@inproceedings{shahnazaryan-etal-2025-contextual,
title = "Contextual Cues in Machine Translation: Investigating the Potential of Multi-Source Input Strategies in {LLM}s and {NMT} Systems",
author = "Shahnazaryan, Lia and
Simianer, Patrick and
Wuebker, Joern",
editor = "Angelova, Galia and
Kunilovskaya, Maria and
Escribe, Marie and
Mitkov, Ruslan",
booktitle = "Proceedings of the 15th International Conference on Recent Advances in Natural Language Processing - Natural Language Processing in the Generative AI Era",
month = sep,
year = "2025",
address = "Varna, Bulgaria",
publisher = "INCOMA Ltd., Shoumen, Bulgaria",
url = "https://aclanthology.org/2025.ranlp-1.127/",
pages = "1099--1108",
abstract = "We explore the impact of multi-source input strategies on machine translation (MT) quality, comparing GPT-4o, a large language model (LLM), with a traditional multilingual neural machine translation (NMT) system. Using intermediate language translations as contextual cues, we evaluate their effectiveness in enhancing English and Chinese translations into Portuguese. Results suggest that contextual information significantly improves translation quality for domain-specific datasets and potentially for linguistically distant language pairs, with diminishing returns observed in benchmarks with high linguistic variability. Additionally, we demonstrate that shallow fusion, a multi-source approach we apply within the NMT system, shows improved results when using high-resource languages as context for other translation pairs, highlighting the importance of strategic context language selection."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="shahnazaryan-etal-2025-contextual">
<titleInfo>
<title>Contextual Cues in Machine Translation: Investigating the Potential of Multi-Source Input Strategies in LLMs and NMT Systems</title>
</titleInfo>
<name type="personal">
<namePart type="given">Lia</namePart>
<namePart type="family">Shahnazaryan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Patrick</namePart>
<namePart type="family">Simianer</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Joern</namePart>
<namePart type="family">Wuebker</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-09</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 15th International Conference on Recent Advances in Natural Language Processing - Natural Language Processing in the Generative AI Era</title>
</titleInfo>
<name type="personal">
<namePart type="given">Galia</namePart>
<namePart type="family">Angelova</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Maria</namePart>
<namePart type="family">Kunilovskaya</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marie</namePart>
<namePart type="family">Escribe</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ruslan</namePart>
<namePart type="family">Mitkov</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>INCOMA Ltd., Shoumen, Bulgaria</publisher>
<place>
<placeTerm type="text">Varna, Bulgaria</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We explore the impact of multi-source input strategies on machine translation (MT) quality, comparing GPT-4o, a large language model (LLM), with a traditional multilingual neural machine translation (NMT) system. Using intermediate language translations as contextual cues, we evaluate their effectiveness in enhancing English and Chinese translations into Portuguese. Results suggest that contextual information significantly improves translation quality for domain-specific datasets and potentially for linguistically distant language pairs, with diminishing returns observed in benchmarks with high linguistic variability. Additionally, we demonstrate that shallow fusion, a multi-source approach we apply within the NMT system, shows improved results when using high-resource languages as context for other translation pairs, highlighting the importance of strategic context language selection.</abstract>
<identifier type="citekey">shahnazaryan-etal-2025-contextual</identifier>
<location>
<url>https://aclanthology.org/2025.ranlp-1.127/</url>
</location>
<part>
<date>2025-09</date>
<extent unit="page">
<start>1099</start>
<end>1108</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Contextual Cues in Machine Translation: Investigating the Potential of Multi-Source Input Strategies in LLMs and NMT Systems
%A Shahnazaryan, Lia
%A Simianer, Patrick
%A Wuebker, Joern
%Y Angelova, Galia
%Y Kunilovskaya, Maria
%Y Escribe, Marie
%Y Mitkov, Ruslan
%S Proceedings of the 15th International Conference on Recent Advances in Natural Language Processing - Natural Language Processing in the Generative AI Era
%D 2025
%8 September
%I INCOMA Ltd., Shoumen, Bulgaria
%C Varna, Bulgaria
%F shahnazaryan-etal-2025-contextual
%X We explore the impact of multi-source input strategies on machine translation (MT) quality, comparing GPT-4o, a large language model (LLM), with a traditional multilingual neural machine translation (NMT) system. Using intermediate language translations as contextual cues, we evaluate their effectiveness in enhancing English and Chinese translations into Portuguese. Results suggest that contextual information significantly improves translation quality for domain-specific datasets and potentially for linguistically distant language pairs, with diminishing returns observed in benchmarks with high linguistic variability. Additionally, we demonstrate that shallow fusion, a multi-source approach we apply within the NMT system, shows improved results when using high-resource languages as context for other translation pairs, highlighting the importance of strategic context language selection.
%U https://aclanthology.org/2025.ranlp-1.127/
%P 1099-1108
Markdown (Informal)
[Contextual Cues in Machine Translation: Investigating the Potential of Multi-Source Input Strategies in LLMs and NMT Systems](https://aclanthology.org/2025.ranlp-1.127/) (Shahnazaryan et al., RANLP 2025)
ACL