@inproceedings{rai-etal-2025-quantum,
title = "Quantum-Enhanced Gated Recurrent Units for Part-of-Speech Tagging",
author = "Rai, Ashutosh and
Pandey, Shyambabu and
Pakray, Partha",
editor = "Pal, Santanu and
Pakray, Partha and
Jain, Priyanka and
Ekbal, Asif and
Bandyopadhyay, Sivaji",
booktitle = "Proceedings of the QuantumNLP{\{}:{\}} Integrating Quantum Computing with Natural Language Processing",
month = nov,
year = "2025",
address = "Mumbai, India (Hybrid)",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.quantumnlp-1.5/",
pages = "26--32",
ISBN = "979-8-89176-306-7",
abstract = "Deep learning models for Natural Language Processing (NLP) tasks, such as Part-of-Speech (POS) tagging, usually have significant parameter counts that make them costly to train and deploy. Quantum Machine Learning (QML) offers a potential approach for building more parameter-efficient models. This paper proposes a hybrid quantum-classical gated recurrent unit model for POS tagging in code-mixed social media text. By integrating a quantum layer into the recurrent framework, our model achieved an accuracy comparable to the baseline classical model, while needing fewer parameters. Although the cut-off point in the parameters is modest in our setup, the approach is promising when scaled to deeper architectures. These results suggest that hybrid models can offer a resource-efficient alternative for NLP tasks."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="rai-etal-2025-quantum">
<titleInfo>
<title>Quantum-Enhanced Gated Recurrent Units for Part-of-Speech Tagging</title>
</titleInfo>
<name type="personal">
<namePart type="given">Ashutosh</namePart>
<namePart type="family">Rai</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Shyambabu</namePart>
<namePart type="family">Pandey</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Partha</namePart>
<namePart type="family">Pakray</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the QuantumNLP{:} Integrating Quantum Computing with Natural Language Processing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Santanu</namePart>
<namePart type="family">Pal</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Partha</namePart>
<namePart type="family">Pakray</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Priyanka</namePart>
<namePart type="family">Jain</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Asif</namePart>
<namePart type="family">Ekbal</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sivaji</namePart>
<namePart type="family">Bandyopadhyay</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Mumbai, India (Hybrid)</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-306-7</identifier>
</relatedItem>
<abstract>Deep learning models for Natural Language Processing (NLP) tasks, such as Part-of-Speech (POS) tagging, usually have significant parameter counts that make them costly to train and deploy. Quantum Machine Learning (QML) offers a potential approach for building more parameter-efficient models. This paper proposes a hybrid quantum-classical gated recurrent unit model for POS tagging in code-mixed social media text. By integrating a quantum layer into the recurrent framework, our model achieved an accuracy comparable to the baseline classical model, while needing fewer parameters. Although the cut-off point in the parameters is modest in our setup, the approach is promising when scaled to deeper architectures. These results suggest that hybrid models can offer a resource-efficient alternative for NLP tasks.</abstract>
<identifier type="citekey">rai-etal-2025-quantum</identifier>
<location>
<url>https://aclanthology.org/2025.quantumnlp-1.5/</url>
</location>
<part>
<date>2025-11</date>
<extent unit="page">
<start>26</start>
<end>32</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Quantum-Enhanced Gated Recurrent Units for Part-of-Speech Tagging
%A Rai, Ashutosh
%A Pandey, Shyambabu
%A Pakray, Partha
%Y Pal, Santanu
%Y Pakray, Partha
%Y Jain, Priyanka
%Y Ekbal, Asif
%Y Bandyopadhyay, Sivaji
%S Proceedings of the QuantumNLP{:} Integrating Quantum Computing with Natural Language Processing
%D 2025
%8 November
%I Association for Computational Linguistics
%C Mumbai, India (Hybrid)
%@ 979-8-89176-306-7
%F rai-etal-2025-quantum
%X Deep learning models for Natural Language Processing (NLP) tasks, such as Part-of-Speech (POS) tagging, usually have significant parameter counts that make them costly to train and deploy. Quantum Machine Learning (QML) offers a potential approach for building more parameter-efficient models. This paper proposes a hybrid quantum-classical gated recurrent unit model for POS tagging in code-mixed social media text. By integrating a quantum layer into the recurrent framework, our model achieved an accuracy comparable to the baseline classical model, while needing fewer parameters. Although the cut-off point in the parameters is modest in our setup, the approach is promising when scaled to deeper architectures. These results suggest that hybrid models can offer a resource-efficient alternative for NLP tasks.
%U https://aclanthology.org/2025.quantumnlp-1.5/
%P 26-32Markdown (Informal)
[Quantum-Enhanced Gated Recurrent Units for Part-of-Speech Tagging](https://aclanthology.org/2025.quantumnlp-1.5/) (Rai et al., QuantumNLP 2025)
ACL