@inproceedings{bora-saggion-2025-impact,
title = "The Impact of Named Entity Recognition on Transformer-Based Multi-Label Dietary Recipe Classification",
author = "Bora, Kemalcan and
Saggion, Horacio",
editor = "Angelova, Galia and
Kunilovskaya, Maria and
Escribe, Marie and
Mitkov, Ruslan",
booktitle = "Proceedings of the 15th International Conference on Recent Advances in Natural Language Processing - Natural Language Processing in the Generative AI Era",
month = sep,
year = "2025",
address = "Varna, Bulgaria",
publisher = "INCOMA Ltd., Shoumen, Bulgaria",
url = "https://aclanthology.org/2025.ranlp-1.22/",
pages = "184--193",
abstract = "This research explores the impact of Named Entity Recognition (NER) on transformer-based models for multi-label recipe classification by dietary preference. To support this task, we introduce the NutriCuisine Index: a collection of 23,932 recipes annotated across six dietary categories (Healthy, Vegan, Gluten-Free, Low-Carb, High-Protein, Low-Sugar). Using BERT-base-uncased, RoBERTa-base, and DistilBERT-base-uncased, we evaluate how NER-based preprocessing affects the performance (F1-score, Precision, Recall, and Hamming Loss) of Transformer-based multi-label classification models. RoBERTa-base shows significant improvements with NER in F1-score ({\ensuremath{\Delta}}F1 = +0.0147, p {\ensuremath{<}} 0.001), Precision, and Recall, while BERT and DistilBERT show no such gains. NER also leads to a slight but statistically significant increase in Hamming Loss across all models. These findings highlight the model dependent impact of NER on classification performance."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="bora-saggion-2025-impact">
<titleInfo>
<title>The Impact of Named Entity Recognition on Transformer-Based Multi-Label Dietary Recipe Classification</title>
</titleInfo>
<name type="personal">
<namePart type="given">Kemalcan</namePart>
<namePart type="family">Bora</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Horacio</namePart>
<namePart type="family">Saggion</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-09</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 15th International Conference on Recent Advances in Natural Language Processing - Natural Language Processing in the Generative AI Era</title>
</titleInfo>
<name type="personal">
<namePart type="given">Galia</namePart>
<namePart type="family">Angelova</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Maria</namePart>
<namePart type="family">Kunilovskaya</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marie</namePart>
<namePart type="family">Escribe</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ruslan</namePart>
<namePart type="family">Mitkov</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>INCOMA Ltd., Shoumen, Bulgaria</publisher>
<place>
<placeTerm type="text">Varna, Bulgaria</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>This research explores the impact of Named Entity Recognition (NER) on transformer-based models for multi-label recipe classification by dietary preference. To support this task, we introduce the NutriCuisine Index: a collection of 23,932 recipes annotated across six dietary categories (Healthy, Vegan, Gluten-Free, Low-Carb, High-Protein, Low-Sugar). Using BERT-base-uncased, RoBERTa-base, and DistilBERT-base-uncased, we evaluate how NER-based preprocessing affects the performance (F1-score, Precision, Recall, and Hamming Loss) of Transformer-based multi-label classification models. RoBERTa-base shows significant improvements with NER in F1-score (\ensuremathΔF1 = +0.0147, p \ensuremath< 0.001), Precision, and Recall, while BERT and DistilBERT show no such gains. NER also leads to a slight but statistically significant increase in Hamming Loss across all models. These findings highlight the model dependent impact of NER on classification performance.</abstract>
<identifier type="citekey">bora-saggion-2025-impact</identifier>
<location>
<url>https://aclanthology.org/2025.ranlp-1.22/</url>
</location>
<part>
<date>2025-09</date>
<extent unit="page">
<start>184</start>
<end>193</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T The Impact of Named Entity Recognition on Transformer-Based Multi-Label Dietary Recipe Classification
%A Bora, Kemalcan
%A Saggion, Horacio
%Y Angelova, Galia
%Y Kunilovskaya, Maria
%Y Escribe, Marie
%Y Mitkov, Ruslan
%S Proceedings of the 15th International Conference on Recent Advances in Natural Language Processing - Natural Language Processing in the Generative AI Era
%D 2025
%8 September
%I INCOMA Ltd., Shoumen, Bulgaria
%C Varna, Bulgaria
%F bora-saggion-2025-impact
%X This research explores the impact of Named Entity Recognition (NER) on transformer-based models for multi-label recipe classification by dietary preference. To support this task, we introduce the NutriCuisine Index: a collection of 23,932 recipes annotated across six dietary categories (Healthy, Vegan, Gluten-Free, Low-Carb, High-Protein, Low-Sugar). Using BERT-base-uncased, RoBERTa-base, and DistilBERT-base-uncased, we evaluate how NER-based preprocessing affects the performance (F1-score, Precision, Recall, and Hamming Loss) of Transformer-based multi-label classification models. RoBERTa-base shows significant improvements with NER in F1-score (\ensuremathΔF1 = +0.0147, p \ensuremath< 0.001), Precision, and Recall, while BERT and DistilBERT show no such gains. NER also leads to a slight but statistically significant increase in Hamming Loss across all models. These findings highlight the model dependent impact of NER on classification performance.
%U https://aclanthology.org/2025.ranlp-1.22/
%P 184-193
Markdown (Informal)
[The Impact of Named Entity Recognition on Transformer-Based Multi-Label Dietary Recipe Classification](https://aclanthology.org/2025.ranlp-1.22/) (Bora & Saggion, RANLP 2025)
ACL