@inproceedings{chen-etal-2025-detecting-changes,
title = "Detecting Changes in Mental Health Status via {R}eddit Posts in Response to Global Negative Events",
author = "Chen, Zenan and
Preiss, Judita and
Bath, Peter A.",
editor = "Angelova, Galia and
Kunilovskaya, Maria and
Escribe, Marie and
Mitkov, Ruslan",
booktitle = "Proceedings of the 15th International Conference on Recent Advances in Natural Language Processing - Natural Language Processing in the Generative AI Era",
month = sep,
year = "2025",
address = "Varna, Bulgaria",
publisher = "INCOMA Ltd., Shoumen, Bulgaria",
url = "https://aclanthology.org/2025.ranlp-1.27/",
pages = "227--233",
abstract = "Detecting population-level mental health responses to global negative events through social media language remains understudied, despite its potential for public health surveillance. While pretrained language models (PLMs) have shown promise in mental health detection, their effectiveness in capturing event-driven collective psychological shifts {--} especially across diverse crisis contexts {--} is unclear. We present a prototype evaluation of three PLMs for identifying population mental health dynamics triggered by real-world negative events. We introduce two novel datasets specifically designed for this task. Our findings suggest that DistilBERT is better suited to the noisier global negative events data, while MentalRoBERTa shows the validity of the method on the Covid-19 tidier data. SHAP interpretability analysis of 500 randomly sampled posts revealed that mental-health related vocabulary (anxiety, depression, worthless) emerged as the most influential linguistic markers for mental health classification."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="chen-etal-2025-detecting-changes">
<titleInfo>
<title>Detecting Changes in Mental Health Status via Reddit Posts in Response to Global Negative Events</title>
</titleInfo>
<name type="personal">
<namePart type="given">Zenan</namePart>
<namePart type="family">Chen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Judita</namePart>
<namePart type="family">Preiss</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Peter</namePart>
<namePart type="given">A</namePart>
<namePart type="family">Bath</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-09</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 15th International Conference on Recent Advances in Natural Language Processing - Natural Language Processing in the Generative AI Era</title>
</titleInfo>
<name type="personal">
<namePart type="given">Galia</namePart>
<namePart type="family">Angelova</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Maria</namePart>
<namePart type="family">Kunilovskaya</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marie</namePart>
<namePart type="family">Escribe</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ruslan</namePart>
<namePart type="family">Mitkov</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>INCOMA Ltd., Shoumen, Bulgaria</publisher>
<place>
<placeTerm type="text">Varna, Bulgaria</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Detecting population-level mental health responses to global negative events through social media language remains understudied, despite its potential for public health surveillance. While pretrained language models (PLMs) have shown promise in mental health detection, their effectiveness in capturing event-driven collective psychological shifts – especially across diverse crisis contexts – is unclear. We present a prototype evaluation of three PLMs for identifying population mental health dynamics triggered by real-world negative events. We introduce two novel datasets specifically designed for this task. Our findings suggest that DistilBERT is better suited to the noisier global negative events data, while MentalRoBERTa shows the validity of the method on the Covid-19 tidier data. SHAP interpretability analysis of 500 randomly sampled posts revealed that mental-health related vocabulary (anxiety, depression, worthless) emerged as the most influential linguistic markers for mental health classification.</abstract>
<identifier type="citekey">chen-etal-2025-detecting-changes</identifier>
<location>
<url>https://aclanthology.org/2025.ranlp-1.27/</url>
</location>
<part>
<date>2025-09</date>
<extent unit="page">
<start>227</start>
<end>233</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Detecting Changes in Mental Health Status via Reddit Posts in Response to Global Negative Events
%A Chen, Zenan
%A Preiss, Judita
%A Bath, Peter A.
%Y Angelova, Galia
%Y Kunilovskaya, Maria
%Y Escribe, Marie
%Y Mitkov, Ruslan
%S Proceedings of the 15th International Conference on Recent Advances in Natural Language Processing - Natural Language Processing in the Generative AI Era
%D 2025
%8 September
%I INCOMA Ltd., Shoumen, Bulgaria
%C Varna, Bulgaria
%F chen-etal-2025-detecting-changes
%X Detecting population-level mental health responses to global negative events through social media language remains understudied, despite its potential for public health surveillance. While pretrained language models (PLMs) have shown promise in mental health detection, their effectiveness in capturing event-driven collective psychological shifts – especially across diverse crisis contexts – is unclear. We present a prototype evaluation of three PLMs for identifying population mental health dynamics triggered by real-world negative events. We introduce two novel datasets specifically designed for this task. Our findings suggest that DistilBERT is better suited to the noisier global negative events data, while MentalRoBERTa shows the validity of the method on the Covid-19 tidier data. SHAP interpretability analysis of 500 randomly sampled posts revealed that mental-health related vocabulary (anxiety, depression, worthless) emerged as the most influential linguistic markers for mental health classification.
%U https://aclanthology.org/2025.ranlp-1.27/
%P 227-233
Markdown (Informal)
[Detecting Changes in Mental Health Status via Reddit Posts in Response to Global Negative Events](https://aclanthology.org/2025.ranlp-1.27/) (Chen et al., RANLP 2025)
ACL