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Abstract

Machine translation has significantly
advanced due to the development of
transformer architecture, which is utilised
by many modern deep-learning models.
However, low-resource languages, such as
Lithuanian, still face challenges stemming
from the limited availability of training
data and resource constraints. This study
examines the translation capabilities of
Neural Machine Translation (NMT)
models and Large Language Models
(LLMs), comparing their performance in
low-resource translation tasks.
Furthermore, it assesses the impact of
parameter scaling and fine-tuning on their
effectiveness in  enhancing  model
performance. The evaluation showed that
while LLMs demonstrated proficiency in
low-resource translation, their results were
lower compared to NMT models, which
remained consistent across smaller
variants. However, as model size increased,
the lead was not as prominent, correlating
with automatic and human evaluations. The
effort to enhance translation accuracy
through fine-tuning proved to be an
effective strategy, demonstrating
improvements in vocabulary expansion
and structural coherence in both
architectures. These findings highlight the
importance of  diverse datasets,
comprehensive model design, and fine-
tuning techniques in addressing the
challenges of low-resourced language
translation. This project, one of the first
studies to focus on the low-resourced
Lithuanian language, aims to contribute to
the broader discourse and ongoing efforts
to enhance accessibility and inclusivity in
Natural Language Processing.
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1 Introduction

The field of Natural Language Processing (NLP)
has been essential in enhancing access to
information and promoting inclusivity across
different languages. Machine Translation (MT)
was developed to utilise computers in overcoming
communication gaps and facilitating cross-
linguistic cooperation, with early efforts focusing
on translating Russian to English. However,
despite significant advancements in LLMs, MT
and NLP in general, many low-resourced
languages  remain  underrepresented  and
overlooked by the rapidly growing Al industry.

It is worth noting that Machine Translation has
long been a key focus in NLP with the aim of
enabling computers to translate natural language
automatically. Initially, the field was dominated by
the Rule-Based (RB) approach, which relied on
manually constructed linguistic rules and
dictionaries. However, this method was prone to
error, resource intensive and had scalability
implications when transferring rules between
different languages (Wang et al., 2022). Due to
these limitations, interest in RB systems declined,
leading to a slowdown in the progress within the
MT field. Nevertheless, some continued, resulting
in the development of highly accurate RB systems
such as Systran and DeeplL, while they later
transitioned first to statistical and after that to
neural network-based architectures.

The field saw meaningful breakthroughs with
the adoption of corpus-based methods following
the Statistical Machine Translation (SMT), which
was reintroduced in the early 1990s by IBM
researchers (Brown et al., 1990). SMT leverages
large parallel texts and probabilistic models to
make predictions on the most likely translation.
Initially, these systems relied on single-word
mappings, although this introduced many errors in
semantic meaning and word reordering, leading to
a shift toward phase-based translation (Lopez,
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2008). This approach was the foundation for an
early version of the Google Translate engine.
Despite these advancements, SMT struggled with
long-distance word ordering and data sparsity
issues, particularly for linguistically distant
language pairs (Wang et al., 2022).

The introduction of deep learning techniques,
such as a sequence-to-sequence model structure,
transformed MT. These models, powered by neural
networks utilised an encoder-decoder framework
that mapped input sentences to variable-length
vector representations, ensuring the retention of
sentence structure and meaning (Sutskever, 2014).
The addition of the attention mechanisms allowed
the decoder layer to focus solely on the relevant
input encodings, improving translation fluency and
overcoming SMT weaknesses (Bahdanau, 2014).
This neural process was extended to multilingual
machine translation, where shared encoded
representations could be supported by multiple
decoder layers for different target languages (Dong
et al, 2015).

The  Transformer  model architecture
revolutionised NLP by introducing self-attention
mechanisms, removing the need to use recurrence
and process one token at a time. Unlike earlier
models, these properties allow the model to read all
tokens simultaneously, capturing broad contextual
relationships regardless of sentence length. This
parallel processing led to a significantly faster
training on large datasets, making Transformers the
foundation of NMT models and LLMs (Vaswani,
2017). NMT models follow a sequence-to-
sequence framework, mapping an input sequence
from the source language to the target language.
Where LLMs are typically categorised as auto-
encoding or auto-regressive models, either using
encoder or decoder-only architectures, with the
latter being more frequent and following the
objective of accurately predicting the next token in
the sequence (Dong et al., 2019).

The performance of LLM and NMT models is
dependent on the availability and quality of the
training corpus. These models typically rely on
high-resourced languages, such as English and
German, with low-resourced languages receiving
significantly less representation due to data
limitations (Scao et al., 2022). NMT models are
usually pre-trained on parallel corpora, which

enables a comprehensive representation of
language distribution. In contrast, LLMs are
trained on diverse texts without targeting
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multilingualism, which often limits their ability to
support low-resource tasks (Paupard, 2024).

To address this disparity, researchers reinforced
insufficient parallel corpora with monolingual data
(Znang and Zong, 2016). However, a high
monolingual data ratio can diminish models
learning outcomes, calling for back-translation,
which automatically incorporates translations to
monolingual texts (Sennrich et al., 2015).

An equally critical aspect is dataset quality,
particularly in low-resource settings. A study found
that noisy texts can drastically degrade translation
accuracy, making cleaned and filtered datasets
essential for reliable training (Khayrallah and
Koehn et al., 2018). This is highly relevant for
underrepresented languages, where datasets are
often accumulated using web scraping techniques
such as Common Crawl, which collect texts from
various internet sources (Toral et al., 2017; Baack,
2024). These findings highlight the key challenges
for both NMT models and LLMs that require high
volumes of training data but are constrained to
limited, low-quality, low-resourced language texts.

The open source and distillation techniques seek
to bridge this gap and support a transparent and
community-driven development process to direct a
more inclusive and comprehensive language
technology (White et al., 2024). While advocates
for the closed-source design argue that it offers
better security and data protection guarantees (Xi,
2025). Despite these claims, closed-source models
remain vulnerable to various security risks,
including adversarial attacks, suggesting that their
motivations may be ineffective (Das et al., 2025).

To utilise both open-source accessibility and
closed-source performance, researchers have
turned to knowledge distillation, where smaller
student models learn from larger teacher models.
This technique reduces computational demands
while ensuring high accuracy and maintainability
of core capabilities (Hsieh et al., 2023). The
effectiveness was demonstrated by models like
Deepseek, which outperformed state-of-the-art
models in multiple evaluation benchmarks
(Deepseek-Al 2025).

The present study will experiment with the
distilled versions of both NMT and LLM,
including NLLB and Gemma models (Costa-Jussa
etal., 2022; Team et al., 2024). Although NLLB is
fully open-sourced, Gemma follows an open-
weights approach where only the model’s
parameters are made available without source



code. While not as transparent as open-source, this
still enables customisation and adaptation,
supporting resource-constrained teams working on
low-resourced language tasks (Zhao et al., 2023).

Finally, it is worth noting that the field of Low-
Resource NLP has gained significant attention in
recent years, as demonstrated by the growing
number of research contributions addressing data
scarcity and model adaptability challenges, further
emphasising the need to improve machine
translation for languages like Lithuanian (Pakray,
2025). The present study is significant in
highlighting the insufficient support and inclusion
of Lithuanian, a low-resourced language, in
modern deep-learning tools and LLMs, an area of
study that has received little attention. Researchers
in developing translation models often neglect the
underrepresented languages due to the limited
availability of parallel corpora, which are essential
for training accurate translation systems
(Chakravarthi et al., 2019). As a result, models
trained on small or insufficiently diverse datasets
often produce inaccurate translations and
hallucinations (Poupard, 2024).

The findings from this study aim to contribute
to the enhancement of translation technology,
making NLP tools more inclusive and accessible
for speakers of less commonly spoken languages.
Furthermore, by understanding the limitations of
pre-trained models and the benefits of fine-tuning,
this research can provide insights in directing
future machine translation efforts for other low-
resource languages.

The rest of the paper is structured as follows:
Section 2 outlines related work, Section 3 presents
the methodology and Section 4 provides evaluation
results, discussion and error analysis. Finally,
Section 5 summarises the work with a conclusion.

2 Related Work

Several studies have addressed the disparity in
lesser-spoken languages by developing more
linguistically inclusive models. The No Language
Left Behind (NLLB) team supported over 200
underrepresented languages by training a
multilingual NMT model on high-quality parallel
and monolingual datasets and adopting self-
supervised learning. These unconventional training
methods demonstrated enhanced translation
performance in low-resource settings even for
languages where explicit training was not
undertaken (Costa-Jussa et al., 2022).
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Martins et al. (2024) trained the EuroLLM
model to address the lack of open-weight LLMs for
European languages. The authors used a parallel
corpus that included nearly an equal number of
English and non-English representations. Their
findings indicated that carefully curated datasets
and a custom tokeniser enabled the model to
outperform much larger competitors in translation
tasks.

Nakvosas et al. (2024) discussed the insufficient
number of Lithuanian language tokens in the
Llama model. They employed a supervised fine-
tuning (SFT) technique to improve the model’s
performance in English-Lithuanian tasks. This
approach involved training a pre-existing model on
a high-quality custom dataset, allowing it to
enhance its learning and generation accuracy,
especially in handling previously unseen data
(Church et al., 2021).

Another fundamental challenge is the high
computational costs associated with training LLMs
and NMT models as they often contain billions of
parameters, requiring extensive memory, storage
and processing power (Hadi et al., 2023). These
demands create significant barriers for smaller
research teams, especially in underrepresented
linguistic communities.

To address resource constraints, researchers
have explored performance-efficient fine-tuning
(PEFT) techniques. One widely adopted approach
is quantisation, which reduces the precision of
model parameters (e.g., to 8-bit or 4-bit), lowering
memory usage without experiencing major
performance loss (Dettmers et al., 2024). Low-
Rank Adaptation (LoRA) further optimises
resource requirements by applying fine-tuning
only to targeted layers, preserving strong
multilingual performance while reducing trainable
parameters (Hu et al., 2021). These techniques
provide effective solutions to optimise resource
usage, democratising access to LLMs and NMT
models for low-resourced language researchers.

Finally, a key research question is whether
LLM:s can match or surpass well-established NMT
models in low-resource language translation.
While multilingual LLMs such as Gemma and
Llama have demonstrated effectiveness in high-
resourced translation tasks, achievements in low-
resourced languages, such as Lithuanian, have
often remained undiscovered. Furthermore, LLM
architecture may suffer from accuracy loss and
hallucinations, where models generate fabricated



information when handling large multilingual
datasets (Dong, 2024).

Further research is essential to assess the
genuine  performance of LLMs on
underrepresented languages and to determine the
trade-offs between model size and fine-tuning in
translation quality, thereby contributing to more
inclusive NLP systems.

3 Methodology

The adopted methodology, detailed in this section
seeks to reply to the following questions:

1. How do pre-trained LLMs and NMT
models perform in low-resourced language
translation?

2. Does fine-tuning improve translation
accuracy? Is it comparable to parameter scaling?

In particular, we outline the data, models and
evaluation methods employed in this study and
acknowledge experimental limitations.

3.1 Research Design and Data Collection

This study follows an empirical, quantitative
approach to evaluate model performance. Models,
datasets and fine-tuning tools were obtained
through the Transformers library, which provides
open-access NLP resources.

Supervised Fine-tuning (SFT) requires rich
translation examples. Although scaling laws
suggest that the optimal dataset size should be
proportional to the model’s parameter number. For
example, a 1.3 billion parameter model (NLLB)
would need around 30 million sentences (Hoffman
et al., 2022). However, further recent research
shows that smaller, diverse datasets can still yield
sufficient performance (Oliver and Wang, 2024;
Zoph et al., 2022).

Given resource limitations and limited text
availability, a dataset of 300,000 English-
Lithuanian sentence pairs was compiled from the
following corpora:

Medical Corpus — domain-specific translations
with complex terminology.

Parliamentary Corpus — structured sentence
pairs from official proceedings.

Common Crawl Corpus — public web data,
cleaned to remove foreign tokens, short or
ungrammatical sentences.

Wikipedia Corpus verified translated
sentences from Wikipedia resources.
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3.2 Model Choice

The selection of models was guided by open-
source or open-weights availability to avoid
licensing constraints and facilitate further
development. Additionally, given memory
constraints, around 2 billion parameter models
were selected.

Gemma — Google’s lightweight Gemini-based
LLM for broad NLP tasks (Team et al., 2024).

EuroLLM — Unbabel’s LLM, optimised for
multilingual translation tasks across European
languages (Martins et al., 2024).

Salamandra — BSC-LT’s LLM, focused on
European languages (Gonzalez-Agirre et al, 2025).

NLLB —Meta’s NMT model, covering 200 low-
resourced languages (Costa-Jussa et al., 2022).

Helsinki — NMT model specialised in Baltic
languages, ideal for Lithuanian translation
(Tiedemann et al., 2024).

Madlad — Google’s NMT model supporting 400
languages (Kudugunta et al., 2023).

3.3 Evaluation Metrics

Model performance was quantitatively evaluated
at two stages: baseline (pre-trained) and post-SFT.
The following automatic metrics were used:

SacreBLEU — an improved version of BLUE,
measuring n-grams overlap but limited in semantic
meaning and synonyms (Papineni et al., 2002).

CHRF - based on character-level n-gram
overlaps, effective for morphologically rich
languages and correlating with human judgement
(Popovié, 2015; Lee et al., 2023).

ROUGE - evaluates precision and quality by
measuring unigrams, bigrams, and sequence
overlap (Lin and Och, 2004).

METEOR - enhances BLEU by considering
synonym matching, stemming, and recall,
accounting for a better semantic alignment
(Banerjee and Lavie, 2005).

3.4 Human Evaluation

Translations were manually assessed on accuracy,
fluency, and appropriateness, following Freitag et
al. (2021) guidelines and scored from 1 (very poor)
to 5 (excellent). Due to the time constraints, only a
subset of sentences was evaluated that covered
scientific, official, and casual contexts, with an
emphasis placed on semantic ambiguity and
metaphorical language. The aim of human
evaluation was to identify the strengths and
weaknesses of each model in producing



grammatically correct and contextually relevant
translations.

3.5 Model Evaluation

Each model was configured to correctly handle
source and target languages. NMT models require
explicit language identifiers, such as appending a
prefix to the input sentence for Helsinki. While
LLMs are more general-purpose and use a prompt-
based format. For EuroLLM, source and target
prefixes were needed, where Gemma used special
tokens for the start and end of inputs and responses.

Models translated 100 unique test sequences
from the Flores+ dataset. The Transformers library
was used for tokenisation and inference. Generated
translations were decoded and compared using
BLEU, METEOR, CHRF and ROUGE.

To assess the impact of model size, both ~2B
and larger models (up to 9B parameters) were
compared, excluding NLLB and Helsinki, as larger
versions were not available. Apart from applying
quantisation (4-bit) for efficiency, the evaluation
process remained consistent with the previous step.
Aiming to determine whether increasing model
size shows improvement in translation quality.

3.6  Statistical and Practical Significance

To verify whether the differences in model
performances were meaningful, t-scores were

calculated for each metric using the formula:
value—mean

t — score = 2
standard deviation

Given a small sample size (6) and targeting a
95% confidence level, a t-critical value of 2.571
was used. Scores exceeding this threshold were
considered to have a statistically significant
difference (Benjamin et al., 2018).

Furthermore, to complement  statistical
significance, Cohen's d effect was used to evaluate
the practical significance based on the formula:
Cohen's d = meanl—-mean2

standard deviation

Providing the magnitude of the differences.
Effects of up to 0.5 are considered small to
medium, while values >0.8 indicate a strong effect
(Gignac and Szodorai, 2016). Together, these
measures ensure a robust and comprehensive
interpretation of model performance differences.

3.7 Fine-Tuning Models

Due to high resource demands, fine-tuning focused
on ~2B parameter models, utilising memory-
efficient techniques. Models were quantised to 4-
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bit and fine-tuned with LoRA, targeting attention
and feed-forward layers to reduce overhead while
preserving performance.

Training used small batch sizes, combined with
gradient accumulation, 2e-4 learning rate with
linear scheduling, and Adam optimiser to produce
gradual and efficient convergence. Models were
evaluated consistently every 500 or 1,000 training
steps with 100 test-set sentences separated from
prior training and utilising the same metrics as in
the baseline evaluation phase. This iterative
process ensured steady performance monitoring
and allowed parameter adjustments as needed.

4 Evaluation Results, Discussion and
Error Analysis

4.1 Performance Comparison with

Automatic Metrics

The pre-trained NMT models (Madlad, NLLB,
Helsinki)  generally  outperformed LLMs
(EuroLLM, Salamandra, Gemma).

Madlad presented the best BLEU, CHRF and
overall scores, indicating strong alignment with
reference translations. NLLB followed closely,
maintaining a good balance between lexical
accuracy and semantic variation (high METEOR).
Helsinki performed well at the character-level
(CHRF) despite a lower BLEU score. EuroLLM
led amongst LLMs with relatively higher BLEU
and METEOR scores. Gemma achieved the lowest
overall scores with poor BLEU and ROUGE
results, suggesting minimal overlap and improper
sentence structure.

These findings point to NMT models being
better suited for machine translation than LLMs.

Models BLEU | METEOR | CHRF | ROUGE
Madlad 28 0.55 60 0.55
NLLB 26 0.52 58 0.52
Helsinki | 21 0.48 55 0.48
EuroLM | 19 0.42 49 0.43
Salaman. | 17 0.41 50 0.42

Table 1: Pre-trained model evaluation results.
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Figure 1: Pre-trained model evaluation.

4.2 Statistical and Practical Significance

T-scores showed that while Madlad consistently
performed best and Gemma worst, neither deviated
significantly from the mean, not exceeding the
2.571 threshold of 95% confidence. This indicates
no statistical performance difference among
models.

However, Cohen’s d revealed strong practical
differences contradicting the t-score. The effect
sizes between the best- and worst-performing
models, Madlad and Gemma, were on average 2.60
across all metrics, well above the 0.8 threshold for
a large effect. Despite not reaching statistical
significance, the practical performance difference
was considerable.

4.3 Model Size Comparison

Larger models (~9B parameters) demonstrated
consistent performance gain over their smaller
variants (~2B), raising BLUE scores by 3-5 points
while METEOR gains showed more variability,
ranging from 0.03 to 0.12 points. The performance
increase was more noticeable in LLMs, where
NMT models benefited less from scaling up.
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Figure 2: Pre-trained and Scaled Comparison.

4.4 Pre-trained and Fine-tuned Comparison

Supervised fine-tuning demonstrated clear
improvements across all models. BLEU scores
rose by 5-8 points, with Madlad gaining 5 and
Gemma 8. METEOR improved by 0.04-0.13, with
the largest gains observed in LLMs (EuroLLM
+0.10, Gemma +0.13).

While NMT models led with strong baseline
performance, they showed moderate improvement.
In contrast, LLMs started with lower scores but
presented comparably larger gains, narrowing the
performance gap. Overall, fine-tuning had the
strongest impact on LLMs, significantly enhancing
their translation quality.

5 ACrosS PreTrained ~2b and Finetuned

Figure 3: Pre-trained and Fine-tuned Comparison

Models BLEU | METEOR | CHRF | ROUGE
Madlad 28 0.55 60 0.55
Madlad-It | 33 0.59 62 0.58
NLLB 26 0.52 58 0.52
NLLB-It 31 0.55 60 0.55
Helsinki 21 0.48 55 0.49
Helsinki-1t | 28 0.53 58 0.55
EuroLM 19 0.42 49 0.43
EuroLM-1It | 26 0.52 62 0.55
Gemma 13 0.35 43 0.39
Gemma-It | 21 0.48 59 0.53

Table 3: Measures of Pre-trained and Fine-tuned.

Model bleu 2 | bleu 9 | meteor 2 | meteor 9
Madlad 28 31 0.55 0.58
EuroLLM | 19 24 0.42 0.54
Salaman | 17 22 0.41 0.46
Gemma 13 17 0.35 0.41

Table 2: Measures of Pre-trained and Scaled Models.
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4.5 Comparison of Fine-tuning and Scaling

Fine-tuning small models (~2B) led to substantial
gains (BLEU +5-8, METEOR +0.04-0.13).
However, compared to larger pre-trained models
(~9B), fine-tuned models saw smaller performance
differences (BLEU +1-4, METEOR +0.02-0.07).

Figure 4: Scaled and Fine-tuning Comparison.



Model bleu_9 | bleu_ft | meteor_9 | meteor_ft

Madlad 31 33 0.58 0.59

EuroLLM | 24 26 0.54 0.52

Gemma 17 21 0.41 0.48
Table 4: Measures of Scaling and Fine-tuning.

4.6 Discussion on Pre-trained Model

Evaluation

Automatic evaluation demonstrated that NMT
models consistently outperformed LLMs in
translation tasks, highlighting their domain-
specific optimisation and better semantic handling.
Madlad and NLLB taking the lead across all
models, which could be attributed to their
extensive multilingual capabilities, enabling
broader linguistic variation and generalisation
through parameter sharing (Pires et al., 2019).
While the underlying success factor is the
emphasis on data quality, where Madlad’s team
prioritised manual auditing, while NLLB curated
custom corpus (Kudugunta et al., 2023; Costa-
Jussa et al., 2022). Remarkably, NLLB achieved
nearly identical results to Madlad despite having
half the parameters, likely due to the use of back-
translation and knowledge distillation techniques.
Helsinki, despite being smaller (<1B), surpassed
all LLMs, benefiting from its specialisation in
Baltic languages. Nevertheless, it still trailed
behind Madlad and NLLB, possibly because it was
developed with limited resources compared to
other company-backed models. EuroLLM and
Salamandra performed comparably to Helsinki,
showing that smaller LLMs can achieve
competitive performance when designed with a
task-specific focus and an emphasis on a high-
quality, diverse dataset. Finally, Gemma produced
the weakest results, despite its equivalent size and
utilisation of distillation, likely caused by its
English-focused  training, = which  lacked
multilingual depth (Team et al., 2024).

4.7 Discussion on Statistical and Practical
Significance

The lack of statistical significance in the t-score
could be attributed to the small sample size, which
increased the probability of type II error (Huang,
2017). In comparison, Cohen's d practical value
revealed a large effect (2.5) between best and worst
models and a small effect between close
performers (e.g., EuroLLM — Salamandra at 0.12),
aligning with automatic evaluations. Though

threshold values are estimated and may not be
universal (Corell et al., 2020), when used alongside
other evaluation methods, they reinforce the
reliability of the study’s findings.

4.8 Error Analysis with Human Evaluation

Models varied in accuracy with most common
mistakes including literal translations of idioms
e.g. "field" was translated as "physical location"
instead of "area of research or "shine a light" lost
its metaphorical meaning. Mistranslations of
uncommon terms such as "rabid dog" was
interpreted by Gemma as "red dog", while Helsinki
presented “rabid” as “rabin”. Hallucinations were
observed from LLMs, particularly from EuroLLM,
which regularly appended incorrect dates.

Fluency issues were widespread, with grammar
being the most common error, with models using
incorrect suffixes, verb tenses and pronouns.
Notably, Gemma occasionally repeated words or
used basic synonyms, showing limited vocabulary.

Appropriateness, which considers contextual
and cultural relevance, proved that most models
lacked official, scientific or field-specific
terminologies and often reused English phrases.

Madlad: Strong domain-specific terms, though
making minor grammatical errors. NLLB:
Promising results but prone to ungrammatical and
inaccurate terminology. Helsinki: Performed
poorly with often mistranslations and Anglicisms.
EuroLLM: Preserved the intent but suffered from
hallucinations (e.g. added dates). Salamandra:
Better than Gemma but had a limited vocabulary
and common mistranslations. Gemma: Weakest
among all models with frequent grammatical and
terminology errors or untranslated phrases.

Models
Madlad
NLLB

EuroLLM
Helsinki
Salaman.

Accur. | Flue. Total

Appr.

N[ W|W[W| W]
N W WA D
N WIWKA| | W
N W WA A&

Gemma

Figure 5: Measures of Human Evaluation.
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4.9 Discussion on Error Analysis

Human evaluation largely reinforced the automatic
metrics rankings, while identifying overlooked
word-level mismatches and error patterns. Where
Madlad and NLLB correlated to automatic



evaluation, while Helsinki and EuroLLM diverged.
EuroLLM exhibited frequent hallucinations,
whereas Helsinki was more accurate but struggled
with domain-specific terms. Gemma performed the
worst with weak grammatical comprehension and
word repetitions. These insights highlight the need
for improved grammatical accuracy, contextual
awareness, and vocabulary breadth in Lithuanian.

4.10 Overall Discussion of Results

Performance collectively improved with model
size, while NMT models, due to specialised design
and insufficient datasets, face a plateau in scaling
effect (Kaplan et al., 2020; Ghorbani et al., 2021).
In contrast, LLMs showed distinct improvement,
accentuating better generalisation with increased
parameters (Wei et al., 2024). However, scaling is
a resource-intensive choice, making it impractical
for low-funded research (Whittaker, 2021).

Fine-tuning offers a cost-effective alternative,
significantly =~ increasing  smaller = models’
performance, especially LLMs, by enhancing the
output’s structure and coherence. Regardless of
these benefits, this process has undesirable
drawbacks, like concept forgetting, dependency on
data quality and overfitting after a certain point
(Mukhoti et al., 2023; Dodge et al., 2020). These
issues are especially concerning in low-resource
languages with limited diversity and quality data.

Moreover, smaller models (<2B) often lack
sufficient multilingual representations (Conneau et
al., 2020). While parameter-efficient methods such
as LoRA can help, they cannot fully compensate
for the advantages offered by large-scale models
(Pfeiffer et al., 2020). Therefore, fine-tuning
improves performance but does not overcome the
inherent limitations of smaller models.

5 Conclusion

5.1

This study was constrained by 12GB VRAM GPU
(UcrelHex, 2024), which restricted the ability to
fine-tune or evaluate larger models. Access to more
powerful hardware may have yielded different
results. Additionally, the focus on open-
source/open-weight models ensured transparency
and accessibility but excluded closed-source
alternatives, possibly limiting performance range.

Research Limitations
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5.2 Future Work

Future research should prioritise expanding
resources for low-resource language communities,
as emphasised by the NLLB project, which
focused on dataset collection before model design.
With the use of distillation, to ensure efficiency,
however, this process is limited by its knowledge
retention and alternatives such as the Mixture of
Experts (MoE) framework show promise by
activating only the relevant networks, supporting
scalability without increasing computational costs
(Koishekenov et al., 2022).

Furthermore, advocating for open-source
models is essential in supporting ethical, inclusive
and transparent NLP research, especially in
underrepresented languages. However, many high-
performing models remain closed-source, limiting
accessibility and collaboration (Worth et al., 2024).

As model architectures evolve, a clearer
classification standard is needed as inconsistencies
between model labelling complicate comparisons.
Less ambiguous categorisation would enhance
transparency and rationalise future research.

5.3 Overall Conclusion

This research evaluated LLMs and NMT models'
performance in translating into Lithuanian, a low-
resourced language, and revealed consistent
outperformance of small NMT models compared
to similarly sized LLMs. However, after scaling
models (~7-9B parameters), higher performance
gains were observed with LLMs, suggesting their
better generalisation abilities while NMT models
remain more efficient for translation tasks within
resourced-constrained settings. Additionally, fine-
tuning significantly enhances translation quality,
introducing trade-offs as potential knowledge loss.
Ultimately, the key barriers to expanding
translation capabilities for underrepresented
languages remain computational constraints and
data availability. Addressing these challenges
requires continued investment in multilingual
datasets and efficient training methods for building
inclusive and reliable translation systems.
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