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Abstract 

Machine translation has significantly 

advanced due to the development of 

transformer architecture, which is utilised 

by many modern deep-learning models. 

However, low-resource languages, such as 

Lithuanian, still face challenges stemming 

from the limited availability of training 

data and resource constraints. This study 

examines the translation capabilities of 

Neural Machine Translation (NMT) 

models and Large Language Models 

(LLMs), comparing their performance in 

low-resource translation tasks. 

Furthermore, it assesses the impact of 

parameter scaling and fine-tuning on their 

effectiveness in enhancing model 

performance. The evaluation showed that 

while LLMs demonstrated proficiency in 

low-resource translation, their results were 

lower compared to NMT models, which 

remained consistent across smaller 

variants. However, as model size increased, 

the lead was not as prominent, correlating 

with automatic and human evaluations. The 

effort to enhance translation accuracy 

through fine-tuning proved to be an 

effective strategy, demonstrating 

improvements in vocabulary expansion 

and structural coherence in both 

architectures. These findings highlight the 

importance of diverse datasets, 

comprehensive model design, and fine-

tuning techniques in addressing the 

challenges of low-resourced language 

translation. This project, one of the first 

studies to focus on the low-resourced 

Lithuanian language, aims to contribute to 

the broader discourse and ongoing efforts 

to enhance accessibility and inclusivity in 

Natural Language Processing. 

1 Introduction 

The field of Natural Language Processing (NLP) 

has been essential in enhancing access to 

information and promoting inclusivity across 

different languages. Machine Translation (MT) 

was developed to utilise computers in overcoming 

communication gaps and facilitating cross-

linguistic cooperation, with early efforts focusing 

on translating Russian to English. However, 

despite significant advancements in LLMs, MT 

and NLP in general, many low-resourced 

languages remain underrepresented and 

overlooked by the rapidly growing AI industry.  

It is worth noting that Machine Translation has 

long been a key focus in NLP with the aim of 

enabling computers to translate natural language 

automatically. Initially, the field was dominated by 

the Rule-Based (RB) approach, which relied on 

manually constructed linguistic rules and 

dictionaries. However, this method was prone to 

error, resource intensive and had scalability 

implications when transferring rules between 

different languages (Wang et al., 2022). Due to 

these limitations, interest in RB systems declined, 

leading to a slowdown in the progress within the 

MT field. Nevertheless, some continued, resulting 

in the development of highly accurate RB systems 

such as Systran and DeepL, while they later 

transitioned first to statistical and after that to 

neural network-based architectures. 

The field saw meaningful breakthroughs with 

the adoption of corpus-based methods following 

the Statistical Machine Translation (SMT), which 

was reintroduced in the early 1990s by IBM 

researchers (Brown et al., 1990). SMT leverages 

large parallel texts and probabilistic models to 

make predictions on the most likely translation. 

Initially, these systems relied on single-word 

mappings, although this introduced many errors in 

semantic meaning and word reordering, leading to 

a shift toward phase-based translation (Lopez, 
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2008). This approach was the foundation for an 

early version of the Google Translate engine. 

Despite these advancements, SMT struggled with 

long-distance word ordering and data sparsity 

issues, particularly for linguistically distant 

language pairs (Wang et al., 2022). 

The introduction of deep learning techniques, 

such as a sequence-to-sequence model structure, 

transformed MT. These models, powered by neural 

networks utilised an encoder-decoder framework 

that mapped input sentences to variable-length 

vector representations, ensuring the retention of 

sentence structure and meaning (Sutskever, 2014). 

The addition of the attention mechanisms allowed 

the decoder layer to focus solely on the relevant 

input encodings, improving translation fluency and 

overcoming SMT weaknesses (Bahdanau, 2014). 

This neural process was extended to multilingual 

machine translation, where shared encoded 

representations could be supported by multiple 

decoder layers for different target languages (Dong 

et al, 2015). 

The Transformer model architecture 

revolutionised NLP by introducing self-attention 

mechanisms, removing the need to use recurrence 

and process one token at a time. Unlike earlier 

models, these properties allow the model to read all 

tokens simultaneously, capturing broad contextual 

relationships regardless of sentence length. This 

parallel processing led to a significantly faster 

training on large datasets, making Transformers the 

foundation of NMT models and LLMs (Vaswani, 

2017). NMT models follow a sequence-to-

sequence framework, mapping an input sequence 

from the source language to the target language. 

Where LLMs are typically categorised as auto-

encoding or auto-regressive models, either using 

encoder or decoder-only architectures, with the 

latter being more frequent and following the 

objective of accurately predicting the next token in 

the sequence (Dong et al., 2019).  

The performance of LLM and NMT models is 

dependent on the availability and quality of the 

training corpus. These models typically rely on 

high-resourced languages, such as English and 

German, with low-resourced languages receiving 

significantly less representation due to data 

limitations (Scao et al., 2022). NMT models are 

usually pre-trained on parallel corpora, which 

enables a comprehensive representation of 

language distribution. In contrast, LLMs are 

trained on diverse texts without targeting 

multilingualism, which often limits their ability to 

support low-resource tasks (Paupard, 2024).  

To address this disparity, researchers reinforced 

insufficient parallel corpora with monolingual data 

(Znang and Zong, 2016). However, a high 

monolingual data ratio can diminish models 

learning outcomes, calling for back-translation, 

which automatically incorporates translations to 

monolingual texts (Sennrich et al., 2015).  

An equally critical aspect is dataset quality, 

particularly in low-resource settings. A study found 

that noisy texts can drastically degrade translation 

accuracy, making cleaned and filtered datasets 

essential for reliable training (Khayrallah and 

Koehn et al., 2018). This is highly relevant for 

underrepresented languages, where datasets are 

often accumulated using web scraping techniques 

such as Common Crawl, which collect texts from 

various internet sources (Toral et al., 2017; Baack, 

2024). These findings highlight the key challenges 

for both NMT models and LLMs that require high 

volumes of training data but are constrained to 

limited, low-quality, low-resourced language texts.   

The open source and distillation techniques seek 

to bridge this gap and support a transparent and 

community-driven development process to direct a 

more inclusive and comprehensive language 

technology (White et al., 2024). While advocates 

for the closed-source design argue that it offers 

better security and data protection guarantees (Xi, 

2025). Despite these claims, closed-source models 

remain vulnerable to various security risks, 

including adversarial attacks, suggesting that their 

motivations may be ineffective (Das et al., 2025).  

To utilise both open-source accessibility and 

closed-source performance, researchers have 

turned to knowledge distillation, where smaller 

student models learn from larger teacher models. 

This technique reduces computational demands 

while ensuring high accuracy and maintainability 

of core capabilities (Hsieh et al., 2023). The 

effectiveness was demonstrated by models like 

Deepseek, which outperformed state-of-the-art 

models in multiple evaluation benchmarks 

(Deepseek-AI, 2025).  

The present study will experiment with the 

distilled versions of both NMT and LLM, 

including NLLB and Gemma models (Costa-Jussà 

et al., 2022; Team et al., 2024).  Although NLLB is 

fully open-sourced, Gemma follows an open-

weights approach where only the model’s 

parameters are made available without source 
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code. While not as transparent as open-source, this 

still enables customisation and adaptation, 

supporting resource-constrained teams working on 

low-resourced language tasks (Zhao et al., 2023). 

Finally, it is worth noting that the field of Low-

Resource NLP has gained significant attention in 

recent years, as demonstrated by the growing 

number of research contributions addressing data 

scarcity and model adaptability challenges, further 

emphasising the need to improve machine 

translation for languages like Lithuanian (Pakray, 

2025). The present study is significant in 

highlighting the insufficient support and inclusion 

of Lithuanian, a low-resourced language, in 

modern deep-learning tools and LLMs, an area of 

study that has received little attention. Researchers 

in developing translation models often neglect the 

underrepresented languages due to the limited 

availability of parallel corpora, which are essential 

for training accurate translation systems 

(Chakravarthi et al., 2019). As a result, models 

trained on small or insufficiently diverse datasets 

often produce inaccurate translations and 

hallucinations (Poupard, 2024).  

The findings from this study aim to contribute 

to the enhancement of translation technology, 

making NLP tools more inclusive and accessible 

for speakers of less commonly spoken languages. 

Furthermore, by understanding the limitations of 

pre-trained models and the benefits of fine-tuning, 

this research can provide insights in directing 

future machine translation efforts for other low-

resource languages. 

The rest of the paper is structured as follows: 

Section 2 outlines related work, Section 3 presents 

the methodology and Section 4 provides evaluation 

results, discussion and error analysis. Finally, 

Section 5 summarises the work with a conclusion.  

2 Related Work 

Several studies have addressed the disparity in 

lesser-spoken languages by developing more 

linguistically inclusive models. The No Language 

Left Behind (NLLB) team supported over 200 

underrepresented languages by training a 

multilingual NMT model on high-quality parallel 

and monolingual datasets and adopting self-

supervised learning. These unconventional training 

methods demonstrated enhanced translation 

performance in low-resource settings even for 

languages where explicit training was not 

undertaken (Costa-Jussà et al., 2022). 

 Martins et al. (2024) trained the EuroLLM 

model to address the lack of open-weight LLMs for 

European languages. The authors used a parallel 

corpus that included nearly an equal number of 

English and non-English representations. Their 

findings indicated that carefully curated datasets 

and a custom tokeniser enabled the model to 

outperform much larger competitors in translation 

tasks. 

Nakvosas et al. (2024) discussed the insufficient 

number of Lithuanian language tokens in the 

Llama model. They employed a supervised fine-

tuning (SFT) technique to improve the model’s 

performance in English-Lithuanian tasks. This 

approach involved training a pre-existing model on 

a high-quality custom dataset, allowing it to 

enhance its learning and generation accuracy, 

especially in handling previously unseen data 

(Church et al., 2021).  

Another fundamental challenge is the high 

computational costs associated with training LLMs 

and NMT models as they often contain billions of 

parameters, requiring extensive memory, storage 

and processing power (Hadi et al., 2023). These 

demands create significant barriers for smaller 

research teams, especially in underrepresented 

linguistic communities. 

To address resource constraints, researchers 

have explored performance-efficient fine-tuning 

(PEFT) techniques. One widely adopted approach 

is quantisation, which reduces the precision of 

model parameters (e.g., to 8-bit or 4-bit), lowering 

memory usage without experiencing major 

performance loss (Dettmers et al., 2024). Low-

Rank Adaptation (LoRA) further optimises 

resource requirements by applying fine-tuning 

only to targeted layers, preserving strong 

multilingual performance while reducing trainable 

parameters (Hu et al., 2021). These techniques 

provide effective solutions to optimise resource 

usage, democratising access to LLMs and NMT 

models for low-resourced language researchers. 

Finally, a key research question is whether 

LLMs can match or surpass well-established NMT 

models in low-resource language translation. 

While multilingual LLMs such as Gemma and 

Llama have demonstrated effectiveness in high-

resourced translation tasks, achievements in low-

resourced languages, such as Lithuanian, have 

often remained undiscovered. Furthermore, LLM 

architecture may suffer from accuracy loss and 

hallucinations, where models generate fabricated 
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information when handling large multilingual 

datasets (Dong, 2024).  

Further research is essential to assess the 

genuine performance of LLMs on 

underrepresented languages and to determine the 

trade-offs between model size and fine-tuning in 

translation quality, thereby contributing to more 

inclusive NLP systems. 

3 Methodology 

The adopted methodology, detailed in this section 

seeks to reply to the following questions:  

1. How do pre-trained LLMs and NMT 

models perform in low-resourced language 

translation? 

2. Does fine-tuning improve translation 

accuracy? Is it comparable to parameter scaling?   

In particular, we outline the data, models and 

evaluation methods employed in this study and 

acknowledge experimental limitations. 

3.1 Research Design and Data Collection 

This study follows an empirical, quantitative 

approach to evaluate model performance. Models, 

datasets and fine-tuning tools were obtained 

through the Transformers library, which provides 

open-access NLP resources.  

Supervised Fine-tuning (SFT) requires rich 

translation examples. Although scaling laws 

suggest that the optimal dataset size should be 

proportional to the model’s parameter number. For 

example, a 1.3 billion parameter model (NLLB) 

would need around 30 million sentences (Hoffman 

et al., 2022). However, further recent research 

shows that smaller, diverse datasets can still yield 

sufficient performance (Oliver and Wang, 2024; 

Zoph et al., 2022). 

Given resource limitations and limited text 

availability, a dataset of 300,000 English-

Lithuanian sentence pairs was compiled from the 

following corpora: 

Medical Corpus – domain-specific translations 

with complex terminology. 

Parliamentary Corpus – structured sentence 

pairs from official proceedings. 

Common Crawl Corpus – public web data, 

cleaned to remove foreign tokens, short or 

ungrammatical sentences.  

Wikipedia Corpus – verified translated 

sentences from Wikipedia resources. 

3.2 Model Choice 

The selection of models was guided by open-

source or open-weights availability to avoid 

licensing constraints and facilitate further 

development. Additionally, given memory 

constraints, around 2 billion parameter models 

were selected.  

Gemma – Google’s lightweight Gemini-based 

LLM for broad NLP tasks (Team et al., 2024). 

EuroLLM – Unbabel’s LLM, optimised for 

multilingual translation tasks across European 

languages (Martins et al., 2024). 

Salamandra – BSC-LT’s LLM, focused on 

European languages (Gonzalez-Agirre et al, 2025).  

NLLB – Meta’s NMT model, covering 200 low-

resourced languages (Costa-Jussà et al., 2022). 

Helsinki – NMT model specialised in Baltic 

languages, ideal for Lithuanian translation 

(Tiedemann et al., 2024). 

Madlad – Google’s NMT model supporting 400 

languages (Kudugunta et al., 2023). 

3.3 Evaluation Metrics 

Model performance was quantitatively evaluated 

at two stages: baseline (pre-trained) and post-SFT. 

The following automatic metrics were used:  

SacreBLEU – an improved version of BLUE, 

measuring n-grams overlap but limited in semantic 

meaning and synonyms (Papineni et al., 2002).  

CHRF – based on character-level n-gram 

overlaps, effective for morphologically rich 

languages and correlating with human judgement 

(Popović, 2015; Lee et al., 2023). 

ROUGE – evaluates precision and quality by 

measuring unigrams, bigrams, and sequence 

overlap (Lin and Och, 2004). 

METEOR – enhances BLEU by considering 

synonym matching, stemming, and recall, 

accounting for a better semantic alignment 

(Banerjee and Lavie, 2005).  

3.4 Human Evaluation 

Translations were manually assessed on accuracy, 

fluency, and appropriateness, following Freitag et 

al. (2021) guidelines and scored from 1 (very poor) 

to 5 (excellent). Due to the time constraints, only a 

subset of sentences was evaluated that covered 

scientific, official, and casual contexts, with an 

emphasis placed on semantic ambiguity and 

metaphorical language. The aim of human 

evaluation was to identify the strengths and 

weaknesses of each model in producing 
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grammatically correct and contextually relevant 

translations. 

3.5 Model Evaluation  

Each model was configured to correctly handle 

source and target languages. NMT models require 

explicit language identifiers, such as appending a 

prefix to the input sentence for Helsinki. While 

LLMs are more general-purpose and use a prompt-

based format. For EuroLLM, source and target 

prefixes were needed, where Gemma used special 

tokens for the start and end of inputs and responses. 

Models translated 100 unique test sequences 

from the Flores+ dataset. The Transformers library 

was used for tokenisation and inference. Generated 

translations were decoded and compared using 

BLEU, METEOR, CHRF and ROUGE. 

To assess the impact of model size, both ~2B 

and larger models (up to 9B parameters) were 

compared, excluding NLLB and Helsinki, as larger 

versions were not available. Apart from applying 

quantisation (4-bit) for efficiency, the evaluation 

process remained consistent with the previous step. 

Aiming to determine whether increasing model 

size shows improvement in translation quality. 

3.6 Statistical and Practical Significance 

To verify whether the differences in model 

performances were meaningful, t-scores were 

calculated for each metric using the formula: 

𝑡 − 𝑠𝑐𝑜𝑟𝑒 =  
𝑣𝑎𝑙𝑢𝑒−𝑚𝑒𝑎𝑛

𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛
. 

Given a small sample size (6) and targeting a 

95% confidence level, a t-critical value of 2.571 

was used. Scores exceeding this threshold were 

considered to have a statistically significant 

difference (Benjamin et al., 2018). 

Furthermore, to complement statistical 

significance, Cohen's d effect was used to evaluate 

the practical significance based on the formula: 

𝐶𝑜ℎ𝑒𝑛′𝑠 𝑑 =  
𝑚𝑒𝑎𝑛1−𝑚𝑒𝑎𝑛2

𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛
 

Providing the magnitude of the differences. 

Effects of up to 0.5 are considered small to 

medium, while values >0.8 indicate a strong effect 

(Gignac and Szodorai, 2016). Together, these 

measures ensure a robust and comprehensive 

interpretation of model performance differences. 

3.7 Fine-Tuning Models 

Due to high resource demands, fine-tuning focused 

on ~2B parameter models, utilising memory-

efficient techniques. Models were quantised to 4-

bit and fine-tuned with LoRA, targeting attention 

and feed-forward layers to reduce overhead while 

preserving performance. 

Training used small batch sizes, combined with 

gradient accumulation, 2e-4 learning rate with 

linear scheduling, and Adam optimiser to produce 

gradual and efficient convergence. Models were 

evaluated consistently every 500 or 1,000 training 

steps with 100 test-set sentences separated from 

prior training and utilising the same metrics as in 

the baseline evaluation phase. This iterative 

process ensured steady performance monitoring 

and allowed parameter adjustments as needed. 

4 Evaluation Results, Discussion and 

Error Analysis 

4.1 Performance Comparison with 

Automatic Metrics 

The pre-trained NMT models (Madlad, NLLB, 

Helsinki) generally outperformed LLMs 

(EuroLLM, Salamandra, Gemma). 

Madlad presented the best BLEU, CHRF and 

overall scores, indicating strong alignment with 

reference translations. NLLB followed closely, 

maintaining a good balance between lexical 

accuracy and semantic variation (high METEOR). 

Helsinki performed well at the character-level 

(CHRF) despite a lower BLEU score. EuroLLM 

led amongst LLMs with relatively higher BLEU 

and METEOR scores. Gemma achieved the lowest 

overall scores with poor BLEU and ROUGE 

results, suggesting minimal overlap and improper 

sentence structure. 

These findings point to NMT models being 

better suited for machine translation than LLMs. 

 

Models  BLEU METEOR CHRF ROUGE 

Madlad 28 0.55 60 0.55 

NLLB 26 0.52 58 0.52 

Helsinki 21 0.48 55 0.48 

EuroLM 19 0.42 49 0.43 

Salaman. 17 0.41 50 0.42 

Table 1:  Pre-trained model evaluation results. 
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4.2 Statistical and Practical Significance  

T-scores showed that while Madlad consistently 

performed best and Gemma worst, neither deviated 

significantly from the mean, not exceeding the 

2.571 threshold of 95% confidence. This indicates 

no statistical performance difference among 

models.  

However, Cohen’s d revealed strong practical 

differences contradicting the t-score. The effect 

sizes between the best- and worst-performing 

models, Madlad and Gemma, were on average 2.60 

across all metrics, well above the 0.8 threshold for 

a large effect. Despite not reaching statistical 

significance, the practical performance difference 

was considerable.  

4.3 Model Size Comparison 

Larger models (~9B parameters) demonstrated 

consistent performance gain over their smaller 

variants (~2B), raising BLUE scores by 3-5 points 

while METEOR gains showed more variability, 

ranging from 0.03 to 0.12 points. The performance 

increase was more noticeable in LLMs, where 

NMT models benefited less from scaling up.  

 

 

Model bleu_2 bleu_9 meteor_2 meteor_9 

Madlad 28 31 0.55 0.58 

EuroLLM 19 24 0.42 0.54 

Salaman 17 22 0.41 0.46 

Gemma 13 17 0.35 0.41 

4.4 Pre-trained and Fine-tuned Comparison 

Supervised fine-tuning demonstrated clear 

improvements across all models. BLEU scores 

rose by 5-8 points, with Madlad gaining 5 and 

Gemma 8. METEOR improved by 0.04-0.13, with 

the largest gains observed in LLMs (EuroLLM 

+0.10, Gemma +0.13).  

While NMT models led with strong baseline 

performance, they showed moderate improvement. 

In contrast, LLMs started with lower scores but 

presented comparably larger gains, narrowing the 

performance gap. Overall, fine-tuning had the 

strongest impact on LLMs, significantly enhancing 

their translation quality.  

 

 

Models  BLEU METEOR CHRF ROUGE 

Madlad 28 0.55 60 0.55 

Madlad-lt 33 0.59 62 0.58 

NLLB 26 0.52 58 0.52 

NLLB-lt 31 0.55 60 0.55 

Helsinki 21 0.48 55 0.49 

Helsinki-lt 28 0.53 58 0.55 

EuroLM 19 0.42 49 0.43 

EuroLM-lt 26 0.52 62 0.55 

Gemma 13 0.35 43 0.39 

Gemma-lt 21 0.48 59 0.53 

4.5 Comparison of Fine-tuning and Scaling 

Fine-tuning small models (~2B) led to substantial 

gains (BLEU +5-8, METEOR +0.04-0.13). 

However, compared to larger pre-trained models 

(~9B), fine-tuned models saw smaller performance 

differences (BLEU +1-4, METEOR +0.02-0.07).  

 

 
 

Figure 3:  Pre-trained and Fine-tuned Comparison 

Figure 2: Pre-trained and Scaled Comparison. 

Table 3: Measures of Pre-trained and Fine-tuned. 

 

Table 2: Measures of Pre-trained and Scaled Models. 

Figure 1: Pre-trained model evaluation. 

Figure 4: Scaled and Fine-tuning Comparison.  



129
 
 

Model bleu_9 bleu_ft meteor_9 meteor_ft 

Madlad 31 33 0.58 0.59 

EuroLLM 24 26 0.54 0.52 

Gemma 17 21 0.41 0.48 

 

4.6 Discussion on Pre-trained Model 

Evaluation 

Automatic evaluation demonstrated that NMT 

models consistently outperformed LLMs in 

translation tasks, highlighting their domain-

specific optimisation and better semantic handling. 

Madlad and NLLB taking the lead across all 

models, which could be attributed to their 

extensive multilingual capabilities, enabling 

broader linguistic variation and generalisation 

through parameter sharing (Pires et al., 2019). 

While the underlying success factor is the 

emphasis on data quality, where Madlad’s team 

prioritised manual auditing, while NLLB curated 

custom corpus (Kudugunta et al., 2023; Costa-

Jussà et al., 2022). Remarkably, NLLB achieved 

nearly identical results to Madlad despite having 

half the parameters, likely due to the use of back-

translation and knowledge distillation techniques. 

Helsinki, despite being smaller (<1B), surpassed 

all LLMs, benefiting from its specialisation in 

Baltic languages. Nevertheless, it still trailed 

behind Madlad and NLLB, possibly because it was 

developed with limited resources compared to 

other company-backed models. EuroLLM and 

Salamandra performed comparably to Helsinki, 

showing that smaller LLMs can achieve 

competitive performance when designed with a 

task-specific focus and an emphasis on a high-

quality, diverse dataset. Finally, Gemma produced 

the weakest results, despite its equivalent size and 

utilisation of distillation, likely caused by its 

English-focused training, which lacked 

multilingual depth (Team et al., 2024).  

4.7 Discussion on Statistical and Practical 

Significance 

The lack of statistical significance in the t-score 

could be attributed to the small sample size, which 

increased the probability of type II error (Huang, 

2017). In comparison, Cohen's d practical value 

revealed a large effect (2.5) between best and worst 

models and a small effect between close 

performers (e.g., EuroLLM – Salamandra at 0.12), 

aligning with automatic evaluations. Though 

threshold values are estimated and may not be 

universal (Corell et al., 2020), when used alongside 

other evaluation methods, they reinforce the 

reliability of the study’s findings. 

4.8 Error Analysis with Human Evaluation 

Models varied in accuracy with most common 

mistakes including literal translations of idioms 

e.g. "field" was translated as "physical location" 

instead of "area of research or "shine a light" lost 

its metaphorical meaning. Mistranslations of 

uncommon terms such as "rabid dog" was 

interpreted by Gemma as "red dog", while Helsinki 

presented “rabid” as “rabin”. Hallucinations were 

observed from LLMs, particularly from EuroLLM, 

which regularly appended incorrect dates.  

Fluency issues were widespread, with grammar 

being the most common error, with models using 

incorrect suffixes, verb tenses and pronouns. 

Notably, Gemma occasionally repeated words or 

used basic synonyms, showing limited vocabulary.  

Appropriateness, which considers contextual 

and cultural relevance, proved that most models 

lacked official, scientific or field-specific 

terminologies and often reused English phrases. 

Madlad: Strong domain-specific terms, though 

making minor grammatical errors. NLLB: 

Promising results but prone to ungrammatical and 

inaccurate terminology. Helsinki: Performed 

poorly with often mistranslations and Anglicisms. 

EuroLLM: Preserved the intent but suffered from 

hallucinations (e.g. added dates). Salamandra: 

Better than Gemma but had a limited vocabulary 

and common mistranslations. Gemma: Weakest 

among all models with frequent grammatical and 

terminology errors or untranslated phrases. 

 

Models  Accur. Flue. Appr. Total  

Madlad 4 4 5 4 

NLLB 3 4 4 4 

EuroLLM 3 4 4 4 

Helsinki 3 3 3 3 

Salaman. 3 3 3 3 

Gemma 2 2 2 2 

 

4.9 Discussion on Error Analysis 

Human evaluation largely reinforced the automatic 

metrics rankings, while identifying overlooked 

word-level mismatches and error patterns. Where 

Madlad and NLLB correlated to automatic 

Table 4: Measures of Scaling and Fine-tuning.  

Figure 5: Measures of Human Evaluation.   
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evaluation, while Helsinki and EuroLLM diverged. 

EuroLLM exhibited frequent hallucinations, 

whereas Helsinki was more accurate but struggled 

with domain-specific terms. Gemma performed the 

worst with weak grammatical comprehension and 

word repetitions. These insights highlight the need 

for improved grammatical accuracy, contextual 

awareness, and vocabulary breadth in Lithuanian. 

4.10 Overall Discussion of Results 

Performance collectively improved with model 

size, while NMT models, due to specialised design 

and insufficient datasets, face a plateau in scaling 

effect (Kaplan et al., 2020; Ghorbani et al., 2021). 

In contrast, LLMs showed distinct improvement, 

accentuating better generalisation with increased 

parameters (Wei et al., 2024). However, scaling is 

a resource-intensive choice, making it impractical 

for low-funded research (Whittaker, 2021).  

Fine-tuning offers a cost-effective alternative, 

significantly increasing smaller models’ 

performance, especially LLMs, by enhancing the 

output’s structure and coherence. Regardless of 

these benefits, this process has undesirable 

drawbacks, like concept forgetting, dependency on 

data quality and overfitting after a certain point 

(Mukhoti et al., 2023; Dodge et al., 2020). These 

issues are especially concerning in low-resource 

languages with limited diversity and quality data. 

Moreover, smaller models (<2B) often lack 

sufficient multilingual representations (Conneau et 

al., 2020). While parameter-efficient methods such 

as LoRA can help, they cannot fully compensate 

for the advantages offered by large-scale models 

(Pfeiffer et al., 2020). Therefore, fine-tuning 

improves performance but does not overcome the 

inherent limitations of smaller models.  

5 Conclusion  

5.1 Research Limitations 

This study was constrained by 12GB VRAM GPU 

(UcrelHex, 2024), which restricted the ability to 

fine-tune or evaluate larger models. Access to more 

powerful hardware may have yielded different 

results. Additionally, the focus on open-

source/open-weight models ensured transparency 

and accessibility but excluded closed-source 

alternatives, possibly limiting performance range. 

5.2 Future Work 

Future research should prioritise expanding 

resources for low-resource language communities, 

as emphasised by the NLLB project, which 

focused on dataset collection before model design. 

With the use of distillation, to ensure efficiency, 

however, this process is limited by its knowledge 

retention and alternatives such as the Mixture of 

Experts (MoE) framework show promise by 

activating only the relevant networks, supporting 

scalability without increasing computational costs 

(Koishekenov et al., 2022).  

Furthermore, advocating for open-source 

models is essential in supporting ethical, inclusive 

and transparent NLP research, especially in 

underrepresented languages. However, many high-

performing models remain closed-source, limiting 

accessibility and collaboration (Worth et al., 2024). 

As model architectures evolve, a clearer 

classification standard is needed as inconsistencies 

between model labelling complicate comparisons. 

Less ambiguous categorisation would enhance 

transparency and rationalise future research.  

5.3 Overall Conclusion 

This research evaluated LLMs and NMT models' 

performance in translating into Lithuanian, a low-

resourced language, and revealed consistent 

outperformance of small NMT models compared 

to similarly sized LLMs. However, after scaling 

models (~7-9B parameters), higher performance 

gains were observed with LLMs, suggesting their 

better generalisation abilities while NMT models 

remain more efficient for translation tasks within 

resourced-constrained settings. Additionally, fine-

tuning significantly enhances translation quality, 

introducing trade-offs as potential knowledge loss. 

Ultimately, the key barriers to expanding 

translation capabilities for underrepresented 

languages remain computational constraints and 

data availability. Addressing these challenges 

requires continued investment in multilingual 

datasets and efficient training methods for building 

inclusive and reliable translation systems. 
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