@inproceedings{lo-mitkov-2025-anaphora,
title = "Does Anaphora Resolution Improve {LLM} Fine-Tuning for Summarisation?",
author = "Lo, Yi Chun and
Mitkov, Ruslan",
editor = "Picazo-Izquierdo, Alicia and
Estevanell-Valladares, Ernesto Luis and
Mitkov, Ruslan and
Guillena, Rafael Mu{\~n}oz and
Cerd{\'a}, Ra{\'u}l Garc{\'i}a",
booktitle = "Proceedings of the First Workshop on Comparative Performance Evaluation: From Rules to Language Models",
month = sep,
year = "2025",
address = "Varna, Bulgaria",
publisher = "INCOMA Ltd., Shoumen, Bulgaria",
url = "https://aclanthology.org/2025.r2lm-1.7/",
pages = "59--66",
abstract = "This study investigates whether adding anaphora resolution as a preprocessing step before fine-tuning the text summarisation application in LLM can improve the quality of summary output. Two sets of training with the T5-base model and BART-large model using the SAMSum dataset were conducted. One uses the original text and the other uses the text processed by a simplified version of MARS (Mitkov{'}s Anaphora Resolution System). The experiment reveals that when T5-base model is fine-tuned on the anaphora-resolved inputs, the ROUGE metrics are improved. In contrast, BART-large model only has a slight improvement after fine-tuning under the same conditions, which is not statistically significant. Further analysis of the generated summaries indicates that anaphora resolution is helpful in semantic alignment."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="lo-mitkov-2025-anaphora">
<titleInfo>
<title>Does Anaphora Resolution Improve LLM Fine-Tuning for Summarisation?</title>
</titleInfo>
<name type="personal">
<namePart type="given">Yi</namePart>
<namePart type="given">Chun</namePart>
<namePart type="family">Lo</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ruslan</namePart>
<namePart type="family">Mitkov</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-09</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the First Workshop on Comparative Performance Evaluation: From Rules to Language Models</title>
</titleInfo>
<name type="personal">
<namePart type="given">Alicia</namePart>
<namePart type="family">Picazo-Izquierdo</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ernesto</namePart>
<namePart type="given">Luis</namePart>
<namePart type="family">Estevanell-Valladares</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ruslan</namePart>
<namePart type="family">Mitkov</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Rafael</namePart>
<namePart type="given">Muñoz</namePart>
<namePart type="family">Guillena</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Raúl</namePart>
<namePart type="given">García</namePart>
<namePart type="family">Cerdá</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>INCOMA Ltd., Shoumen, Bulgaria</publisher>
<place>
<placeTerm type="text">Varna, Bulgaria</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>This study investigates whether adding anaphora resolution as a preprocessing step before fine-tuning the text summarisation application in LLM can improve the quality of summary output. Two sets of training with the T5-base model and BART-large model using the SAMSum dataset were conducted. One uses the original text and the other uses the text processed by a simplified version of MARS (Mitkov’s Anaphora Resolution System). The experiment reveals that when T5-base model is fine-tuned on the anaphora-resolved inputs, the ROUGE metrics are improved. In contrast, BART-large model only has a slight improvement after fine-tuning under the same conditions, which is not statistically significant. Further analysis of the generated summaries indicates that anaphora resolution is helpful in semantic alignment.</abstract>
<identifier type="citekey">lo-mitkov-2025-anaphora</identifier>
<location>
<url>https://aclanthology.org/2025.r2lm-1.7/</url>
</location>
<part>
<date>2025-09</date>
<extent unit="page">
<start>59</start>
<end>66</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Does Anaphora Resolution Improve LLM Fine-Tuning for Summarisation?
%A Lo, Yi Chun
%A Mitkov, Ruslan
%Y Picazo-Izquierdo, Alicia
%Y Estevanell-Valladares, Ernesto Luis
%Y Mitkov, Ruslan
%Y Guillena, Rafael Muñoz
%Y Cerdá, Raúl García
%S Proceedings of the First Workshop on Comparative Performance Evaluation: From Rules to Language Models
%D 2025
%8 September
%I INCOMA Ltd., Shoumen, Bulgaria
%C Varna, Bulgaria
%F lo-mitkov-2025-anaphora
%X This study investigates whether adding anaphora resolution as a preprocessing step before fine-tuning the text summarisation application in LLM can improve the quality of summary output. Two sets of training with the T5-base model and BART-large model using the SAMSum dataset were conducted. One uses the original text and the other uses the text processed by a simplified version of MARS (Mitkov’s Anaphora Resolution System). The experiment reveals that when T5-base model is fine-tuned on the anaphora-resolved inputs, the ROUGE metrics are improved. In contrast, BART-large model only has a slight improvement after fine-tuning under the same conditions, which is not statistically significant. Further analysis of the generated summaries indicates that anaphora resolution is helpful in semantic alignment.
%U https://aclanthology.org/2025.r2lm-1.7/
%P 59-66
Markdown (Informal)
[Does Anaphora Resolution Improve LLM Fine-Tuning for Summarisation?](https://aclanthology.org/2025.r2lm-1.7/) (Lo & Mitkov, R2LM 2025)
ACL