@inproceedings{k-etal-2025-hybrid,
title = "A Hybrid Quantum-Classical Fusion for Deep Semantic Paraphrase Detection",
author = "K, Devanarayanan and
Mohamad, Fayas S and
Mohan, Dheeraj V and
Sheik, Reshma",
editor = "Pal, Santanu and
Pakray, Partha and
Jain, Priyanka and
Ekbal, Asif and
Bandyopadhyay, Sivaji",
booktitle = "Proceedings of the QuantumNLP{\{}:{\}} Integrating Quantum Computing with Natural Language Processing",
month = nov,
year = "2025",
address = "Mumbai, India (Hybrid)",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.quantumnlp-1.4/",
pages = "20--25",
ISBN = "979-8-89176-306-7",
abstract = "Paraphrase Detection is a core task in natural language processing (NLP) that aims to determine whether two sentences convey equivalent meanings. This work proposes a hybrid quantum{--}classical framework that integrates Sentence-BERT embeddings, simulated quantum feature encoding, and classical machine learning models to enhance semantic similarity detection. Initially, sentence pairs are embedded using Sentence-BERT and standardized through feature scaling. These representations are then transformed via rotation-based quantum circuits to capture higher-order feature interactions and non-linear dependencies. The resulting hybrid feature space, combining classical and quantum-inspired components, is evaluated using LightGBM and deep neural network classifiers. Experimental results show that the hybrid model incorporating quantum-inspired features achieved superior classification performance, yielding a 10{\%} improvement in overall accuracy outperforming standalone deep learning baselines. These findings demonstrate that quantum{--}classical fusion enhances semantic feature extraction and significantly improves paraphrase detection performance."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="k-etal-2025-hybrid">
<titleInfo>
<title>A Hybrid Quantum-Classical Fusion for Deep Semantic Paraphrase Detection</title>
</titleInfo>
<name type="personal">
<namePart type="given">Devanarayanan</namePart>
<namePart type="family">K</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Fayas</namePart>
<namePart type="given">S</namePart>
<namePart type="family">Mohamad</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Dheeraj</namePart>
<namePart type="given">V</namePart>
<namePart type="family">Mohan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Reshma</namePart>
<namePart type="family">Sheik</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the QuantumNLP{:} Integrating Quantum Computing with Natural Language Processing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Santanu</namePart>
<namePart type="family">Pal</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Partha</namePart>
<namePart type="family">Pakray</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Priyanka</namePart>
<namePart type="family">Jain</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Asif</namePart>
<namePart type="family">Ekbal</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sivaji</namePart>
<namePart type="family">Bandyopadhyay</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Mumbai, India (Hybrid)</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-306-7</identifier>
</relatedItem>
<abstract>Paraphrase Detection is a core task in natural language processing (NLP) that aims to determine whether two sentences convey equivalent meanings. This work proposes a hybrid quantum–classical framework that integrates Sentence-BERT embeddings, simulated quantum feature encoding, and classical machine learning models to enhance semantic similarity detection. Initially, sentence pairs are embedded using Sentence-BERT and standardized through feature scaling. These representations are then transformed via rotation-based quantum circuits to capture higher-order feature interactions and non-linear dependencies. The resulting hybrid feature space, combining classical and quantum-inspired components, is evaluated using LightGBM and deep neural network classifiers. Experimental results show that the hybrid model incorporating quantum-inspired features achieved superior classification performance, yielding a 10% improvement in overall accuracy outperforming standalone deep learning baselines. These findings demonstrate that quantum–classical fusion enhances semantic feature extraction and significantly improves paraphrase detection performance.</abstract>
<identifier type="citekey">k-etal-2025-hybrid</identifier>
<location>
<url>https://aclanthology.org/2025.quantumnlp-1.4/</url>
</location>
<part>
<date>2025-11</date>
<extent unit="page">
<start>20</start>
<end>25</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T A Hybrid Quantum-Classical Fusion for Deep Semantic Paraphrase Detection
%A K, Devanarayanan
%A Mohamad, Fayas S.
%A Mohan, Dheeraj V.
%A Sheik, Reshma
%Y Pal, Santanu
%Y Pakray, Partha
%Y Jain, Priyanka
%Y Ekbal, Asif
%Y Bandyopadhyay, Sivaji
%S Proceedings of the QuantumNLP{:} Integrating Quantum Computing with Natural Language Processing
%D 2025
%8 November
%I Association for Computational Linguistics
%C Mumbai, India (Hybrid)
%@ 979-8-89176-306-7
%F k-etal-2025-hybrid
%X Paraphrase Detection is a core task in natural language processing (NLP) that aims to determine whether two sentences convey equivalent meanings. This work proposes a hybrid quantum–classical framework that integrates Sentence-BERT embeddings, simulated quantum feature encoding, and classical machine learning models to enhance semantic similarity detection. Initially, sentence pairs are embedded using Sentence-BERT and standardized through feature scaling. These representations are then transformed via rotation-based quantum circuits to capture higher-order feature interactions and non-linear dependencies. The resulting hybrid feature space, combining classical and quantum-inspired components, is evaluated using LightGBM and deep neural network classifiers. Experimental results show that the hybrid model incorporating quantum-inspired features achieved superior classification performance, yielding a 10% improvement in overall accuracy outperforming standalone deep learning baselines. These findings demonstrate that quantum–classical fusion enhances semantic feature extraction and significantly improves paraphrase detection performance.
%U https://aclanthology.org/2025.quantumnlp-1.4/
%P 20-25Markdown (Informal)
[A Hybrid Quantum-Classical Fusion for Deep Semantic Paraphrase Detection](https://aclanthology.org/2025.quantumnlp-1.4/) (K et al., QuantumNLP 2025)
ACL