@inproceedings{zaghouani-biswas-2025-emohopespeech,
title = "{E}mo{H}ope{S}peech: An Annotated Dataset of Emotions and Hope Speech in {E}nglish and {A}rabic",
author = "Zaghouani, Wajdi and
Biswas, Md. Rafiul",
editor = "Angelova, Galia and
Kunilovskaya, Maria and
Escribe, Marie and
Mitkov, Ruslan",
booktitle = "Proceedings of the 15th International Conference on Recent Advances in Natural Language Processing - Natural Language Processing in the Generative AI Era",
month = sep,
year = "2025",
address = "Varna, Bulgaria",
publisher = "INCOMA Ltd., Shoumen, Bulgaria",
url = "https://aclanthology.org/2025.ranlp-1.162/",
pages = "1406--1412",
abstract = "This research introduces a bilingual dataset comprising 27,456 entries for Arabic and 10,036 entries for English, annotated for emotions and hope speech, addressing the scarcity of multi-emotion (Emotion and hope) datasets. The dataset provides comprehensive annotations capturing emotion intensity, complexity, and causes, alongside detailed classifications and subcategories for hope speech. To ensure annotation reliability, Fleiss' Kappa was employed, revealing 0.75-0.85 agreement among annotators both for Arabic and English language. The evaluation metrics (micro-F1-Score=0.67) obtained from the baseline model (i.e., transformer-based AraBERT model) validate that the data annotations are worthy."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="zaghouani-biswas-2025-emohopespeech">
<titleInfo>
<title>EmoHopeSpeech: An Annotated Dataset of Emotions and Hope Speech in English and Arabic</title>
</titleInfo>
<name type="personal">
<namePart type="given">Wajdi</namePart>
<namePart type="family">Zaghouani</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Md.</namePart>
<namePart type="given">Rafiul</namePart>
<namePart type="family">Biswas</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-09</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 15th International Conference on Recent Advances in Natural Language Processing - Natural Language Processing in the Generative AI Era</title>
</titleInfo>
<name type="personal">
<namePart type="given">Galia</namePart>
<namePart type="family">Angelova</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Maria</namePart>
<namePart type="family">Kunilovskaya</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marie</namePart>
<namePart type="family">Escribe</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ruslan</namePart>
<namePart type="family">Mitkov</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>INCOMA Ltd., Shoumen, Bulgaria</publisher>
<place>
<placeTerm type="text">Varna, Bulgaria</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>This research introduces a bilingual dataset comprising 27,456 entries for Arabic and 10,036 entries for English, annotated for emotions and hope speech, addressing the scarcity of multi-emotion (Emotion and hope) datasets. The dataset provides comprehensive annotations capturing emotion intensity, complexity, and causes, alongside detailed classifications and subcategories for hope speech. To ensure annotation reliability, Fleiss’ Kappa was employed, revealing 0.75-0.85 agreement among annotators both for Arabic and English language. The evaluation metrics (micro-F1-Score=0.67) obtained from the baseline model (i.e., transformer-based AraBERT model) validate that the data annotations are worthy.</abstract>
<identifier type="citekey">zaghouani-biswas-2025-emohopespeech</identifier>
<location>
<url>https://aclanthology.org/2025.ranlp-1.162/</url>
</location>
<part>
<date>2025-09</date>
<extent unit="page">
<start>1406</start>
<end>1412</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T EmoHopeSpeech: An Annotated Dataset of Emotions and Hope Speech in English and Arabic
%A Zaghouani, Wajdi
%A Biswas, Md. Rafiul
%Y Angelova, Galia
%Y Kunilovskaya, Maria
%Y Escribe, Marie
%Y Mitkov, Ruslan
%S Proceedings of the 15th International Conference on Recent Advances in Natural Language Processing - Natural Language Processing in the Generative AI Era
%D 2025
%8 September
%I INCOMA Ltd., Shoumen, Bulgaria
%C Varna, Bulgaria
%F zaghouani-biswas-2025-emohopespeech
%X This research introduces a bilingual dataset comprising 27,456 entries for Arabic and 10,036 entries for English, annotated for emotions and hope speech, addressing the scarcity of multi-emotion (Emotion and hope) datasets. The dataset provides comprehensive annotations capturing emotion intensity, complexity, and causes, alongside detailed classifications and subcategories for hope speech. To ensure annotation reliability, Fleiss’ Kappa was employed, revealing 0.75-0.85 agreement among annotators both for Arabic and English language. The evaluation metrics (micro-F1-Score=0.67) obtained from the baseline model (i.e., transformer-based AraBERT model) validate that the data annotations are worthy.
%U https://aclanthology.org/2025.ranlp-1.162/
%P 1406-1412
Markdown (Informal)
[EmoHopeSpeech: An Annotated Dataset of Emotions and Hope Speech in English and Arabic](https://aclanthology.org/2025.ranlp-1.162/) (Zaghouani & Biswas, RANLP 2025)
ACL