@inproceedings{datseris-etal-2025-end,
title = "End-to-End Deep Learning for Named Entity Recognition and Relation Extraction in Gut-Brain Axis {P}ub{M}ed Abstracts",
author = "Datseris, Aleksis Ioannis and
Kuzmanov, Mario and
Nikolova-Koleva, Ivelina and
Taskov, Dimitar and
Boytcheva, Svetla",
editor = "Angelova, Galia and
Kunilovskaya, Maria and
Escribe, Marie and
Mitkov, Ruslan",
booktitle = "Proceedings of the 15th International Conference on Recent Advances in Natural Language Processing - Natural Language Processing in the Generative AI Era",
month = sep,
year = "2025",
address = "Varna, Bulgaria",
publisher = "INCOMA Ltd., Shoumen, Bulgaria",
url = "https://aclanthology.org/2025.ranlp-1.31/",
pages = "254--259",
abstract = "This is a comparative study tackling named entity recognition and relation extraction from PubMed abstracts with focus on the gut-brain interplay. The proposed systems for named entity recognition cover a range of models and techniques from traditional gazetteer-based approaches, transformer-based approaches, transformer domain adaptation, large models pre-training as well as LLM prompting. The best performing model among these achieves 82.53{\%} F1-score. The relation extraction task is addressed with ATLOP and LLMs and their best results reach F1 up to 63.80{\%} on binary relation extraction, 89.40{\%} on ternary tag-based relation extraction and 40.32{\%} on ternary mention-based relation extraction."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="datseris-etal-2025-end">
<titleInfo>
<title>End-to-End Deep Learning for Named Entity Recognition and Relation Extraction in Gut-Brain Axis PubMed Abstracts</title>
</titleInfo>
<name type="personal">
<namePart type="given">Aleksis</namePart>
<namePart type="given">Ioannis</namePart>
<namePart type="family">Datseris</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mario</namePart>
<namePart type="family">Kuzmanov</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ivelina</namePart>
<namePart type="family">Nikolova-Koleva</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Dimitar</namePart>
<namePart type="family">Taskov</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Svetla</namePart>
<namePart type="family">Boytcheva</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-09</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 15th International Conference on Recent Advances in Natural Language Processing - Natural Language Processing in the Generative AI Era</title>
</titleInfo>
<name type="personal">
<namePart type="given">Galia</namePart>
<namePart type="family">Angelova</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Maria</namePart>
<namePart type="family">Kunilovskaya</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marie</namePart>
<namePart type="family">Escribe</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ruslan</namePart>
<namePart type="family">Mitkov</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>INCOMA Ltd., Shoumen, Bulgaria</publisher>
<place>
<placeTerm type="text">Varna, Bulgaria</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>This is a comparative study tackling named entity recognition and relation extraction from PubMed abstracts with focus on the gut-brain interplay. The proposed systems for named entity recognition cover a range of models and techniques from traditional gazetteer-based approaches, transformer-based approaches, transformer domain adaptation, large models pre-training as well as LLM prompting. The best performing model among these achieves 82.53% F1-score. The relation extraction task is addressed with ATLOP and LLMs and their best results reach F1 up to 63.80% on binary relation extraction, 89.40% on ternary tag-based relation extraction and 40.32% on ternary mention-based relation extraction.</abstract>
<identifier type="citekey">datseris-etal-2025-end</identifier>
<location>
<url>https://aclanthology.org/2025.ranlp-1.31/</url>
</location>
<part>
<date>2025-09</date>
<extent unit="page">
<start>254</start>
<end>259</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T End-to-End Deep Learning for Named Entity Recognition and Relation Extraction in Gut-Brain Axis PubMed Abstracts
%A Datseris, Aleksis Ioannis
%A Kuzmanov, Mario
%A Nikolova-Koleva, Ivelina
%A Taskov, Dimitar
%A Boytcheva, Svetla
%Y Angelova, Galia
%Y Kunilovskaya, Maria
%Y Escribe, Marie
%Y Mitkov, Ruslan
%S Proceedings of the 15th International Conference on Recent Advances in Natural Language Processing - Natural Language Processing in the Generative AI Era
%D 2025
%8 September
%I INCOMA Ltd., Shoumen, Bulgaria
%C Varna, Bulgaria
%F datseris-etal-2025-end
%X This is a comparative study tackling named entity recognition and relation extraction from PubMed abstracts with focus on the gut-brain interplay. The proposed systems for named entity recognition cover a range of models and techniques from traditional gazetteer-based approaches, transformer-based approaches, transformer domain adaptation, large models pre-training as well as LLM prompting. The best performing model among these achieves 82.53% F1-score. The relation extraction task is addressed with ATLOP and LLMs and their best results reach F1 up to 63.80% on binary relation extraction, 89.40% on ternary tag-based relation extraction and 40.32% on ternary mention-based relation extraction.
%U https://aclanthology.org/2025.ranlp-1.31/
%P 254-259
Markdown (Informal)
[End-to-End Deep Learning for Named Entity Recognition and Relation Extraction in Gut-Brain Axis PubMed Abstracts](https://aclanthology.org/2025.ranlp-1.31/) (Datseris et al., RANLP 2025)
ACL