
LLMs, which leverage extensive training data and
advanced architectures and enhance translation ac-
curacy, fluency, and adaptability across diverse con-
texts. While LLMs have consistently outperformed
traditional models in general-domain MT tasks in
recent years, such as for news, literary texts, and
social media (Kocmi et al., 2023, 2024), their effec-
tiveness in specialized domains remains less con-
clusive. In the WMT 2024 patent translation task,
transformer-based NMT systems from previous
years (2019 and 2020) achieved the best translation
performance as measured by automatic evaluation
metrics for multiple language pairs (Higashiyama,
2024). Furthermore, a recent study by Wassie et
al. (2025) shows that even large fine-tuned LLMs
underperform compared to transformer-based mul-
tilingual encoder-decoder models when trained on
domain-specific medical translation data. These
findings highlight the importance of assessing the
performance of NMT systems alongside LLMs for
domain-specific MT, as traditional NMT models
may still offer competitive or even superior perfor-
mance in such scenarios.
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2.2 Science-oriented Data and NMT Models

To address the lack of parallel data for scientific
texts in underrepresented European languages, the
SciPar corpus was created and made publicly avail-
able through the ELRC-SHARE repository (Rous-
sis et al., 2022). Additionally, as part of the TaOS
project we mentioned earlier, Fiorini et al. (2023)
compiled 316,701 parallel sentences across three
scientific disciplines: (i) Climatology and Climate
Change (code PE10 in the European Research
Council nomenclature), (ii) Neuroscience and Dis-
orders of the Nervous System (LS5), and (iii) Hu-
man Mobility, Environment, and Space (SH7). The
sentences originated from several publication types,
such as journal articles, journal article abstracts
and thesis abstracts). In a more recent effort, Rous-
sis et al. (2024) collected approximately 11 mil-
lion sentence pairs for English-Spanish, English-
Portuguese, and English-French from 62 academic
repositories, covering Cancer Research, Energy
Research, Neuroscience, Transportation Research,
and general academic texts (this dataset is not pub-
licly available).

Efforts have also been made to develop MT sys-
tems for scientific literature. In the TaOS project,
NMT engines were trained for the three above-
mentioned scientific disciplines for the language
directions English—French and French—English.
The engines were trained using a combination of
publicly available corpora covering a variety of
domains and the abovementioned compiled sen-
tences. The results were evaluated by various per-
sonas, i.e. professional translators, researchers,
and students without specific knowledge of the
disciplines in question. Both automatic and hu-
man evaluation showed that the specialized engines
have a substantially better translation quality than
the baseline, i.e. engines merely trained on the
public corpora. Similarly, Roussis et al. applied
domain adaptation by fine-tuning a pre-trained
NMT model (OPUS-MT) for the language di-
rections Spanish—English, Portuguese—English,
and French—English, demonstrating that scientific
texts enhance MT performance according to auto-
matic evaluation metrics.

2.3 Data Selection for NMT

In order to increase the amount of domain-specific
training data, various data selection approaches can
be applied to corpora that cover a variety of topics.
An overview of data selection techniques for do-



main adaptation in NMT can be found in Chu and
Wang (2018). One possible approach is to create
classifiers that are trained on data belonging to a
domain (positive examples) and data not belonging
to it (negative examples) and to extract potentially
relevant training sentences from other corpora, as
illustrated by Defauw et al. (2019). Other poten-
tial approaches consist of comparing sentences
between the multi-domain corpora and domain-
specific resources using metrics like embedding
similarity, see e.g. Pourmostafa et al. (2021), or the
application of topic clustering to sentences, for in-
stance using Latent Dirichlet Allocation (Blei et al.,
2001).

2.4 FM Augmentation for NMT and LLMs

Numerous approaches have been implemented to
enhance domain-specific NMT performance by
leveraging FMs from bilingual resources in the
given domain. Some methods modify transformer-
based architectures by adjusting the decoding pro-
cess (Cao and Xiong, 2018; Reheman et al., 2023),
integrating lexical memory into the NMT archi-
tecture (Feng et al., 2017), introducing additional
attention layers to capture information from trans-
lation memories (TMs) (He et al., 2021), or propos-
ing a new architecture that can effectively edit FMs
to produce MT output (Bouthors et al., 2023). FMs
have also been effectively integrated into NMT
through data augmentation; they leverage source
text similarity to retrieve FMs and incorporate them
by augmenting the source sentences in training, val-
idation and test datasets (Xu et al., 2020; Tezcan
et al., 2021). This approach has proven particularly
effective in specialized domains starting from train-
ing sets of approximately 300K sentence pairs, with
further improvements observed for larger datasets
(Tezcan et al., 2024).

FM augmentation approaches do not only en-
hance NMT performance. LLMs have also shown
the ability to leverage FMs in domain-specific sce-
narios through in-context learning: highly similar
FMs are added to a given input sentence in LLM
prompts, enabling the LLM to replicate previously
observed translation patterns (Moslem et al., 2023a;
Mu et al., 2023). Furthermore, incorporating FMs
(Moslem et al., 2023b) or randomly selected ex-
amples from domain-specific datasets (Alves et al.,
2023) into the fine-tuning process, alongside in-
put prompts has been shown to enhance the MT
performance of LLMs.
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3 Methodology

3.1 Data Selection

We performed topic filtering by applying science-
oriented classifiers that extract potentially relevant
training sentences from other corpora. A classifier
determines how likely a target-language sentence
originates from a scientific discipline. We used
the FastText tool! to create classifiers based on the
target-language part of discipline-specific TaOS
training data (the positive examples consist of a
random sample of sentences from one discipline,
and the negative examples originate from the two
other disciplines). When applying the classifier to
an unseen sentence, we required a minimal score
to accept it as an example of the class. This score
is the lowest score observed at the best trade-off
point of the ROC curve for the training examples,
i.e. the point where the formula T'"PR— F' PR (true
positive ratio minus false positive ratio) reaches its
maximum.

We applied the classifiers to corpora covering
various scientifically oriented and other topics.
Given that the target-language sentences satisfy
the minimal score, we retrieved the corresponding
source-language sentences from the corpora and
obtained additional sentence pairs to be used as
NMT training data.

3.2 FM Augmentation

For FM retrieval, we followed the neural fuzzy
repair (NFR) approach of Tezcan et al. (2021).2
Given a bilingual dataset consisting of source/target
sentence pairs S, T', for each source sentence s; €
S with the translations {¢1,...,t,} € T, we re-
trieved the n the most similar source sentences in
the same dataset {s1,...,s,} € S (i.e., these are
FMs), where s; ¢ {s1,...,s,} (i.e. we excluded
exact matches), given that the FM similarity score
is above a fixed threshold: A > 0.5. To this end, we
measured the FM score F'M (s;, 5;) between two
source sentences s; and s; as the cosine similarity
between their sentence embeddings e; and e;:

6i'6j

FM(si,8;) = — 29
(56:50) = el > N1

€]
where ||e]| is the magnitude of vector e.

We generated the sentence embeddings using
sent2vec (Pagliardini et al., 2018), while we effi-

lhttps://1°ast’cex’c.cc/
2https://github.com/1t3/nfr


https://fasttext.cc/
https://github.com/lt3/nfr

ciently retrieved FMs using a FAISS index (John-
son et al., 2021). The hyperparameters for sentence
embedding generation and FAISS index construc-
tion are detailed in Appendices A.2 and A.3, respec-
tively. Before FM retrieval, all sentences were seg-
mented into subwords using SentencePiece (Kudo
and Richardson, 2018), more specifically using the
XLM-RoBERTa (base) tokenizer.> Table 1 illus-
trates the FM retrieval process.

S We found three studies for inclusion
in the review.

score | 0.9309

FMs | We identified nine eligible studies for inclusion
in the review.

F My | Nous avons identifié neuf études éligibles pour
I’inclusion dans la revue.

T Nous avons trouvé trois études pour
I’inclusion dans la revue.

Table 1: An example of FM retrieval for the

English—French language direction in the neuroscience
discipline for a given source sentence S and the refer-
ence translation T'. F'Mg and F' M refer to the source
and target sides of the retrieved FM with the FM sim-
ilarity score, which is indicated as score. The non-
matching parts are marked in bold.

The work of Tezcan et al. (2021) demonstrated
that, in the context of transformer-based NMT sys-
tems, the augmentation of a given source sentence
with the best FM yields notable improvements in
MT performance but the effectiveness of incorpo-
rating additional FMs is less clear. Following this
work, for the NMT systems, FM augmentation
was implemented using (only) the best FM (i.e.
FM with the highest similarity score), where FM-
augmented source sentences S* consist of the orig-
inal source sentence, concatenated by the transla-
tion of the retrieved FM, using a separator token (S
<sep> F'Mr). The training data consists of both
the original and the FM-augmented source/target
sentence pairs S, T" and S*, T, respectively. During
inference (i.e. on the test and validation sets), each
source sentence is augmented using the same FM
retrieval method described earlier. If no FMs are
retrieved above the threshold A > 0.5, the original
(non-augmented) source sentence is used as input
to the FM-augmented NMT model.

FM augmentation for LLM experiments is im-
plemented by adding n-best F'Mg/F My pairs to
the instruction prompts to leverage the in-context
learning abilities of the given LLM alongside the

Shttps://huggingface.co/docs/transformers/vé4.22.
2/en/model_doc/x1m-roberta#overview
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input sentence S for which the MT output is pro-
duced. The prompt templates are provided in Ap-
pendix A.6.

4 Experimental Setup

4.1 Data

We randomly split the TaOS data* for the three
disciplines into training, validation, and test sets,
ensuring that there is no overlap between them in
terms of sentence pairs. The maximum number of
tokens per sentence (prior to sub-word tokeniza-
tion) in all partitions was limited to a maximum
of 100. Additionally, sentences consisting of a
single token were removed in the validation and
test sets. Finally, we ensured that there were no
unaligned sentence pairs (i.e. sentence pairs with
very low translation equivalence) by analyzing the
source-target pairs in the validation and test sets us-
ing the SentenceTransformer model LaBSE> (Feng
et al., 2022) setting a minimum equivalence score
of 0.6. The number of sentence pairs in the final
partitions are provided in Table 2 while the aver-
age token count for each dataset can be found in
Appendix A.1.

Train  Validation Test
Neuroscience 98,857 1,552 1,543
Climatology 95,694 1,630 1,609
Mobility 106,282 1,784 1,752

Table 2: The number of sentences partitioned from the
TaOS data as training, validation and test sets per disci-
pline.

In order to generate additional MT training data,
we first created a classifier for each of the three
disciplines in the TaOS data, using the method
described in 3.1. We then applied these classifiers
to the French sentences in the three below multi-
domain corpora, filtered out low-scoring sentences,
and retrieved their English pendant to obtain a set
of sentence pairs:

* SciPar:% a collection of parallel corpora from

scientific abstracts;

* EuroPat:” a parallel corpus of European

patent data;
*The data supporting the findings of this study are available
upon request by contacting the corresponding author(s). The
data are provided for research purposes only.
5https://huggingface.co/sentence—transformers/
LaBSE
(’https://opus. nlpl.eu/ELRC-5067-SciPar/en&es/v1/
ELRC-5067-SciPar

7https ://europat.net/ and https://opus.nlpl.eu/
EuroPat/en&fr/v3/EuroPat


https://huggingface.co/docs/transformers/v4.22.2/en/model_doc/xlm-roberta#overview
https://huggingface.co/docs/transformers/v4.22.2/en/model_doc/xlm-roberta#overview
https://huggingface.co/sentence-transformers/LaBSE
https://huggingface.co/sentence-transformers/LaBSE
https://opus.nlpl.eu/ELRC-5067-SciPar/en&es/v1/ELRC-5067-SciPar
https://opus.nlpl.eu/ELRC-5067-SciPar/en&es/v1/ELRC-5067-SciPar
https://europat.net/
https://opus.nlpl.eu/EuroPat/en&fr/v3/EuroPat
https://opus.nlpl.eu/EuroPat/en&fr/v3/EuroPat

s ParaCrawl:® a parallel data set extracted from
a large set of downloaded web pages.

Before applying the classifiers, we filtered out
additional sentences from the three datasets using
the following approaches:

* We filtered out sentences with a low transla-
tion equivalence using the LaBSE model set-
ting a minumum equivalence score of 0.6, as
the construction of these corpora involved au-
tomated alignment, which sometimes leads to
sentence pairs that are not or are only partially
equivalent’. We only applied the equivalence
detection to a 10M sample of ParaCrawl be-
cause of the high computation cost; therefore,
the topic filtering is only applied to this sam-
ple.

¢ We filtered out short sentences (less than 10
words).

The number of sentence pairs used from the ad-

ditional datasets are provided in Table 3.

Europat ParaCrawl SciPar
Original 11,032,300 9,765,499 1,063,329
TF Neurosci. 2,156,482 2,508,710 392,037
TF Climat. 6,998,414 2,713,013 474,472
TF Mobility 2,610,923 5,879,689 334,144

Table 3: The number of sentence pairs used as addi-
tional training data for the NMT systems and for FM
augmentation (for both NMT and LLM experiments),
obtained from three datasets, before and after topic fil-
tering (indicated as Original and TF, respectively), per
discipline.

4.2 NMT Models

We trained NMT models from scratch, using con-
figurations varying on two aspects: (i) training data
and (ii) FM augmentation. All systems utilized val-
idation sets for the given scientific discipline (i.e.
neuroscience, climatology, or mobility).

Regarding the first aspect, we tested the follow-

ing training data configurations:

e ]d: TaOS data for a given discipline;

e 3d: all TaOS data (i.e. combination of all
three disciplines);

* 3d+Ext: all TaOS data combined with all ex-
tra (i.e. original) multi-domain datasets (i.e.
ParaCrawl, EuroPat and SciPar);

* 3d+ExtTF: all TaOS data combined with the
results of topic filtering (TF), as described in

8https ://paracrawl.eu/ and https://opus.nlpl.eu/
ParaCrawl/corpus/version/ParaCrawl

Based on the test sets held out from the TaOS data, it appeared
that virtually all sentences minimally had this score.
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Section 3.1, on the extra datasets for the given
discipline.

Regarding the second aspect, the above config-
urations were combined with FM augmentation'?,
as described in Section 3.2. This increases the size
of the training data for all configurations.

An overview of the training set sizes of the con-
figurations is provided in Appendix A.4. All the
NMT systems trained from these datasets utilized
the transformer architecture (Vaswani et al., 2017b)
and the OpenNMT-py toolkit'! (Klein et al., 2017).
Prior to training, all sentences were segmented into
sub-words using SentencePiece, as described in
Section 3.2. The resulting vocabulary sizes per sys-
tem are provided in Appendix A.4. All systems
were trained with shuffled training datasets and
early stopping with 10 validation rounds in terms
of accuracy and perplexity. All training runs were
initialized with the same seed. For the systems
that do not utilize FM augmentation, the maximum
source and target lengths were set to 200 tokens.
The maximum source length was doubled to 400
tokens for the systems that utilize FM augmenta-
tion. Other details regarding the hyper-parameters
used for training the NMT systems are provided in
Appendix A.5.

4.3 LLMs

We utilized LLMs in zero-shot and FM-augmented
settings through in-context learning. We tested four
models: Mistral 7B (base)'? and 24B (instruct)!3
(Jiang et al., 2023), Tower 7B (instruct)'* (Alves
et al., 2024), which was fine-tuned on Mistral for
translation-related tasks, and Mistral Nemo 12B
(instruct).!> The instruct variants were necessary
in case of the larger models, as they proved more
suitable for translation tasks without additional fine-
tuning steps.

We tested two types of prompting strategies: (i)
a zero-shot setting with a simple translation instruc-
tion, and (ii) a 12-shot setting, following the work
of (2023a), in which prompts were augmented with

10As an exception, due to the limited size of the /d training
sets, we did not apply further FM augmentation for this con-
figuration.
Uhttps://github.com/OpenNMT/OpenNMT-py, v. 3.5.1.
12https://huggingface.co/mistralai/Mistral—7B—v®.
3

13https://huggingface.co/mistralai/
Mistral-Small-24B-Instruct-2501
“https://huggingface.co/Unbabel/
TowerInstruct-Mistral-7B-v@.2
15https://huggingface.co/mistralai/
Mistral-Nemo-Instruct-2407
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12-best FMs (source/target pairs), as described in
Section 3.2. To test the usefulness of FM augmen-
tation in different data configurations, FMs were
retrieved from the four different training datasets
used for NMT training, i.e. /d, 3d, Ext and ExtTF.

4.4 Evaluation

We made use of the automated evaluation metrics
SacreBLEU, ' (Post, 2018), chrF (Popovié, 2015),
and COMET!” (Rei et al., 2020) to assess the qual-
ity of the (detokenized) MT output. To verify
whether differences between the automated quality
metric scores of the different MT systems are sta-
tistically significant, we used bootstrap resampling
tests (Koehn, 2004). We performed both the auto-
mated evaluations and bootstrap resampling tests
using the MATEO toolkit'® (Vanroy et al., 2023),
with the default settings for each metric.

5 Results
5.1 NMT Models

Table 4 provides the automated evaluation results
for the translations generated by the different MT
models on the discipline-specific test sets.

Examining the NMT models, we observe that in-
creasing the training set size from single-discipline
datasets (/d) to utilizing all available data from the
three scientific disciplines, along with additional
out-of-domain data (3d_Ext), positively impacted
translation performance. Furthermore, applying
topic filtering to the out-of-domain datasets (ExtTF)
and incorporating FM augmentation (¥M) further
enhanced the automatic metric scores across all
datasets and disciplines, highlighting the effective-
ness of both techniques. The best-performing sys-
tem leveraged the combined datasets from all three
scientific disciplines with topic-filtered extra data
(3d+ExtTF_FM) and FM augmentation, achiev-
ing statistically significant improvements over all
other configurations. Notably, regarding the NMT
experiments, FM augmentation proved most effec-
tive when paired with the dataset configuration that
leveraged topic-filtered multi-domain datasets, de-
livering greater improvements than when applied
to the full, unfiltered datasets.

Ynhttps://github.com/mjpost/sacrebleu v. 2.4.1.
(SacreBLEU and chrF)
"https://huggingface.co/Unbabel/wmt22-comet-da

18https: //mateo.ivdnt.org/
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5.2 LLMs

When analyzing the results across different LLMs,
we can make multiple observations.  Firstly,
FM augmentation through in-context learning en-
hanced the performance of all tested LLMs, across
all metrics and disciplines, with one exception:
Mistral Nemo 13B model generally achieved the
highest automatic metric scores in zero-shot set-
ting without FM augmentation. Secondly, the
impact of the additional datasets is inconclusive
for the Tower, Nemo, and Mistral 24B models,
while FM augmentation improved performance.
Expanding the pool of sentences in the limited
discipline-specific datasets (i.e. /d) for FM re-
trieval, whether by merging training data from all
three disciplines or incorporating additional multi-
domain datasets with or without topic filtering, did
not consistently lead to improvements or, at best,
resulted in only marginal gains. For instance, the
Mistral 24B model achieved the highest COMET
scores in the climatology and mobility disciplines
utilizing only the discipline-specific datasets for
FM augmentation. It could be argued that given
the additional computational resources required for
extracting FMs from more extensive data sets, re-
stricting the pool of sentences for FM retrieval to
the given scientific discipline (using approximately
100K sentences) offers a more favourable balance
between efficiency and quality. Please also see
Figure 1 for an overview of the best-performing
configuration per model and discipline.

When comparing different LLMs, we ob-
serve that the translation performances of the
general-purpose models (e.g., Mistral, Mistral
Nemo) improved with the increasing number
of parameters. The Tower 7B models deviated
from this general pattern, outperforming the
smaller Mistral 7B models using the same data
configurations, as well as the larger Nemo 13B
models across all metrics and disciplines. These
results confirm the effectiveness of the Tower
model compared to other LLMs of similar size
in the MT task (Kocmi et al., 2024). In the
context of LLM parameter size, it should also
be highlighted that although the larger models
generally resulted in higher scores, the smallest
Mistral model (7B) achieved the highest relative
gains from FM augmentation compared to the
zero-shot setting. For instance, in the neuroscience
discipline, Mistral 7B_FM_3d+ExtTF outperforms
Mistral 7B by +2.78 COMET, whereas Mistral
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Neuroscience Climatology Mobility

NMT model BLEU chrF COMET | BLEU chrF COMET | BLEU chrfF  COMET
1d 3911 65.15 7928 | 2957 5799 76.05 | 30.14 59.45 7698
3d 4311 6840 83.06 | 3524 6262 8101 | 3396 6232 8173
3d_FM 43.67 6874 8347 | 3538 6255 81.14 | 3396 6240 81.73
3d+Ext 4440 6942 8470 | 3570 6335 8248 | 36.11 6401  84.88
3d+Ext_FM 4478 6958  85.12 | 3632 63.54 8279 | 3609 63.96 84.80
3d+ExtTF 4499 6975 8473 | 3628 6376 8254 | 36.89 6449  84.96
3d+ExtTF_FM 46.33% 70.58¢ 85.307 | 36.97" 64.000 82.82 |37.68° 64.81* 85.27%
LLM

Mistral 7B 3285 6158 81.64 | 28.66 5798 7997 | 29.98 59.19 82.48
Mistral 7B_FM_1d 39.74 6594 8437 | 3276 60.71 8245 | 3355 61.87  85.01
Mistral 7B_FM_3d 3935 6571 8429 | 3269 6056 8235 | 3370 61.88  85.04
Mistral 7B_FM_3d+Ext 4072 6623  84.37 |34.79* 61.90* 8276 | 3535 62.73  85.11
Mistral 7B_FM_3d+ExtTF | 4050 66.28 84.42 | 3442 6152 8270 | 3527 6269  85.08
Tower 7B 4081 6655 8474 | 3428 6192 8277 | 36.18 63.19 85.02
Tower 7B_FM_1d 4197 67.11 8492 | 3522 6228 8292 | 3584 63.02 85.30
Tower 7B_FM_3d 4198 67.11 8490 | 3503 62.16 82.84 | 3592 63.08 85.36
Tower 7B_FM_3d+Ext 43.17° 67.74* 8495 |36.68° 6291 8290 | 37.08 63.55 8522
Tower 7B_FM_3d+ExtTF 4282 6753 8493 | 3643 6284 8296 | 3699 63.62  85.38
Nemo 13B 40.04 67.01* 84.777 | 33.58 62317 82977 | 34.55 63.167 85.447
Nemo 13B_FM_1d 40.63 6584 8395 | 33.16 6054 8195 | 3378 6129  84.46
Nemo I13B_FM_3d 4072 6598  84.04 | 3327 60.77 8215 | 3347 61.07 84.30
Nemo 13B_FM_3d+Ext 4094 66.08 8395 | 3339 6044 81.64 | 3416 6121  84.05
Nemo I3B_FM_3d+ExtTF | 41.05 66.16 83.93 | 3342 6057 81.72 | 33.72 60.99  84.01
Mistral 24B 4223 6849 8551 | 3590 63.70 83.61 | 3746 65.07 86.18
Mistral 24B_FM_1d 4488 69.81 86.10 | 3727 6444 84.13 | 3872 6568 86.72
Mistral 24B_FM _3d 4494 6990 86.18 | 37.24 6443  84.12 | 3857 6554  86.64
Mistral 24B_FM_3d+Ext 4508 6991 86.11 | 37.26 6447 84.12 | 38.85 6568  86.61
Mistral 24B_FM_3d+ExtTF | 4505 69.92 86.18 | 3731 6451 84.12 | 3885 65.69 86.62

Table 4: Results of the automatic evaluations performed for the different MT systems, per discipline. For each
model (i.e. per section), the highest metric scores are highlighted in bold and statistically significant improvements
are denoted by *, T, and 1, representing p < 0.05, p < 0.01, and p < 0.001, respectively, based on the lowest p
values obtained when compared to all other configurations of the same model type.

24B_FM_ExtTF shows an improvement of +0.67
COMET over Mistral 24B.

5.3 Cross-comparison

In a final analysis, we compare the performance
of the best configuration per model type using
COMET as the primary evaluation metric, with Fig-
ure 1 presenting the automated evaluation results
per discipline of the single best-performing setup
for each model type. This figure further includes
the statistical significance of the performance differ-
ences observed between the various model types.
Upon reviewing the overall best-performing
model, we observe that the largest LLM, Mistral
24B, surpassed all other models with respect to
COMET scores, achieving an improvement of up to
+1.26 within the mobility discipline compared to all
other tested models. However, in the neuroscience
discipline, the highest BLEU and chrF scores
were attained by the top-performing NMT config-
uration (3d+ExtTM_FM), with improvements of
+1.28 BLEU and +0.66 chrF compared to the best-
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performing LLM (Mistral 24B). Moreover, the best
NMT configuration surpassed Mistral 7B, Tower
7B and Nemo 13B across all disciplines and met-
rics, with the exception of COMET scores in the
climatology and mobility disciplines, where Tower
7B achieved higher scores. Since BLEU and chrF
emphasize token and character overlap between
the MT output and the reference translations, it
can be hypothesized that while the NMT model
is better at maintaining discipline-specific lexical
choices for the neuroscience domain, the COMET
scores, which measure semantic similarity, sug-
gest that Tower 7B and Mistral 24B better capture
the overall meaning. However, this hypothesis re-
quires validation through manual evaluation and
error analysis of MT performance in subsequent
studies.

6 Conclusions and Future Work

Developing highly accurate MT systems for spe-
cialized scientific disciplines continues to be a sig-
nificant challenge due to unique textual character-
istics and the scarcity of language resources neces-
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Figure 1: Results of the automatic evaluations for the best-performing configuration per model type selected in
terms of COMET scores (NMT vs. LLMs), per discipline. The highest metric scores per metric and discipline are

highlighted in bold and statistically significant improvements are denoted by *

f, and ¥, representing p < 0.05,

p < 0.01, and p < 0.001, respectively, based on the lowest p values obtained when compared to all other models.

sary for building effective MT systems.

In this study, we combined two existing method-
ologies, aiming to tailor MT systems for the scien-
tific domain, namely topic filtering of large, multi-
domain datasets to extract relevant NMT training
data and FM augmentation to utilize the available
data more efficiently. To this end, we trained NMT
models from scratch and employed four LLMs to
evaluate their zero-shot and in-context learning ca-
pabilities. Our experiments, which covered three
scientific disciplines, namely neuroscience, clima-
tology, and mobility, in the English—French lan-
guage direction, revealed that combining topic fil-
tering with FM augmentation effectively enhances
NMT models trained from scratch. However, al-
though FM augmentation via in-context learning
proved beneficial for most of the LLMs tested, the
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value of additional datasets in this context, regard-
less of whether they included topic filtering, re-
mained inconclusive. Our findings suggest that
smaller, discipline-specific datasets could yield
comparable results to larger datasets when em-
ployed for FM augmentation in this specific setting,
while incurring significantly lower computational
costs.

Furthermore, our findings enable a comparison
between NMT models trained from scratch and
LLMs (without further fine-tuning) for this task.
We demonstrated that specialized NMT models can
achieve superior translation performance compared
to out-of-the-box LLMs in this discipline-specific
scenario, with these improvements being more pro-
nounced when compared to smaller LLMs with
fewer parameters. Therefore, it can be argued that



these improvements in translation quality and other
benefits, such as reduced inference costs, make
NMT systems a viable option for translating sci-
entific literature, particularly when computational
resources are limited. However, given the posi-
tive correlation we observed between translation
performance and the increasing number of LLM
parameters, our findings suggest that larger LLMs,
even in the absence of further fine-tuning, could
deliver better translation performance than such
specialized NMT models.

In future studies, we will test additional config-
urations with given datasets, for example, retriev-
ing FMs for the test/validation sets only from the
discipline-specific datasets while using extra, larger
datasets as additional NMT training data and for
FM augmentation on the training set. Moreover,
we will investigate the effectiveness of additionally
fine-tuning pre-trained NMT models and LLMs
using the in-domain datasets, with or without FM
augmentation (i.e. zero- vs. few-shot settings), as
both approaches have been shown to further im-
prove MT performance in previous studies.

7 Limitations

One of the main limitations of this study is its
limited scope in terms of MT experiments, which
do not explore fine-tuning strategies of pre-trained
NMT models or LLMs. Moreover, our experiments
were limited to automatic assessment of MT per-
formance, which may not fully reflect translation
quality, and to a single language pair, albeit across
three scientific disciplines. Human evaluation of
MT performance and additional experiments in dif-
ferent language directions would be necessary to
validate our findings. Furthermore, our evaluation
focused on the effectiveness of combining specific
data selection and augmentation methods rather
than comparing them against a wider range of al-
ternative approaches. Finally, we did not explore
the efficiency of different n values for integrating
n-best FMs into the LLM prompts or additional
prompting strategies.
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Dataset Avg. No. Tokens (Std. Dev.)
English French
Neuroscience (train) | 23.8 (11.6) 27.5(13.2)
Neuroscience (val.) 23.7 (11.7) 27.4 (13.3)
Neuroscience (test) 23.3(11.7) 27.3 (13.7)
Climatology (train) 25.8 (12.1) 29.2 (13.7)
Climatology (val.) 26.1(12.3) 29.5 (13.6)
Climatology (test) 26.3 (12.8) 29.4 (14.3)
Mobility (train) 26.2 (13.1) 28.3 (13.8)
Mobility (val.) 26.5 (13.2) 28.7 (14.2)
Mobility (test) 26.3 (12.8) 28.4 (13.8)
Scipar 25.1(13.2) 27.9 (14.4)
EuroPat 30.7 (18.6) 30.9 (18.4)
ParaCrawl 223 (11.7) 24.4 (12.9)

Table 5: Average number of tokens per dataset prior
to sub-word tokenization, with the standard deviation
shown in parentheses.

A Appendix

A.1 Dataset Statistics
A.2 Sent2vec Hyper-parameters

To train sent2vec models, we used the hyper-
parameters that are suggested in the description
paper (Pagliardini et al., 2018) for a sent2vec model
trained on Wikipedia data containing both uni-
grams and bigrams. The hyper-parameters values
are provided in Table 6.

Hyper-parameter Value
embedding dimension 480
minimum word count 8
minimum target word count 20
initial learning rate 0.2
epochs 9
sub-sampling hyper-parameter | 5 x 107°
bigrams dropped per sentence 4
number of negatives sampled 10

Table 6: Hyper-parameters for training sent2vec models.

A.3 FAISS Configuration

For efficient retrieval of FMs, we created a
flat FAISS index with an inverted file system
(IVF) of 4096 clusters. We used cosine sim-
ilarity as the match metric by adding the L2-
normalized vectors of the sentence representation
to the index and using an L2-normalized sen-
tence vector as an input query. For more informa-
tion on FAISS, please see https://github.com/
facebookresearch/faiss/wiki.
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A4 NMT Training Data and Vocabulary Sizes

System Neuroscience Climatology = Mobility
1d 98,857 95,694 106,282
3d 300,833 300,833 300,833
3d_FM 601,666 601,666 601,666
3d+Ext 22,161,961 22,161,961 22,161,961
3d+Ext_ FM 44,323,799 44,323,799 44,323,799
3d+ExtTF 5,358,062 10,486,732 9,125,589
3d+ExtTF_FM 10,708,321 20,969,963 18,249,664

Table 7: The total number of bilingual sentence pairs
used for training the NMT systems, per discipline.

System Lang. Neurosci. Climat. Mobility
1d src 22,216 25,049 27,101
tgt 21,414 24,448 25814
3d src 32,791 32,791 32,791
tgt 32,274 32,274 32,274
3d_FM src 35,936 35,936 35,936
trg 32,274 32,274 32,274
3d+Ext src 67,995 67,995 67,995
tgt 62,333 62,333 62,333
3d+Ext_FM  src 69,031 69,031 69,031
tgt 62,333 62,333 62,333
3d+ExtTF src 55,516 57,280 63,512
tgt 51,869 53,669 58,643
3d+ExtTF_FM src 56,506 58,314 64,248
tgt 51,869 53,669 58,643

Table 8: Vocabulary sizes (source/target) of the NMT
systems, per discipline.

A.5 NMT Hyper-parameters
Hyper-parameter Value
source/target embedding dimension 512
size of hidden layers 512
feed-forward layers 2048
number of heads 8
number of layers 6
batch size 32
gradient accumulation 4
dropout 0.1
warm-up steps 8000
optimizer Adam

Table 9: Common hyper-parameter values used for train-
ing the NMT systems.

We performed evaluations on a given validation set
after every 10% of the training data was processed
during each NMT training (i.e. 10 evaluations per
epoch).

A.6 LLM Prompts

The zero-shot and in-context learning (i.e. few-
shot) experiments employed different prompt
templates depending on the model type. Ta-
ble 10 presents the prompt templates used for the
Mistral-7B-v(.3 base model, following Moslem et


https://github.com/facebookresearch/faiss/wiki
https://github.com/facebookresearch/faiss/wiki

al. (2023a), and for all the instruct models, follow-
ing Format 1 described in Alves et al. (2023).

25



Model | Translation Type | Prompt Template
Base Zero-shot English: (source_segment)
French:
Base Few-shot English: (source_fuzzy_matchy)
(e.g., 2-shot) French: (target_fuzzy_matchs)
English: (source_fuzzy_match;)
French: (target_fuzzy_match;)
English: (source_segment)
French:
Instruct | Zero-shot Translate the source text from X to Y.
Source: (source_segment)
Target:
Instruct | Few-shot Translate the source text from X to Y.
(e.g., 2-shot) Source: (source_fuzzy_matchy)

Target: (target_fuzzy_matchsg)
Translate the source text from X to Y.
Source: (source_fuzzy_match;)

Target: (target_fuzzy_match;)
Translate the source text from X to Y.
Source: (source_segment)

Target:

Table 10: Prompt templates used for zero-shot and few-shot translation with the different LLMs tested in this study.
In the few-shot templates, fuzzy matches are ordered from the nth-most similar match to the most similar (where n
refers to the number of shots), followed by the source segment to be translated.
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