@inproceedings{anuradha-etal-2025-toponym,
title = "Toponym Resolution: Will Prompt Engineering Change Expectations?",
author = "Anuradha, Isuri and
Sumanathilaka, Deshan Koshala and
Mitkov, Ruslan and
Rayson, Paul",
editor = "Angelova, Galia and
Kunilovskaya, Maria and
Escribe, Marie and
Mitkov, Ruslan",
booktitle = "Proceedings of the 15th International Conference on Recent Advances in Natural Language Processing - Natural Language Processing in the Generative AI Era",
month = sep,
year = "2025",
address = "Varna, Bulgaria",
publisher = "INCOMA Ltd., Shoumen, Bulgaria",
url = "https://aclanthology.org/2025.ranlp-1.11/",
pages = "95--104",
abstract = "Large Language Models(LLMs) have revolutionised the field of artificial intelligence and have been successfully employed in many disciplines, capturing widespread attention and enthusiasm. Many previous studies have established that Domain-specific Deep Learning models to competitively perform with the general-purpose LLMs (Maatouk et al., 2024;Lu et al., 2024). However, a suitable prompt which provides direct instructions and background information is expected to yield im- proved results (Kamruzzaman and Kim, 2024). The present study focuses on utilising LLMs for the Toponym Resolution task by incorporating Retrieval-Augmented Generation(RAG) and prompting techniques to surpass the results of the traditional Deep Learning models. Moreover, this study demonstrates that promising results can be achieved without relying on large amounts of labelled, domain-specific data. After a descriptive comparison between open-source and proprietary LLMs through different prompt engineering techniques, the GPT-4o model performs best compared to the other LLMs for the Toponym Resolution task."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="anuradha-etal-2025-toponym">
<titleInfo>
<title>Toponym Resolution: Will Prompt Engineering Change Expectations?</title>
</titleInfo>
<name type="personal">
<namePart type="given">Isuri</namePart>
<namePart type="family">Anuradha</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Deshan</namePart>
<namePart type="given">Koshala</namePart>
<namePart type="family">Sumanathilaka</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ruslan</namePart>
<namePart type="family">Mitkov</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Paul</namePart>
<namePart type="family">Rayson</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-09</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 15th International Conference on Recent Advances in Natural Language Processing - Natural Language Processing in the Generative AI Era</title>
</titleInfo>
<name type="personal">
<namePart type="given">Galia</namePart>
<namePart type="family">Angelova</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Maria</namePart>
<namePart type="family">Kunilovskaya</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marie</namePart>
<namePart type="family">Escribe</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ruslan</namePart>
<namePart type="family">Mitkov</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>INCOMA Ltd., Shoumen, Bulgaria</publisher>
<place>
<placeTerm type="text">Varna, Bulgaria</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Large Language Models(LLMs) have revolutionised the field of artificial intelligence and have been successfully employed in many disciplines, capturing widespread attention and enthusiasm. Many previous studies have established that Domain-specific Deep Learning models to competitively perform with the general-purpose LLMs (Maatouk et al., 2024;Lu et al., 2024). However, a suitable prompt which provides direct instructions and background information is expected to yield im- proved results (Kamruzzaman and Kim, 2024). The present study focuses on utilising LLMs for the Toponym Resolution task by incorporating Retrieval-Augmented Generation(RAG) and prompting techniques to surpass the results of the traditional Deep Learning models. Moreover, this study demonstrates that promising results can be achieved without relying on large amounts of labelled, domain-specific data. After a descriptive comparison between open-source and proprietary LLMs through different prompt engineering techniques, the GPT-4o model performs best compared to the other LLMs for the Toponym Resolution task.</abstract>
<identifier type="citekey">anuradha-etal-2025-toponym</identifier>
<location>
<url>https://aclanthology.org/2025.ranlp-1.11/</url>
</location>
<part>
<date>2025-09</date>
<extent unit="page">
<start>95</start>
<end>104</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Toponym Resolution: Will Prompt Engineering Change Expectations?
%A Anuradha, Isuri
%A Sumanathilaka, Deshan Koshala
%A Mitkov, Ruslan
%A Rayson, Paul
%Y Angelova, Galia
%Y Kunilovskaya, Maria
%Y Escribe, Marie
%Y Mitkov, Ruslan
%S Proceedings of the 15th International Conference on Recent Advances in Natural Language Processing - Natural Language Processing in the Generative AI Era
%D 2025
%8 September
%I INCOMA Ltd., Shoumen, Bulgaria
%C Varna, Bulgaria
%F anuradha-etal-2025-toponym
%X Large Language Models(LLMs) have revolutionised the field of artificial intelligence and have been successfully employed in many disciplines, capturing widespread attention and enthusiasm. Many previous studies have established that Domain-specific Deep Learning models to competitively perform with the general-purpose LLMs (Maatouk et al., 2024;Lu et al., 2024). However, a suitable prompt which provides direct instructions and background information is expected to yield im- proved results (Kamruzzaman and Kim, 2024). The present study focuses on utilising LLMs for the Toponym Resolution task by incorporating Retrieval-Augmented Generation(RAG) and prompting techniques to surpass the results of the traditional Deep Learning models. Moreover, this study demonstrates that promising results can be achieved without relying on large amounts of labelled, domain-specific data. After a descriptive comparison between open-source and proprietary LLMs through different prompt engineering techniques, the GPT-4o model performs best compared to the other LLMs for the Toponym Resolution task.
%U https://aclanthology.org/2025.ranlp-1.11/
%P 95-104
Markdown (Informal)
[Toponym Resolution: Will Prompt Engineering Change Expectations?](https://aclanthology.org/2025.ranlp-1.11/) (Anuradha et al., RANLP 2025)
ACL
- Isuri Anuradha, Deshan Koshala Sumanathilaka, Ruslan Mitkov, and Paul Rayson. 2025. Toponym Resolution: Will Prompt Engineering Change Expectations?. In Proceedings of the 15th International Conference on Recent Advances in Natural Language Processing - Natural Language Processing in the Generative AI Era, pages 95–104, Varna, Bulgaria. INCOMA Ltd., Shoumen, Bulgaria.