@inproceedings{tahaei-bergler-2025-demographic,
title = "Demographic Features for Annotation-Aware Classification",
author = "Tahaei, Narjes and
Bergler, Sabine",
editor = "Angelova, Galia and
Kunilovskaya, Maria and
Escribe, Marie and
Mitkov, Ruslan",
booktitle = "Proceedings of the 15th International Conference on Recent Advances in Natural Language Processing - Natural Language Processing in the Generative AI Era",
month = sep,
year = "2025",
address = "Varna, Bulgaria",
publisher = "INCOMA Ltd., Shoumen, Bulgaria",
url = "https://aclanthology.org/2025.ranlp-1.142/",
pages = "1232--1236",
abstract = "This paper revisits the use of annotator demographics as interpretable meta-information for modeling such variation. We adapt a lightweight attention mechanism, Annotation-Wise Attention Network (AWAN), to condition predictions on demographic features, enabling per-annotator modeling. Experiments on the EXIST sexism dataset show that AWAN improves classification performance over standard baselines, especially in cases of high annotator disagreement."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="tahaei-bergler-2025-demographic">
<titleInfo>
<title>Demographic Features for Annotation-Aware Classification</title>
</titleInfo>
<name type="personal">
<namePart type="given">Narjes</namePart>
<namePart type="family">Tahaei</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sabine</namePart>
<namePart type="family">Bergler</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-09</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 15th International Conference on Recent Advances in Natural Language Processing - Natural Language Processing in the Generative AI Era</title>
</titleInfo>
<name type="personal">
<namePart type="given">Galia</namePart>
<namePart type="family">Angelova</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Maria</namePart>
<namePart type="family">Kunilovskaya</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marie</namePart>
<namePart type="family">Escribe</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ruslan</namePart>
<namePart type="family">Mitkov</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>INCOMA Ltd., Shoumen, Bulgaria</publisher>
<place>
<placeTerm type="text">Varna, Bulgaria</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>This paper revisits the use of annotator demographics as interpretable meta-information for modeling such variation. We adapt a lightweight attention mechanism, Annotation-Wise Attention Network (AWAN), to condition predictions on demographic features, enabling per-annotator modeling. Experiments on the EXIST sexism dataset show that AWAN improves classification performance over standard baselines, especially in cases of high annotator disagreement.</abstract>
<identifier type="citekey">tahaei-bergler-2025-demographic</identifier>
<location>
<url>https://aclanthology.org/2025.ranlp-1.142/</url>
</location>
<part>
<date>2025-09</date>
<extent unit="page">
<start>1232</start>
<end>1236</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Demographic Features for Annotation-Aware Classification
%A Tahaei, Narjes
%A Bergler, Sabine
%Y Angelova, Galia
%Y Kunilovskaya, Maria
%Y Escribe, Marie
%Y Mitkov, Ruslan
%S Proceedings of the 15th International Conference on Recent Advances in Natural Language Processing - Natural Language Processing in the Generative AI Era
%D 2025
%8 September
%I INCOMA Ltd., Shoumen, Bulgaria
%C Varna, Bulgaria
%F tahaei-bergler-2025-demographic
%X This paper revisits the use of annotator demographics as interpretable meta-information for modeling such variation. We adapt a lightweight attention mechanism, Annotation-Wise Attention Network (AWAN), to condition predictions on demographic features, enabling per-annotator modeling. Experiments on the EXIST sexism dataset show that AWAN improves classification performance over standard baselines, especially in cases of high annotator disagreement.
%U https://aclanthology.org/2025.ranlp-1.142/
%P 1232-1236
Markdown (Informal)
[Demographic Features for Annotation-Aware Classification](https://aclanthology.org/2025.ranlp-1.142/) (Tahaei & Bergler, RANLP 2025)
ACL
- Narjes Tahaei and Sabine Bergler. 2025. Demographic Features for Annotation-Aware Classification. In Proceedings of the 15th International Conference on Recent Advances in Natural Language Processing - Natural Language Processing in the Generative AI Era, pages 1232–1236, Varna, Bulgaria. INCOMA Ltd., Shoumen, Bulgaria.