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Abstract

This paper evaluates language model perfor-
mance on Ukrainian language tasks across mul-
tiple downstream benchmarks, including sum-
marization, closed and open question answer-
ing, and translation at both sentence and para-
graph levels. We also introduce LongFlores,
an extension of the FLORES benchmark de-
signed specifically to assess paragraph-level
translation capabilities. In our experiments,
we compare the performance of base mod-
els against their instruction-tuned counterparts
to isolate and quantify the source of perfor-
mance improvements for Ukrainian language
tasks. Our findings reveal that for popular
open source models, base models are stronger
in the few-shot setting for the task than their
instruction-tuned counterparts in the zero-shot
setting. This suggests lower attention paid to
Ukrainian during the instruction-tuning phase,
providing valuable insights for future model de-
velopment and optimization for Ukrainian and
potentially other lower-resourced languages.

1 Introduction

Large Language Models (LLMs) have demon-
strated SOTA performance across various tasks, yet
these capabilities have been predominantly studied
within English-language contexts, both in train-
ing and evaluation. While recent years have wit-
nessed a surge in multilingual LLMs, a critical
question remains unexplored: At which develop-
ment stage do performance improvements for non-
English languages emerge? Is it during pretraining
or instruction-tuning? By investigating this ques-
tion, we can gain valuable insights into the distri-
bution of multilingual data across different stages
of model development.

To address this gap, we evaluate LLLM perfor-
mance across diverse Ukrainian language tasks,
including summarization, extractive and gen-

eral question answering, and translation between
Ukrainian and eight other languages.

Additionally, we introduce a novel benchmark
for long-context translation based on FLORES
(Goyal et al., 2021). Current translation bench-
marks primarily focus on sentence-level evaluation,
with few resources dedicated to assessing long-
context translation capabilities. Yet, paragraph-
level translation more closely resembles real-world
applications and could prove invaluable for devel-
oping LLMs for languages with fewer resources
than English. With effective translation tools, En-
glish instructions can be adapted to lower-resource
languages, transferring English capabilities to those
languages.

As for our main contribution, we present a
thorough evaluation of LLM performance for
Ukrainian across multiple downstream tasks, in-
cluding XLSUM-based summarization, MMLU-
based general question answering, Belebele-based
extractive question answering, a translated version
of SQUAD, and sentence-level translation using
the FLORES benchmark across nine languages.

Second, we introduce LongFlores, a long-
context setting of the FLORES benchmark de-
signed to evaluate paragraph-level translation.

Third, we investigate performance differences
between pretrained and instruction-tuned versions
of models (where available) to isolate the develop-
ment stage at which performance gains occur for
Ukrainian language tasks. Our findings, particu-
larly regarding the source of performance improve-
ments, will benefit other mid-resource languages
by helping researchers and developers focus on the
most impactful development stages for achieving
state-of-the-art results in specific lower-resourced
languages.

All evaluation scripts, our LongFlores
benchmark, eval results, and leaderboard are
published here https://github.com/robinhad/
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ukrainian-1lm-leadeboard to facilitate further
research in this direction.

2 Related work

2.1 Performance gains on pretraining vs
finetuning

Overall, there is an extensive literature for eval-
uating LL.Ms generally, with models like LLama
(Grattafiori et al., 2024) publishing general perfor-
mance gains. Still, models like LLama are trained
on majority of English texts, where 50% of data is
general knowledge English text, 25% of mathemati-
cal and reasoning tokens, 17% code tokens, and 8%
multilingual tokens (Grattafiori et al., 2024). Unfor-
tunately, there is no information about how much
multilingual data is contained during instruction-
tuning phase.

To the best of our knowledge, there are few to
no papers that study this specific gap, but there
are a couple of works that explore the source of
performance gaps in general.

Gao et al. (2024a) explore the effect of multilin-
gual pretraining and instruction tuning on the cross-
lingual knowledge alignment mechanism. Re-
searchers measured cross-lingual alignment specif-
ically and found that instruction-tuning improves
downstream task performance much more than
pretraining. However, they use translated data
from English to measure performance in other lan-
guages. Also, they explore performance in a zero-
shot setting without a few-shot evaluation and, sub-
sequently, don’t explore base models.

Jindal et al. (2024) explore how to expand LLM
knowledge and how that knowledge then affects
downstream performance on different benchmarks.
As claimed by that paper, most of the LLM knowl-
edge could come from pretraining, which then can
be relatively effortlessly transferred to instruction-
tuning capabilities. Nevertheless, they don’t ex-
plore a few-shot setting for base models to see the
origin of LLM performance.

2.2 Benchmarks for Ukrainian

There are numerous benchmarks introduced for
Ukrainian language, such as UA-CBT (Hamotskyi
et al., 2024), Winograd schema challenge (Kuch-
miichuk, 2023), FLORES for multilingual trans-
lation across 200 languages (Goyal et al., 2021),
XL-SUM for summarization (Hasan et al., 2021),
Global MMMU (Singh et al., 2024), which is a
human-validated MMLU questions benchmark and

national exam, ZNO from UNLP 2024 Shared task
(Romanyshyn et al., 2024).

Last, but not least, researchers from INSAIT pre-
sented a set of classic benchmarks as part of release
of their model specifically for Ukrainian language
(Yukhymenko et al., 2025), where they introduced
adapted versions of Winogrande challenge, Hel-
laswag, ARC Easy/Challenge, TriviaQA, GSM-8Kk,
MMLU, IFEval and ZNO, testing knowledge of
the Ukrainian high school curriculum in Ukrainian
language & literature, history, mathematics and
geography. To the best of our knowledge, there
is no comprehensive evaluation of the Ukrainian
language across downstream benchmarks and mea-
suring gains from particular training stages.

3 Benchmarks

We follow the same methodology as IberoBench
(Baucells et al., 2025), by evaluating models across
a set of classic downstream benchmarks.

Summarization. For the summarization task,
we use XLSUM benchmarks based on BBC news
articles and professionally annotated summaries.
We use only Ukrainian split.

Extractive question answering We test
Ukrainian version of SQUAD dataset (Ivanyuk-
Skulskiy et al., 2021), which was translated and
annotated by students. We also use Ukrainian Bele-
bele split (Bandarkar et al., 2024) for this task.

Option question answering As for general
knowledge testing, we use Global MMLU bench-
mark (Singh et al., 2024) from Cohere, which con-
tains adapted MMLU question across various sub-
jects from STEM to Humanities into different lan-
guages that are human-annotated and validated af-
ter translation, making them usable for evaluation.

Translation We test on the classic FLORES
benchmark (Goyal et al., 2021) for sentence-level
translation. Besides that, we introduce a paragraph-
level version of this benchmark called LongFLO-
RES. We test this across 9 languages in both di-
rections from and to Ukrainian. The languages
are: English, Crimean Tatar, Polish, Russian, Ro-
manian, German, Czech, Hungarian, Slovak. We
selected those languages based on several criteria:
1) languages of minorities in Ukraine, 2) languages
of neighboring countries 3) languages of countries
with considerable Ukrainian diaspora. FLORES
benchmarks contain sentence positions and para-
graph metadata, which enable researchers to recon-
struct source paragraphs. This helps us to create
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Figure 1: Comparison across gemma-2-9b-it and
instruction-tuned versions of that model. We can see
that MamayLM provides performance improvement
both over the instruction-tuned version and the base
version, indicating a benefit of extensive instruction-
tuning for Ukrainian.

a paragraph-level benchmark. A similar setting is
introduced for Finno-Ugric languages (Pashchenko
et al., 2025), but is subsequently translated and
validated due to source sentence problems. As a
result, the reconstructed set contains 281 items in a
dev set that we use for this benchmark. We found
sentence-level problems in the FLORES bench-
mark, which are subsequently introduced in the
paragraph-level setting. Despite that, we believe
this benchmark would be helpful to get a rough esti-
mate of translation performance for both sentence-
level and paragraph-level settings, but better bench-
marks are needed.

4 Experimental Setup

Due to budgetary constraints and practicality con-
cerns, we tested popular open source models with
parameters ranging from 4 to 32 billion. We use Im-
evaluation-harness (Gao et al., 2024b) and evaluate
models through the VLLM (Kwon et al., 2023)
framework. For most models, we use a single
node with 2x RTX A6000 Ada and approximately 2
weeks of GPU hours. As for model selection, we se-
lected models based on popularity and claims about
training on Ukrainian data. We run each model on
standardized prompt sets and adapt generation pa-
rameters from existing reference implementations
in Im-evaluation-harness from other languages. As
for metrics, for most benchmarks we use BLEU
(Papineni et al., 2002) (including paragraph-level
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translation as suggested by Deutsch et al. (2023)).
with the exception of Global MMLU for which
we use accuracy score. We evaluate all models in
0-shot and 3-shot settings (with the exception of
base models evaluated only in 3-shot). For model
comparison, we record each model’s ranking on
each task and then calculate its average rank.

5 Results & Discussion

Our evaluation reveals a performance gap between
base and instruction-tuned models when processing
Ukrainian language tasks. The results demonstrate
that pre-training appears to be the primary source of
Ukrainian language capabilities across most model
architectures, with instruction-tuning lacking per-
formance on Ukrainian-specific tasks. We show an
overall breakdown in ?? and a detailed evaluation
by language pair in ??.

Base models consistently outperform their
instruction-tuned counterparts across multiple
model families when evaluated with few-shot
prompting as shown on Figure 2 and in Table 1.
For example, Qwen3-14B-Base (Yang et al., 2025)
achieving an average rank of 11.00 compared
to 18.00 for the instruction-tuned variant, and
Qwen3-8B-Base reaching 16.00 versus 20.67 for
its instruction-tuned version. Similarly, Llama
3.1-8B (Grattafiori et al., 2024) base model (rank
24.17) substantially outperforms the instruct ver-
sion (34.17), while Mistral-7B-v0.3 (Jiang et al.,
2023) base (26.83) exceeds the performance of its
instruction-tuned counterpart (30.83). EuroLLM
(Martins et al., 2024) follows the same trend, with

—— Qwen/Qwen3-8B-Base
Qwen/Qwen3-8B
—— meta-llama/Llama-3.1-8B-Instruct
—— meta-llama/Llama-3.1-8B

Ukrainian

Long FLOREStUkrainian BalEbile Ukrainian

Ukrainian

Figure 2: Comparison of Qwen3 models and Llama-3.1
models. We can see that most of the performance is
contained in a pretraining stage of those models.



Model Belebele | MMLU FLORES | Long SQuAD XLSum Average

Ukrainian | Ukrainian | Ukrainian | FLORES | Ukrainian Ukrainian Rank
Ukrainian

0) INSAIT- | 88.00 63.18 18.98 19.26 34.13 2.59 14.17

Institute/MamayLM-Gemma-2-

9B-IT-v0.1

(0) google/gemma-2-9b-it 87.56 60.38 17.52 18.01 36.39 0.00 18.83

(3) google/gemma-2-9b 86.78 60.94 10.46 9.82 36.99 5.20 17.00

(0) Qwen/Qwen3-14B 87.22 65.35 17.03 16.03 21.66 1.61 18.00

(3) Qwen/Qwen3-14B-Base 90.56 70.64 11.02 8.29 50.91 5.36 11.00

(0) Qwen/Qwen3-8B 84.78 61.63 14.65 14.32 35.26 1.14 20.67

(3) Qwen/Qwen3-8B-Base 86.56 67.26 8.73 6.86 51.80 3.75 16.00

(0) meta-llama/Llama-3.1-8B- | 77.00 48.86 3.43 3.94 19.38 1.00 34.17

Instruct

(3) meta-llama/LLlama-3.1-8B 76.22 51.13 7.96 6.99 36.45 3.67 24.17

(0) utter-project/EuroLLM-9B- | 69.44 50.86 16.00 13.85 27.57 1.55 25.33

Instruct

(3) utter-project/EuroLLM-9B 72.44 52.56 16.38 15.10 4291 4.69 17.17

0) mistralai/Mistral-7B- | 60.00 44.54 9.90 9.62 19.83 1.86 30.83

Instruct-v0.3

(3) mistralai/Mistral-7B-v0.3 71.89 48.43 7.76 6.37 35.22 4.27 26.83

Table 1: Side-by-side comparison between base models in 3-shot setting and instruction-tuned versions in 0-shot.
Across most families, base models demonstrate much better performance for Ukrainian than their instruction-tuned
counterparts, with an exception of gemma-2-9b-it and MamayLM model, tuned specifically for Ukrainian language

understanding

the base model achieving a rank of 17.17 compared
to 25.33 for the instruction-tuned version.

The sole exception to this pattern emerges with
the Gemma-2-9B (Team et al., 2024) family as
shown in Figure 1, where the instruction-tuned
model achieves a better average rank (18.83) than
the base model with 3-shot prompting (17.00).
However, the Ukrainian fine-tuned MamayL.M-
Gemma-2-9B-IT model, achieves the best overall
performance with an average rank of 14.17, sug-
gesting that domain-specific instruction-tuning can
be beneficial when properly executed.

Task-specific analysis reveals that question an-
swering benchmarks like Belebele, Global MMLU,
and SQuAD Ukrainian show variable performance
patterns between base and instruction-tuned mod-
els, indicating that both pre-training knowledge and
instruction-following capabilities contribute to suc-
cess on these tasks. However, base models consis-
tently achieving superior performance on FLORES
translation tasks when provided with few-shot ex-
amples, while instruction-tuned models frequently
struggle with the XLLSum summarization task, of-
ten scoring near zero.

The superior performance of base models
with few-shot prompting suggests that instruction-
tuning datasets may contain insufficient Ukrainian
examples or that the multilingual instruction-
following training process interferes with the mod-
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els’ pre-existing Ukrainian language representa-
tions, being optimized primarily for English.

6 Conclusion

In this study, we evaluated popular large language
models on Ukrainian language tasks to investi-
gate the relative contributions of pre-training and
instruction-tuning to multilingual capabilities. Our
findings demonstrate that instruction-tuned models
consistently underperform their base counterparts
on Ukrainian tasks in zero-shot settings. We at-
tribute this degradation to a lack of Ukrainian in-
struction data during the instruction-tuning phase,
where models appear to lose pre-trained Ukrainian
capabilities without gaining equivalent instruction-
following proficiency in the language. The superior
performance of base models with few-shot prompt-
ing suggests that Ukrainian language understand-
ing in popular models primarily occurs during pre-
training. These results have important implications
for other mid-resource languages. Our study sug-
gests that practitioners should prioritize two key
factors: first, ensuring robust pre-training with sub-
stantial target language representation, and second,
incorporating extensive instruction data in the tar-
get language during instruction-tuning. Without
adequate instruction data, the instruction-tuning
process may diminish rather than enhance multilin-
gual capabilities.
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