@inproceedings{blackmore-stone-2025-llms,
title = "Can {LLM}s Disambiguate Grounded Language? The Case of {PP} Attachment",
author = "Blackmore, John and
Stone, Matthew",
editor = "Angelova, Galia and
Kunilovskaya, Maria and
Escribe, Marie and
Mitkov, Ruslan",
booktitle = "Proceedings of the 15th International Conference on Recent Advances in Natural Language Processing - Natural Language Processing in the Generative AI Era",
month = sep,
year = "2025",
address = "Varna, Bulgaria",
publisher = "INCOMA Ltd., Shoumen, Bulgaria",
url = "https://aclanthology.org/2025.ranlp-1.20/",
pages = "166--174",
abstract = "We explore the potential of large language models in resolving ambiguity in prepositional phrase attachments in grounded language. We find that when prompted in such a way that we can compute a probability of the respective attachment, models yield promising results. However, additional inputs from a measure of information structure may help improve prediction accuracy. We also investigate where we need more sophisticated tools, commonsense reasoning, world knowledge, and additional context to resolve ambiguity."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="blackmore-stone-2025-llms">
<titleInfo>
<title>Can LLMs Disambiguate Grounded Language? The Case of PP Attachment</title>
</titleInfo>
<name type="personal">
<namePart type="given">John</namePart>
<namePart type="family">Blackmore</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Matthew</namePart>
<namePart type="family">Stone</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-09</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 15th International Conference on Recent Advances in Natural Language Processing - Natural Language Processing in the Generative AI Era</title>
</titleInfo>
<name type="personal">
<namePart type="given">Galia</namePart>
<namePart type="family">Angelova</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Maria</namePart>
<namePart type="family">Kunilovskaya</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marie</namePart>
<namePart type="family">Escribe</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ruslan</namePart>
<namePart type="family">Mitkov</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>INCOMA Ltd., Shoumen, Bulgaria</publisher>
<place>
<placeTerm type="text">Varna, Bulgaria</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We explore the potential of large language models in resolving ambiguity in prepositional phrase attachments in grounded language. We find that when prompted in such a way that we can compute a probability of the respective attachment, models yield promising results. However, additional inputs from a measure of information structure may help improve prediction accuracy. We also investigate where we need more sophisticated tools, commonsense reasoning, world knowledge, and additional context to resolve ambiguity.</abstract>
<identifier type="citekey">blackmore-stone-2025-llms</identifier>
<location>
<url>https://aclanthology.org/2025.ranlp-1.20/</url>
</location>
<part>
<date>2025-09</date>
<extent unit="page">
<start>166</start>
<end>174</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Can LLMs Disambiguate Grounded Language? The Case of PP Attachment
%A Blackmore, John
%A Stone, Matthew
%Y Angelova, Galia
%Y Kunilovskaya, Maria
%Y Escribe, Marie
%Y Mitkov, Ruslan
%S Proceedings of the 15th International Conference on Recent Advances in Natural Language Processing - Natural Language Processing in the Generative AI Era
%D 2025
%8 September
%I INCOMA Ltd., Shoumen, Bulgaria
%C Varna, Bulgaria
%F blackmore-stone-2025-llms
%X We explore the potential of large language models in resolving ambiguity in prepositional phrase attachments in grounded language. We find that when prompted in such a way that we can compute a probability of the respective attachment, models yield promising results. However, additional inputs from a measure of information structure may help improve prediction accuracy. We also investigate where we need more sophisticated tools, commonsense reasoning, world knowledge, and additional context to resolve ambiguity.
%U https://aclanthology.org/2025.ranlp-1.20/
%P 166-174
Markdown (Informal)
[Can LLMs Disambiguate Grounded Language? The Case of PP Attachment](https://aclanthology.org/2025.ranlp-1.20/) (Blackmore & Stone, RANLP 2025)
ACL