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Abstract

In common law systems, legal professionals
such as lawyers and judges rely on precedents
to build their arguments. As the volume of
cases has grown massively over time, effec-
tively retrieving prior cases has become essen-
tial. Prior case retrieval (PCR) is an informa-
tion retrieval (IR) task that aims to automati-
cally identify the most relevant court cases for
a specific query from a large pool of potential
candidates. While IR methods have seen sev-
eral paradigm shifts over the last few years, the
vast majority of PCR methods continue to rely
on traditional IR methods, such as BM25. The
state-of-the-art deep learning IR methods have
not been successful in PCR due to two key chal-
lenges: i. Lengthy legal text limitation; when
using the powerful BERT-based transformer
models, there is a limit of input text lengths,
which inevitably requires to shorten the input
via truncation or division with a loss of legal
context information. ii. Lack of legal training
data; due to data privacy concerns, available
PCR datasets are often limited in size, making
it difficult to train deep learning-based models
effectively. In this research, we address these
challenges by leveraging LLM-based text em-
bedders in PCR. LLM-based embedders sup-
port longer input lengths, and since we use
them in an unsupervised manner, they do not re-
quire training data, addressing both challenges
simultaneously. In this paper, we evaluate state-
of-the-art LLM-based text embedders in four
PCR benchmark datasets and show that they
outperform BM25 and supervised transformer-
based models.

1 Introduction

Information retrieval (IR) systems have progressed
through several paradigm shifts in the last few
decades (Zhu et al., 2023; Plum et al., 2024). Initial
IR methods relied on term-based methods such as
BM25 (Robertson et al., 2009) and boolean logic,

focusing on keyword matching for document re-
trieval (Chowdhury, 2010). The paradigm gradu-
ally shifted with the introduction of vector space
models, enabling a more sophisticated understand-
ing of the semantic relationships between queries
and documents (Salton et al., 1975). Initially, these
models relied on statistical language models (Song
and Croft, 1999), but in recent years, neural vec-
tor space models have achieved remarkable perfor-
mance in IR (Guo et al., 2016; Xiong et al., 2021).
More recently, large language models (LLMs) have
been integrated into these vector space models as
embedders, further improving the performance (Ma
et al., 2024; Ranasinghe et al., 2025). LLM-based
embedders have dominated text retrieval bench-
marks such as MTEB (Muennighoff et al., 2023)
and BEIR (Thakur et al., 2021).

Prior case retrieval (PCR) is an IR application
where the goal is to retrieve cases from a large le-
gal database of historical cases that are similar to
a given query case (Fang et al., 2022; Feng et al.,
2024; Li et al., 2021; Tran et al., 2020). PCR holds
substantial practical value, regardless of the legal
system a country follows. In the Common Law
System (as in the United Kingdom and India), le-
gal professionals, such as lawyers and judges, use
precedents (previously decided court cases) to sup-
port their arguments and help achieve their desired
outcome in the present case (Shulayeva et al., 2017).
Even in the Civil Law System (like in China and
France), where legal arguments primarily rely on
statutes, PCR remains essential as it offers key ref-
erence details, including the relevant statutes for
past cases and the court’s rulings, serving both le-
gal experts and those seeking legal advice (Li et al.,
2024b).

While the general domain IR systems have pro-
gressed into neural retrieval models, PCR systems
still rely largely on traditional and term-based meth-
ods such as BM25 (Robertson et al., 2009). Re-
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searchers participating in COLIEE have demon-
strated that BM25 serves as a strong baseline, and
most top-performing systems have employed mod-
els based on BM25 combined with other techniques,
such as TF-IDF and XG-Boost (Joshi et al., 2023).
For example, a traditional language modelling ap-
proach (Ponte and Croft, 1998) proposed in 1998
won the first place (Ma et al., 2021), and a vanilla
BM25 got second place (Rosa et al., 2021) in COL-
IEE 2021 (Rabelo et al., 2022). Furthermore, many
researchers such as Askari et al. (2021) and Joshi
et al. (2023), show that BM25 outperforms many
supervised transformer-based retrieval approaches.

The limited success of neural retrieval models in
PCR can be attributed to two main reasons.

1. Long court cases - The court cases are lengthy
in nature. Many state-of-the-art neural retrieval
models, because of their reliance on BERT models
(Devlin et al., 2019), have a context limit of 512 to-
kens (Khattab and Zaharia, 2020; Ren et al., 2021).
While researchers have attempted to apply these
neural retrieval models to PCR using techniques
such as truncating court cases, they often result
in information loss and suboptimal results (Askari
et al., 2021; Joshi et al., 2023; Nguyen et al., 2021;
Premasiri et al., 2023).

2. Lack of training data - The neural retrievals are
supervised machine learning models and require
a large number of training instances (Khattab and
Zaharia, 2020; Ren et al., 2021). While several
large PCR datasets exist, they are limited to a few
languages and courts, and it is not always possi-
ble to find PCR datasets that are large enough to
properly train neural retrievals, resulting in reduced
performance.

The recently emerged LLM-based text embed-
ders (Muennighoff, 2022; Lee et al., 2024) can
simultaneously address both of these challenges
in PCR. First, they take up to 32,000 tokens as in-
put, which is under the length of most court cases,
addressing the first challenge we discussed. Sec-
ondly, as we will discuss in Section 3.2, LLM-
based text embedders can be utilised in an unsuper-
vised manner in the IR tasks, eliminating the need
for model training and addressing the second chal-
lenge (Ranasinghe et al., 2025). Furthermore, Ni
et al. (2022) demonstrate that LLM-based encoders
also exhibit superior generalisability, showing sig-
nificant improvements not only in the specific tar-
geted scenario but also across a range of general

tasks outside the fine-tuned domain. However, pre-
vious studies have not evaluated LLM-based text
embedders in PCR benchmarks. In this research,
we address this gap by answering the following two
research questions (RQs).
RQ1 - How do the state-of-the-art LLM-based text
embedders perform in different PCR benchmarks?
RQ2 - How well does the model ranking in the
MTEB (Muennighoff et al., 2023) benchmark gen-
eralise to PCR benchmarks?

Answering these questions, in this paper, (1)
we provide the first comprehensive evaluation
of state-of-the-art LLM-based text embedders on
PCR. (2) We show that our simple adaptation
of LLM-based embedders outperforms BM25
and transformer-based methods in PCR datasets
across multiple languages and jurisdictions. We
release the model code and evaluation scripts for
the purpose of research usage via GitHub1

2 Related work

With the increasing volume of cases, there is a
growing demand for automatic precedent retrieval
systems to assist practitioners by providing prior
cases relevant to the current case (El Jelali et al.,
2015). Therefore, PCR has remained an active
area of research in the IR community (Breuker
et al., 2005; Leburu-Dingalo, 2024; Tang et al.,
2024a,b). Several datasets have been released for
the PCR task such as LeCaRDv2 (Li et al., 2024b),
C3RD (Ye and Li, 2024) and MUSER (Li et al.,
2023b) for Chinese courts, IL-PCR (Joshi et al.,
2023) for Indian courts, GerDaLIR (Wrzalik and
Krechel, 2021) and LePaRD (Mahari et al., 2024)
for United State’s courts. Recent shared tasks, such
as COLIEE (Goebel et al., 2024a, 2023; Kim et al.,
2022) and AILA (Parikh et al., 2021; Bhattacharya
et al., 2019) have facilitated the development of
many PCR datasets.

SAILER (Li et al., 2023a) introduced a structure-
aware pre-trained model for the prior case re-
trieval task. Utilising encoder-decoder architecture,
SAILER proposes a fact encoder, a reasoning de-
coder and a decision decoder, which are pre-trained
on Chinese and United States case law. CaseLink
(Tang et al., 2024b) introduces a different approach
for PCR by creating a Global Case Graph. They
utilise semantic and legal charge relationships in ad-
dition to the reference relationships to populate the

1Available at https://github.com/DamithDR/
case-retrieval.git

https://github.com/DamithDR/case-retrieval.git
https://github.com/DamithDR/case-retrieval.git


982

case graph. However, evaluating similarity among
case law is a complex task. DELTA (Li et al., 2025)
proposed an encoder-based pre-trained model with
structural word alignment to methodically align
the relevant facts closer and the irrelevant ones dis-
tant. Moreover, PCR has also been studied at the
paragraph level. T.y.s.s. et al. (2024) created a
specific dataset for paragraph retrieval in the Eu-
ropean Court of Human Rights (ECtHR) and per-
formed zero-shot and fine-tuned experiments with
multiple encoder models. BERT-PLI (Shao et al.,
2020) fine-tunes a BERT model for the sentence
pair classification task and utilises the semantic
relationships to calculate the relevance prediction
using an interaction map.

Given the importance of information retrieval
in the legal domain, multiple research events have
been organised in this area. Few notable events are
LIRAI (De Luca et al., 2023) workshop focused
on information retrieval systems generally in the
legal domain, and particularly in case law COLIEE
(Goebel et al., 2024b) shared-task focuses on case
law retrieval systems. The results of the competi-
tion suggest that BM25-like retrieval models are
still effective in the context of lengthy text, as in
case law.

3 Methodology

3.1 Data

Considering the diversity of jurisdictions and lan-
guages, we selected four popular PCR datasets:
IL-PCR (Joshi et al., 2023), COLIEE-2022
(Kim et al., 2023), MUSER (Li et al., 2023c), and
IRLeD (Mandal et al., 2017). We further sum-
marise the details of the datasets in Table 1. We
used the test set (both candidates and queries) of
IL-PCR, test queries in the COLIEE-2022 and
the whole dataset of MUSER and IRLeD, as there
were no separate splits.

3.2 Modelling

As we mentioned earlier, we utilise LLM-based
embedders in our research to investigate prior
case retrieval across different jurisdictions. We
choose three embedding models which are among
the top five in MTEB (Muennighoff et al., 2023)
leaderboard2 as of October 20243. Namely they

2Available at https://huggingface.co/
spaces/mteb/leaderboard

3NV-EMBED(Lee et al., 2024) is the best model in the
MTEB leaderboard as of October 2024. However, we were un-

Algorithm 1 Ranking Court Cases using Precom-
puted LLM Embeddings and MAP Evaluation for
Multiple Datasets
Require: Dataset collectionsD = {D1, D2, . . . , D5} (court

cases), Embedding model M
Require: Queries Q = {q1, q2, . . . , qm} for each dataset in
D

1: Precompute embeddings eq for each query q ∈ Q using
M

2: for each dataset D ∈ D do
3: Precompute embeddings ec for each candidate case

c ∈ D using M
4: for each query q ∈ Q do
5: for each candidate case c ∈ D do
6: Calculate cosine similarity s(q, c) =

eq·ec
∥eq∥∥ec∥

7: Append (c, s(q, c)) to list of candidates for q
8: end for
9: Sort candidates by descending similarity scores

10: Rq ← ranked list of candidates for q in dataset
D

11: for k = 1 to Top-K candidates in Rq do
12: Calculate Precision@k, Recall@k, and F-

score@k
13: end for
14: end for
15: Calculate Mean Average Precision (MAP) across all

queries in dataset D
16: end for

are; BAAI/bge-en-icl4 (Li et al., 2024a),
Salesforce/SFR-Embedding-2 R5

(Meng et al., 2024) and
dunzhang/stella en 1.5B v56. We
used Salesforce/SFR-Embedding-2 R and dun-
zhang/stella en 1.5B v5 in combination with
SentenceTransformer Python package (Reimers
and Gurevych, 2019) while BAAI/bge-en-icl
with FlagEmbedding Python package.

Following our motivation to address the chal-
lenge of the lengthiness of prior cases, LLM-based
embedders help us to obtain a high-dimensional
vector representation of each case. Unlike
transformer-based models, these models support
a high context length. As the models can have a
high context length, they can capture most of the
information in lengthy case documents. The first
step is to obtain embeddings for each candidate and
query case for all datasets separately, utilising the
above-mentioned models.

For the retrieval process, we iterate over each

able to use the model on an NVidia L40 48G GPU. Therefore,
we only used the models ranked 2nd, 3rd and 4th in MTEB.

4Available at https://huggingface.co/BAAI/
bge-en-icl

5Available at https://huggingface.co/
Salesforce/SFR-Embedding-2_R

6Available at https://huggingface.co/
dunzhang/stella_en_1.5B_v5

https://huggingface.co/spaces/mteb/leaderboard
https://huggingface.co/spaces/mteb/leaderboard
https://huggingface.co/BAAI/bge-en-icl
https://huggingface.co/BAAI/bge-en-icl
https://huggingface.co/Salesforce/SFR-Embedding-2_R
https://huggingface.co/Salesforce/SFR-Embedding-2_R
https://huggingface.co/dunzhang/stella_en_1.5B_v5
https://huggingface.co/dunzhang/stella_en_1.5B_v5
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IL-PCR
(Joshi et al., 2023)

COLIEE
2022 (Kim et al., 2023)

MUSER
(Li et al., 2023c)

IRLeD
(Mandal et al., 2017)

Total No of queries 237 300 100 200
Total no of candidates 1727 1263 1038 2000

Average no of words in queries 6766.32 5107.03 1993.12 7801.15
Average no of words in candidates 7046.36 4700.66 1747.52 7294.31

Language English English Chinese English
Jurisdiction India Canada China India

Table 1: Details of the datasets

query case embedding and calculate the cosine sim-
ilarity with all candidate embeddings. We rank the
most similar embeddings with a higher rank and
the least similar ones with a lower rank. We use
cosine similarity as our primary metric for calculat-
ing the similarity. Our retrieval algorithm is shown
in Algorithm 1.

We calculate the Mean Average Precision (MAP)
as our primary evaluation metric. We also calcu-
late precision@k, recall@k and F score@k values
where k={1, 5, 10, 15...50 and 100} following the
recent research in PCR (Joshi et al., 2023). We use
two baselines. First, we employ BM25 (Robert-
son et al., 2009), which is a strong and popular
baseline for PCR, as we mentioned before. As the
second baseline, we employ sentence-transformer
with LEGAL-BERT. We trained a LEGAL-BERT
model using the training set of the IL-PCR dataset.
We used the positive samples from the dataset and
added five negative samples for each query case
to create the training data. The model was trained
with learning rate=2e-5, epoch=1, batch size=16.
The resulting model was used to create embeddings
following the same method as other models to eval-
uate them.

4 Results and Analysis

Table 2 summarises the MAP values and best F
scores achieved by each model and respective k
values. Figure 1 illustrates the F-score curves for
all datasets using all models.

As can be seen in the results, LLM-based em-
bedders outperform the BM25 baseline with a clear
margin in all datasets, answering our RQ1. As can
be seen, for all the k values, LLMs perform better
than BM25, showing their effectiveness. IL-PCR
dataset shows a 0.16 improvement in F score
compared to BM25 in SFR-Embedding-2 R
model while reporting 0.47 MAP score. In
COLIEE dataset, both SFR-Embedding-2 R
model stella en 1.5B v5 and show 0.06 im-
provement in MAP compared to BM25. Further-

more, in IL-PCR, all LLM-based encoders out-
perform the supervised legal-bert model. In other
datasets, too, LLM-based embedders outperform
the legal-bert model, showing that they generalise
well compared to other unsupervised models. Over-
all, it is clear that LLM-based embedders provide a
promising solution to PCR.

From the LLMs SFR-Embedding-2 R shows
the best performance for three out of four
datasets from both MAP and F scores, while
stella en 1.5B v5 is the best performer for
the MUSER dataset. However, it should be noted
that bge-en-icl is the best model out of these
models in the MTEB benchmark, yet it does not
outperform other models in the PCR tasks. With
this finding, we answer RQ2, the model ranking in
the MTEB benchmark does not generalise into the
PCR benchmarks. While MTEB benchmark con-
tains IR tasks, it does not contain any PCR tasks,
which explains our observation to RQ2.

5 Conclusion

In this paper, we empirically showed that state-of-
the-art LLM-based embedding models in MTEB
benchmark outperform BM25 in multiple PCR
datasets in multiple jurisdictions. However, as
MTEB does not contain any PCR tasks, the model
ranking in MTEB is not reflected in PCR datasets.
Overall, LLM-based embedding models provided
better results in all the PCR datasets, outperform-
ing popular baselines, BM25 and other supervised
baselines.

As the first comprehensive evaluation of LLM-
based embedding models in the PCR task, this re-
search will open several future research directions.
First, the IR community needs to incorporate PCR
datasets widely into IR benchmarks. Secondly,
LLM-based embedders should be trained in PCR
tasks so that they will provide better results than
the unsupervised approach.
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Model IL-PCR COLIEE IRLeD MUSER
MAP F k MAP F k MAP F k MAP F k

bge-en-icl 0.42 0.31 5 0.29 0.22 5 0.25 0.25 5 0.10 0.08 25
SFR-Embedding-2 R 0.47 0.34 5 0.32 0.25 5 0.27 0.27 5 0.12 0.10 25
stella en 1.5B v5 0.44 0.32 5 0.32 0.24 5 0.26 0.25 5 0.14 0.11 25

LEGAL-BERT 0.27 0.19 5 0.14 0.11 5 0.09 0.08 10 0.04 0.04 10
BM25 0.16 0.18 10 0.26 0.20 5 0.20 0.20 5 0.12 0.10 25

Table 2: Model performance on different datasets. Column Model shows the model used in the experiment and
columns IL-PCR, COLIEE, IRLeD, MUSER show the dataset used for the experiment. Column MAP shows
the mean average precision results, and column F score shows the best F score achieved by the model for the
dataset. Column k value indicates the corresponding k value to the best F score. The only instance where we used a
supervised model is coloured in blue.

(a) IL-PCR (b) COLIEE

(c) IRLeD (d) MUSER

Figure 1: Change of F score with respect to k values.
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