@inproceedings{hamalainen-2025-studying,
title = "Studying the Representation of the {LGBTQ}+ Community in {R}u{P}aul{'}s Drag Race with {LLM}-Based Topic Modeling",
author = {H{\"a}m{\"a}l{\"a}inen, Mika},
editor = "Pranav, A and
Valentine, Alissa and
Bhatt, Shaily and
Long, Yanan and
Subramonian, Arjun and
Bertsch, Amanda and
Lauscher, Anne and
Gupta, Ankush",
booktitle = "Proceedings of the Queer in AI Workshop",
month = may,
year = "2025",
address = "Hybrid format (in-person and virtual)",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.queerinai-main.1/",
doi = "10.18653/v1/2025.queerinai-main.1",
pages = "1--5",
ISBN = "979-8-89176-244-2",
abstract = "This study investigates the representation of LGBTQ+ community in the widely acclaimed reality television series RuPaul{'}s Drag Race through a novel application of large language model (LLM)-based topic modeling. By analyzing subtitles from seasons 1 to 16, the research identifies a spectrum of topics ranging from empowering themes, such as self-expression through drag, community support and positive body image, to challenges faced by the LGBTQ+ community, including homophobia, HIV and mental health. Employing an LLM allowed for nuanced exploration of these themes, overcoming the limitations of traditional word-based topic modeling."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="hamalainen-2025-studying">
<titleInfo>
<title>Studying the Representation of the LGBTQ+ Community in RuPaul’s Drag Race with LLM-Based Topic Modeling</title>
</titleInfo>
<name type="personal">
<namePart type="given">Mika</namePart>
<namePart type="family">Hämäläinen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-05</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Queer in AI Workshop</title>
</titleInfo>
<name type="personal">
<namePart type="given">A</namePart>
<namePart type="family">Pranav</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alissa</namePart>
<namePart type="family">Valentine</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Shaily</namePart>
<namePart type="family">Bhatt</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yanan</namePart>
<namePart type="family">Long</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Arjun</namePart>
<namePart type="family">Subramonian</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Amanda</namePart>
<namePart type="family">Bertsch</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Anne</namePart>
<namePart type="family">Lauscher</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ankush</namePart>
<namePart type="family">Gupta</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Hybrid format (in-person and virtual)</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-244-2</identifier>
</relatedItem>
<abstract>This study investigates the representation of LGBTQ+ community in the widely acclaimed reality television series RuPaul’s Drag Race through a novel application of large language model (LLM)-based topic modeling. By analyzing subtitles from seasons 1 to 16, the research identifies a spectrum of topics ranging from empowering themes, such as self-expression through drag, community support and positive body image, to challenges faced by the LGBTQ+ community, including homophobia, HIV and mental health. Employing an LLM allowed for nuanced exploration of these themes, overcoming the limitations of traditional word-based topic modeling.</abstract>
<identifier type="citekey">hamalainen-2025-studying</identifier>
<identifier type="doi">10.18653/v1/2025.queerinai-main.1</identifier>
<location>
<url>https://aclanthology.org/2025.queerinai-main.1/</url>
</location>
<part>
<date>2025-05</date>
<extent unit="page">
<start>1</start>
<end>5</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Studying the Representation of the LGBTQ+ Community in RuPaul’s Drag Race with LLM-Based Topic Modeling
%A Hämäläinen, Mika
%Y Pranav, A.
%Y Valentine, Alissa
%Y Bhatt, Shaily
%Y Long, Yanan
%Y Subramonian, Arjun
%Y Bertsch, Amanda
%Y Lauscher, Anne
%Y Gupta, Ankush
%S Proceedings of the Queer in AI Workshop
%D 2025
%8 May
%I Association for Computational Linguistics
%C Hybrid format (in-person and virtual)
%@ 979-8-89176-244-2
%F hamalainen-2025-studying
%X This study investigates the representation of LGBTQ+ community in the widely acclaimed reality television series RuPaul’s Drag Race through a novel application of large language model (LLM)-based topic modeling. By analyzing subtitles from seasons 1 to 16, the research identifies a spectrum of topics ranging from empowering themes, such as self-expression through drag, community support and positive body image, to challenges faced by the LGBTQ+ community, including homophobia, HIV and mental health. Employing an LLM allowed for nuanced exploration of these themes, overcoming the limitations of traditional word-based topic modeling.
%R 10.18653/v1/2025.queerinai-main.1
%U https://aclanthology.org/2025.queerinai-main.1/
%U https://doi.org/10.18653/v1/2025.queerinai-main.1
%P 1-5
Markdown (Informal)
[Studying the Representation of the LGBTQ+ Community in RuPaul’s Drag Race with LLM-Based Topic Modeling](https://aclanthology.org/2025.queerinai-main.1/) (Hämäläinen, QueerInAI 2025)
ACL