@inproceedings{sammartino-etal-2025-language,
title = "When Does Language Transfer Help? Sequential Fine-Tuning for Cross-Lingual Euphemism Detection",
author = "Sammartino, Julia and
Barak, Libby and
Peng, Jing and
Feldman, Anna",
editor = "Angelova, Galia and
Kunilovskaya, Maria and
Escribe, Marie and
Mitkov, Ruslan",
booktitle = "Proceedings of the 15th International Conference on Recent Advances in Natural Language Processing - Natural Language Processing in the Generative AI Era",
month = sep,
year = "2025",
address = "Varna, Bulgaria",
publisher = "INCOMA Ltd., Shoumen, Bulgaria",
url = "https://aclanthology.org/2025.ranlp-1.122/",
pages = "1058--1065",
abstract = "Euphemisms are culturally variable and often ambiguous, posing challenges for language models, especially in low-resource settings. This paper investigates how cross-lingual transfer via sequential fine-tuning affects euphemism detection across five languages: English, Spanish, Chinese, Turkish, and Yor{\`u}b{\'a}. We compare sequential fine-tuning with monolingual and simultaneous fine-tuning using XLM-R and mBERT, analyzing how performance is shaped by language pairings, typological features, and pretraining coverage. Results show that sequential fine-tuning with a high-resource L1 improves L2 performance, especially for low-resource languages like Yor{\`u}b{\'a} and Turkish. XLM-R achieves larger gains but is more sensitive to pretraining gaps and catastrophic forgetting, while mBERT yields more stable, though lower, results. These findings highlight sequential fine-tuning as a simple yet effective strategy for improving euphemism detection in multilingual models, particularly when low-resource languages are involved."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="sammartino-etal-2025-language">
<titleInfo>
<title>When Does Language Transfer Help? Sequential Fine-Tuning for Cross-Lingual Euphemism Detection</title>
</titleInfo>
<name type="personal">
<namePart type="given">Julia</namePart>
<namePart type="family">Sammartino</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Libby</namePart>
<namePart type="family">Barak</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jing</namePart>
<namePart type="family">Peng</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Anna</namePart>
<namePart type="family">Feldman</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-09</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 15th International Conference on Recent Advances in Natural Language Processing - Natural Language Processing in the Generative AI Era</title>
</titleInfo>
<name type="personal">
<namePart type="given">Galia</namePart>
<namePart type="family">Angelova</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Maria</namePart>
<namePart type="family">Kunilovskaya</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marie</namePart>
<namePart type="family">Escribe</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ruslan</namePart>
<namePart type="family">Mitkov</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>INCOMA Ltd., Shoumen, Bulgaria</publisher>
<place>
<placeTerm type="text">Varna, Bulgaria</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Euphemisms are culturally variable and often ambiguous, posing challenges for language models, especially in low-resource settings. This paper investigates how cross-lingual transfer via sequential fine-tuning affects euphemism detection across five languages: English, Spanish, Chinese, Turkish, and Yorùbá. We compare sequential fine-tuning with monolingual and simultaneous fine-tuning using XLM-R and mBERT, analyzing how performance is shaped by language pairings, typological features, and pretraining coverage. Results show that sequential fine-tuning with a high-resource L1 improves L2 performance, especially for low-resource languages like Yorùbá and Turkish. XLM-R achieves larger gains but is more sensitive to pretraining gaps and catastrophic forgetting, while mBERT yields more stable, though lower, results. These findings highlight sequential fine-tuning as a simple yet effective strategy for improving euphemism detection in multilingual models, particularly when low-resource languages are involved.</abstract>
<identifier type="citekey">sammartino-etal-2025-language</identifier>
<location>
<url>https://aclanthology.org/2025.ranlp-1.122/</url>
</location>
<part>
<date>2025-09</date>
<extent unit="page">
<start>1058</start>
<end>1065</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T When Does Language Transfer Help? Sequential Fine-Tuning for Cross-Lingual Euphemism Detection
%A Sammartino, Julia
%A Barak, Libby
%A Peng, Jing
%A Feldman, Anna
%Y Angelova, Galia
%Y Kunilovskaya, Maria
%Y Escribe, Marie
%Y Mitkov, Ruslan
%S Proceedings of the 15th International Conference on Recent Advances in Natural Language Processing - Natural Language Processing in the Generative AI Era
%D 2025
%8 September
%I INCOMA Ltd., Shoumen, Bulgaria
%C Varna, Bulgaria
%F sammartino-etal-2025-language
%X Euphemisms are culturally variable and often ambiguous, posing challenges for language models, especially in low-resource settings. This paper investigates how cross-lingual transfer via sequential fine-tuning affects euphemism detection across five languages: English, Spanish, Chinese, Turkish, and Yorùbá. We compare sequential fine-tuning with monolingual and simultaneous fine-tuning using XLM-R and mBERT, analyzing how performance is shaped by language pairings, typological features, and pretraining coverage. Results show that sequential fine-tuning with a high-resource L1 improves L2 performance, especially for low-resource languages like Yorùbá and Turkish. XLM-R achieves larger gains but is more sensitive to pretraining gaps and catastrophic forgetting, while mBERT yields more stable, though lower, results. These findings highlight sequential fine-tuning as a simple yet effective strategy for improving euphemism detection in multilingual models, particularly when low-resource languages are involved.
%U https://aclanthology.org/2025.ranlp-1.122/
%P 1058-1065
Markdown (Informal)
[When Does Language Transfer Help? Sequential Fine-Tuning for Cross-Lingual Euphemism Detection](https://aclanthology.org/2025.ranlp-1.122/) (Sammartino et al., RANLP 2025)
ACL