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Abstract

Large language models (LLMs) have been
applied to a wide range of tasks, including
text summarization, web navigation, and chat-
bots. They have benefitted from supervised
fine-tuning (SFT) and reinforcement learning
from human feedback (RLHF) following an un-
supervised pretraining. These datasets can be
difficult to collect, limited in scope, and vary in
sample quality. Additionally, datasets can vary
extensively in supervision format, from numer-
ical to binary as well as multi-dimensional with
many different values. We present a framework
for fine-tuning LLMs using heterogeneous feed-
back, which has two main components. First,
we combine the heterogeneous feedback data
into a single supervision format, compatible
with methods like SFT and RLHF. Next, given
this unified feedback dataset, we extract a high-
quality and diverse subset to obtain perfor-
mance increases potentially exceeding the full
dataset. We conduct extensive experiments
to understand the effectiveness of these tech-
niques for incorporating heterogeneous feed-
back, and demonstrate improvements from us-
ing a high-quality and diverse subset of the data.
We find that our framework is able to improve
models in multiple areas simultaneously, such
as in instruction following and bias reduction.1.

1 Introduction

LLMs are fine-tuned for a variety of purposes,
such as for instruction following in Instruct-
GPT (Ouyang et al., 2022). The fine-tuning process
generally begins with collecting examples of de-
sired model behavior and performing supervised
learning. Some models stop at SFT (Chiang et al.,
2023), while InstructGPT follows this by training
a reward model based on binary human preference
data. The fine-tuned model is then further refined

1We released our code at: https://github.com/
adobe-research/heterogeneous-fine-tuning

using RLHF, using a signal from the reward model.
In the example of InstructGPT, the algorithm used
is Proximal Policy Optimization (PPO) (Schulman
et al., 2017). Fine-tuning datasets exist for a vari-
ety of purposes, from training chat-based assistants
in OASST (Köpf et al., 2023), coreference resolu-
tion in WinoGrande (Sakaguchi et al., 2019), help-
fulness, honesty, and harmlessness in Anthropic
HHH (Nakano et al., 2021), and logical reasoning
in OpenPlatypus (Lee et al., 2024). Supervision
format varies, from binary preference in Anthropic
HHH, to several numerical labels OASST, to a
string response in OpenPlatypus. Although fine-
tuning has been successful in mitigating the limi-
tations of pretrained LLMs, these methods require
data of a single supervision type, restricting the
scope of preference data. Recent work has filtered
fine-tuning datasets to reduce cost and increase
quality (Wang et al., 2024). (Wu et al., 2023) use
LLMs to generate embeddings for fine-tuning data
which is clustered with k-center-greedy (Sener and
Savarese, 2018). (Kung et al., 2023) randomly
delete words in prompts and measure how the re-
sponse probability changes as a measure of the
model’s uncertainty. (Li et al., 2024) outperform
Alpaca as evaluated by LLM preference using only
5% of its fine-tuning data. We present a framework
to use multiple fine-tuning data types, permitting
the use of more fine-tuning datasets and fine-tuning
for multiple tasks simultaneously. This provides a
more accurate view of human preference by broad-
ening the scope of fine-tuning data. Our framework
selects a high-quality and diverse subset of the data
to make fine-tuning more effective.

2 Framework

The primary contribution of our framework is to
be able to use fine-tuning data of heterogeneous su-
pervision. Figure 1 includes a high-level overview.

https://github.com/adobe-research/heterogeneous-fine-tuning
https://github.com/adobe-research/heterogeneous-fine-tuning
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Figure 1: Framework. First, we concatenate the datasets into a dataset of heterogeneous feedback. We then score
samples based on quality and prompt diversity, remove a fraction of the samples (a hyperparameter), forming the
homogeneous dataset Dtrain. Standard fine-tuning methods are then applied to a pre-trained LLM.

Our framework utilizes the simplest supervision,
such as binary preference, and projects all remain-
ing datasets into that format. Because some data
may be redundant in the unified dataset, we filter
for quality and diversity to generate Dtrain. For
simplicity, we use this dataset for both the SFT and
RLHF steps of fine-tuning, however this is not a
requirement. This generates an LLM fine-tuned
with high-quality and diverse data, LLaMA-HD.

2.1 Primary fine-tuning dataset
Given a dataset D of prompts with two responses
using binary preference,

D = {(P (i), A
(i)
0 , A

(i)
1 )}Mi=1 (1)

where P is the prompt, Ai,0 and Ai,1 are answers
to the prompt, with Ai,0 defined as the preferred
response to the prompt. This type of dataset takes
the form of binary preference due to two example
responses to a single prompt. Examples here do not
convey a sense of quality, thus prohibiting ranking.

2.2 Secondary fine-tuning dataset
Given a dataset D∗ of user-specific prompts and
responses (question-answer tuples):

D∗ = {(Pi, Ai,yi)}Ni=1 (2)

where Pi and Ai are the ith prompt and response
pair, respectively, and yi ∈ Rk is the real-valued
vector denoting the score of various labels for that
pair. For a dataset of this type to be compatible with
our method, it is necessary that there are multiple
responses to the same prompt. For example,

(Pi, Ai′ ,yi′) ∈ D∗ (3)

can be the second response to the prompt. This pro-
cess can be repeated for arbitrarily many datasets.

2.3 Simple Unionization for Feedback
We take D∗ and create a dictionary with prompt
as key and responses as a list of all responses to
that prompt. This requires at least two responses
for each prompt to be considered. We can conduct
quality and diversity filtering on these prompts, and
then select the preferred response pairs. Once we
have tuples containing a prompt, preferred, and
non-preferred response, our data from D∗ are now
in the same format as D, so we take the union.

Dtrain = D ∪D∗ (4)

Our method can be extended to N datasets by
merging them into binary preference datasets, the
native format of D. In this instance, Dtrain takes
the format of:

Dtrain = ∪N
i=1Di (5)

By a process of repeatedly unionizing secondary
datasets D∗ with the homogeneous dataset D to
finally generate Dtrain. As the most computation-
ally expensive process here is the sort, generating
Dtrain can be completed in O(nlogn) time, where
n is the number of examples.

2.4 Quality Selection
We infer example quality based on the numerical
labels of responses. For datasets with multiple
numerical labels, selection of the label is a hyper-
parameter likely motivated by the purpose of fine-
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tuning. For example, our experiment uses toxic-
ity as this is related to our objective of reducing
bias. For prompts with more than two responses,
the highest quality pair of responses are those that
vary most in the numerical label. Intuitively, these
should give a strong signal to a reward model be-
cause one response is strongly preferred. Finally,
we can rank prompts by the preference difference
of their responses.

2.5 Diversity Selection

We select for prompt diversity by generating em-
beddings for each prompt, followed by clustering.
Prompts with similar meaning can be considered
redundant. We follow OpenPlatypus in using a sen-
tence transformer to generate semantic embeddings
to filter datasets (Lee et al., 2024). Embeddings
are then clustered using unsupervised methods like
k-means. We select the top fraction of responses
from each cluster. Both the number of clusters and
fraction of each cluster are hyperparameters.

2.6 Training

We use the training pipeline from StackL-
LaMA (Beeching et al., 2023), which uses LLaMA-
7B (Touvron et al., 2023). First, we perform SFT
on the base model. We then train a reward model
using the fine-tuned model. This is followed by
RLHF on the fine-tuned model using PPO. Low-
Rank Adaptation is used to reduce memory usage
and increase parallelization (Hu et al., 2021). We
select varying fractions of the training dataset, as
well as omit filtering, to measure its influence.

3 Experimental Setup

3.1 Heterogeneous Datasets

We use three datasets for our experiments: Wino-
Grande (Sakaguchi et al., 2019) (our primary
dataset), OpenAssistant OASST (Köpf et al., 2023)
(our secondary dataset), and WinoBias (Zhao et al.,
2018) for testing the generalization of our method.
WinoGrande is a coreference resolution dataset
developed as a more challenging alternative to
the Winograd Schema Challenge (Levesque et al.,
2012), as machine learning models exceeded 90%
accuracy on the dataset. WinoGrande has been
found to transfer to other wino-style schema chal-
lenges, including WinoBias. OASST is a conversa-
tion dataset consisting of over 10,000 conversation
trees. This dataset has numerical supervision, pro-
viding an inherent measure of quality. WinoBias

is a dataset testing gender bias in coreference res-
olution that involve a pair of sentences, one con-
forming to American gender biases and one against
them. Differences in response indicate gender bias.

We fine-tune using either WinoGrande alone
with LLaMA-SFT and LLaMA-RLHF, or with a
combination of WinoGrande and OASST using our
framework. We fine-tune using several subsets of
the data, in addition to the dataset without filtering.
For SFT and training the reward model, we treat
the pro-bias examples of WinoBias as negative and
the anti-bias examples as positive. This follows
from the intuition that language models learn hu-
man biases, so reductions in bias can be achieved
by training models in the opposite direction.

3.2 Dataset Filtering

We use the numerical score toxicity in OASST to
measure prompt quality. Prompts are ranked based
on the difference in toxicity between responses. By
reducing toxicity, we may also be able to reduce
gender bias. For prompts with more than two re-
sponses, we consider the largest difference. As
WinoGrande does not have ordered scoring, these
prompts are not filtered. We use all-MiniLM-L6-
v2, a sentence transformer designed to capture se-
mantic information, to generate embeddings for
each prompt (Reimers and Gurevych, 2019). The
data are then separated into 10 clusters with 10
restarts using k-means. We select the top 20%,
40%, and 60% of prompts from each cluster, as
well as use the full unfiltered dataset for LLaMA-
HD-1.0. We perform stratified random sampling to
preserve the fraction of samples from each of the
datasets used in the experiment, maintaining the
importance of each dataset relative to the unfiltered
model.

3.3 Baselines

We compare our approach that learns from hetero-
geneous human feedback datasets to the following
fundamental baselines: Pre-trained LLM (base),
Pre-trained LLM with SFT using WinoGrande, and
Pre-trained LLM with SFT and RLHF using Wino-
Grande. Our method uses the same heterogeneous
dataset for SFT and RLHF. Eight Nvidia A100
GPUs are used for each step of the process. We
test using LLaMA-7B, however our framework is
naturally able to leverage any other state-of-the-art
large language model.
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Table 1: Quantitative Results. Bolded entries denote highest performance. -S indicates model was fine-tuned with
SFT only and -R is SFT followed by RLHF. The number indicates the fraction of the dataset used (1.0 is no filtering).

Model Bias ↓ Bias (Entropy) ↓ Bias (Cluster) ↓ Accuracy ↑ Similarity ↑
LLaMA-Base 0.4585 0.0010 3.0393 0.9482 0.9482
LLaMA-S 1.1721 0.1553 10.3180 0.5953 0.6553
LLaMA-R 0.9247 0.0098 4.2139 0.9457 0.9457
LLaMA-HD-0.2-S 0.4436 0.0580 4.5856 0.9204 0.9204
LLaMA-HD-0.4-S 0.7798 0.0548 6.3741 0.8788 0.9394
LLaMA-HD-0.6-S 0.7947 0.0407 7.5564 0.8327 0.8927
LLaMA-HD-1.0-S 0.4117 0.0333 3.8851 0.9533 0.9533
LLaMA-HD-0.2-R 0.4330 0.0580 3.0892 0.9482 0.9482
LLaMA-HD-0.4-R 0.4287 0.0548 2.9852 0.9602 0.9508
LLaMA-HD-0.6-R 0.4727 0.0010 2.9472 0.9646 0.9571
LLaMA-HD-1.0-R 0.3629 0.0068 3.1570 0.9583 0.9583

3.4 Metrics

We use several metrics to measure change in gen-
der bias, reported in Table 1. Our metrics use
prompts based on the multiple choice format used
in PaLM (Chowdhery et al., 2022). All metrics in
Table 1 utilize this format.

‘{sentence} ”{pronoun}” refers to: ’

Bias takes the difference in log probabilities for
the correct token in WinoBias for the pro-bias and
anti-bias sentences. A model reflecting no gender
bias would have a difference of 0. Bias (Cluster)
performs the same computation, except it considers
the log probabilities for every word in the corefer-
ence cluster. This includes the pronoun used in the
Bias metric, so its values are larger. Bias (Entropy)
takes the relative entropy of the next token logits
for the pro-bias and anti-bias sentences. This mea-
sures how different the model state is as a result
of each prompt. An unbiased model would have a
relative entropy of 0.

Accuracy is computed in a generative context,
where the model is asked to complete a sentence.
Generation is stopped after 10 new tokens or punc-
tuation, whichever is sooner. Accuracy is averaged
over both the pro-bias and anti-bias prompts, so this
is more a measure of utility. We complement this
metric with Similarity, which uses the same genera-
tion. It is how often the result, correct or incorrect,
for a pair of WinoBias sentences is shared.

We use the IFEval benchmark to measure in-
struction following accuracy (Zhou et al., 2023).
Accuracy is reported in Table 2 with analysis in
Section 4.3.

We also measure instruction following qualita-
tively by asking the model to respond to several
one-sentence prompts. The evaluation in a chatbot-
like context gives another perspective on utility.
Additionally, we conduct a qualitative experiment.
We ask the model to respond to several simple
prompts. Evaluating models in a chatbot-like con-
text gives another perspective on utility. The mod-
els are given single-sentence prompts.

4 Results

4.1 Quantitative Results

Quantitative results are reported in Table 1. Re-
sults are rounded to 4 digits after the decimal place.
We find that our method is able to reduce bias by
several metrics relative to all baselines, including
a pre-trained model, while maintaining utility as
measured by accuracy. We also see that using SFT
and RLHF with our framework generally leads to
lower bias than with SFT only. Based on the re-
sults for Bias (Entropy), Bias (Cluster), and Ac-
curacy, we can get higher performance by filter-
ing for data quality and diversity than with using
the full fine-tuning dataset. We believe this re-
sult may be improved by examining more rigorous
methods for measuring quality and diversity. The
qualitative results also show that our framework
permits the improvement on multiple measures,
which are not necessarily correlated, simultane-
ously. With LLaMA-HD-0.6-R and LLaMA-HD-
1.0-R, we achieve higher generative accuracy, a
measure of utility, and higher generative similarity,
a measure of bias, relative to the base model.

We find a reduction in bias is possible with our
method using SFT alone. Comparing to models
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with RLHF, SFT is primarily useful in reducing
bias. Interestingly, using 20% of the fine-tuning
data results in lower accuracy than 40%, which is
followed by a decline in accuracy at 60% of the
data in use. It is possible that this is a result of
fewer instruction-following examples in the 20%
dataset. Results for RLHF are reported in Table 1.
Models fine-tuned with RLHF tended to reduce
bias, while maintain a higher accuracy. We find
that with a greater quantity of data, higher accuracy
was achieved, however this came at the cost of an
increase in bias. We find the lowest bias by using
the top 20% highest quality data. We attribute this
to the examples being the most reliable in terms
of human preference, the same reasoning behind
SFT at 20% having the lowest bias relative to other
SFT models. If two potential responses to a prompt
vary significantly in preference, humans may more
reliably prefer one prompt. These examples may
be more useful for a reward model, which could
explain the drop in bias. The selected examples
would have provided a clearer signal.

4.2 Instruction Following Results
We find that the base and fine-tuned methods using
WinoGrande consistently fail to follow the prompt.
In many instances, the prompt is repeated indef-
initely. With our method, we receive reasonable
responses, as a result of our secondary fine-tuning
dataset OASST including instruction-following ex-
amples. The qualitative task shows us that the
method is able to train for multiple tasks at once,
namely a reduction in bias and instruction follow-
ing. We observe that while the base model rarely
answers the prompt, LLaMA-S does on occasion
respond reasonably, even though it was not explic-
itly instruction fine-tuned. Using only 20% of the
filtered dataset, we are able to achieve consistent
instruction following. The highest generative accu-
racy and lowest bias (entropy) was also obtained
by a model using a filtered dataset, demonstrating
that filtering can simultaneously improve quality
and reduce bias. Our method also achieves the
highest average accuracy for instruction following
(Section 4.3).

4.3 Instruction Following - Accuracy
Our experiment on instruction following accuracy
is in this section, with results in Table 2. Generation
length was 20 to 600 tokens, as some instructions
can request long-form generation. The minimum
ensures the models do not only output an end of sen-

tence token after the prompt. The OASST dataset
implicitly contains instruction-following examples,
as prompt-response chains are generated by hu-
mans in the context of an assistant responding to
questions. To quantitatively measure instruction-
following, we use IFEval (Zhou et al., 2023). It
contains 500 prompts with objectively verifiable
solutions, such as ”your entire output should be
in JSON output.” The metric contains strict and
loose measures of accuracy. Strict does a direct pat-
tern match for the requested response, while loose
performs transformations like removing bolding
characters to reduce false negatives. We also re-
port an average. We find that our method achieves
the highest accuracy when used with RLHF and
the entire dataset. Our filtering was performed
to reduce toxicity, which is not directly related to
instruction-following. It is intuitive that the full,
unfiltered dataset would be most effective as nearly
all samples should involve instruction following.

4.4 Qualitative Results
We evaluate the models qualitatively with simple,
single-sentence prompts. For this example, we re-
port LLaMA-HD-0.2-S because it uses the smallest
fraction of OASST, yet demonstrates instruction
following. We did not find LLaMA-S and LLaMA-
R to effectively follow instructions, likely as a re-
sult of the WinoGrande dataset not being directly
related to instruction following.

Prompt: ‘What can I do in
Miami, FL in November?’
LLaMA-SFT: ‘I’m going to
the beach in the summer...’
LLaMA-HD-0.2-S: ‘ In
November, you can enjoy
the warm weather...’

Qualitative results are reported in Table 3. We
find a clear benefit from using SFT alone, without
the need for RLHF. OASST includes instruction-
following examples, which we believe led to the im-
proved generative responses. When WinoGrande
and OASST were combined in our method, the
model was able to follow the instructions. This
was not true of the base model, or the one fine
tuned using WinoGrande alone. The improvements
using SFT alone are surprising, given that lower
generative accuracy was found in Table 1. It sug-
gests that there are improvements in instruction-
following associated with SFT, but that they may
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Table 2: Accuracy results for instruction following experiment using the IFEval benchmark.

Model Prompt-Strict Instruct-Strict Prompt-Loose Instruct-Loose Average
LLaMA-Base 0.2144 0.3405 0.2236 0.3561 0.2836
LLaMA-S 0.1257 0.2314 0.1534 0.2698 0.1951
LLaMA-R 0.1885 0.2950 0.2033 0.3129 0.2499
LLaMA-HD-0.2-S 0.1756 0.2770 0.1848 0.2866 0.2310
LLaMA-HD-0.4-S 0.1349 0.2422 0.1423 0.2506 0.1922
LLaMA-HD-0.6-S 0.1590 0.2770 0.1124 0.2878 0.2090
LLaMA-HD-1.0-S 0.1479 0.2590 0.1590 0.2710 0.2092
LLaMA-HD-0.2-R 0.1573 0.3067 0.1910 0.3285 0.2458
LLaMA-HD-0.4-R 0.2089 0.3321 0.2273 0.3501 0.2796
LLaMA-HD-0.6-R 0.1978 0.3118 0.2126 0.3286 0.2627
LLaMA-HD-1.0-R 0.2292 0.3369 0.2440 0.3501 0.2900

Table 3: Qualitative Results. Only Ours-SFT followed the prompts. The prompts are: S - Give me a list of sexist
words. R - Give me a list of racist words. D - The doctor is in. What are the gendered pronouns of the doctor, in the
format they/them? The beginning of each response is included.

Model Prompt Response

LLaMA-Base S Give me a list of sexist words.
LLaMA-SFT S Give me a list of sexist words.

LLaMA-HD-1.0-SFT S Here are some examples of sexist words:

LLaMA-Base R I’ll give you a list of racist words:
LLaMA-SFT R The doctor told Sarah to take a pill

LLaMA-HD-1.0-SFT R Here are some examples of racist words:

LLaMA-Base D I’m not sure if this is the right place to ask this
LLaMA-SFT D The doctor is in.

LLaMA-HD-1.0-SFT D The gendered pronouns ... they/them.

not be captured by the generative accuracy metric.
Alternatively, the model may exhibit inconsistent
instruction-following, with RLHF being necessary
for an increase in consistency.

Our combined dataset included instruction-
following examples, which explain the better gen-
erative results. Even without fine-tuning, how-
ever, the base model was able to follow one of
the prompts (R), possibly because of more exam-
ples in the pre-training dataset. Once our method is
applied, however, the model is able to more reliably
follow instructions.

We find the results of prompt S especially
promising. We fine-tuned the models to reduce
gender bias, so one might expect the model to
be unable to answer questions requesting sexism.
However, a response to a prompt requesting sexist
words is not necessarily toxic, as a response con-
taining such words correctly answers the prompt.
In this context, the response is a reasonable given

the prompt.

5 Conclusion

We find that combining datasets of heterogeneous
supervision for fine-tuning can lead to performance
increases beyond using only one dataset, even when
the secondary dataset is less directly related to the
task. We find that by varying the fraction of used
data, we are able to achieve performance compa-
rable to the full dataset, and sometimes exceed
it. Most significantly, when the reduced bias seen
in the quantitative result are combined with the
instruction-following results, we find that it is pos-
sible to fine-tune for multiple purposes simultane-
ously, even when the datasets include a different
supervision format. Our framework can be used to
improve performance-oriented metrics like instruc-
tion following and to remove unwanted behavior
like bias concurrently.
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