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Abstract

Solving the problem of Optical Character
Recognition (OCR) on printed text for Latin
and its derivative scripts can now be considered
settled due to the volumes of research done
on English and other High-Resourced Lan-
guages (HRL). However, for Low-Resourced
Languages (LRL) that use unique scripts, it re-
mains an open problem. This study presents
a comparative analysis of the zero-shot per-
formance of six distinct OCR engines on two
LRLs: Sinhala and Tamil. The selected engines
include both commercial and open-source sys-
tems, aiming to evaluate the strengths of each
category. The Cloud Vision API, Surya, Doc-
ument AI, and Tesseract were evaluated for
both Sinhala and Tamil, while Subasa OCR
and EasyOCR were examined for only one lan-
guage due to their limitations. The performance
of these systems was rigorously analysed using
five measurement techniques to assess accuracy
at both the character and word levels. Accord-
ing to the findings, Surya delivered the best per-
formance for Sinhala across all metrics, with a
WER of 2.61%. Conversely, Document AI ex-
celled across all metrics for Tamil, highlighted
by a very low CER of 0.78%. In addition to
the above analysis, we also introduce a novel
synthetic Tamil OCR benchmarking dataset1.

1 Introduction

Optical Character Recognition (OCR) is a com-
putational technology that is used for recognising
text within digital images, such as scanned doc-
uments, advertisements, and photographs (Agar-
wal and Anastasopoulos, 2024; Jain et al., 2021;
Weerasinghe et al., 2008). OCR is commonly em-
ployed as an information entry tool to extract valu-
able data from scanned documents such as forms,
receipts, invoices, and passports. Historically, OCR

1
https://huggingface.co/datasets/Nevidu/tamil_

synthetic_ocr

(along with Text-To-Speech systems) was created
to assist blind or disabled individuals by facilitat-
ing machines to read written text aloud to them, a
development that dates back to 1914 (Mittal and
Garg, 2020).

The process of OCR typically involves multi-
ple steps: 1) It begins with image acquisition,
where the image is captured. 2) Next is pre-
processing, which enhances the image quality and
includes binarisation to separate the content from
the background. 3) Following this is layout anal-
ysis, where the document is divided into distinct
regions. 4) The next step is character-level segmen-
tation, which breaks the text down into lines, words,
and individual characters. 5) Recognition follows,
involving feature extraction and classification to
identify the characters. 6) Finally, post-processing
improves the results, often using language mod-
els. Each of these stages is essential for effective
OCR performance (Jain et al., 2021; Nazeem et al.,
2024).

While OCR systems have advanced significantly,
particularly for High-Resourced Languages (HRL)
such as English and French (Nazeem et al., 2024),
recognising text from complex or low-quality im-
ages, historical documents, and Low-Resource Lan-
guages (LRL) still presents challenges (Agarwal
and Anastasopoulos, 2024). In this benchmark-
ing study, we conduct a thorough examination of
various multilingual and monolingual OCR sys-
tems, assessing their capabilities for two selected
low-resource languages in South Asia: Sinhala and
Tamil.

Sinhala is an Indo-European language spoken as
L1 by just 16 million people, mostly located in the
island of Sri Lanka (de Silva, 2025). Sinhala has a
script that is unique to it which descends from the
Indian Brahmi Script (Fernando, 1949). Tamil is a
Dravidian language spoken as L1 by around 79 mil-
lion people located primarily in India, Sri Lanka,

https://huggingface.co/datasets/Nevidu/tamil_synthetic_ocr
https://huggingface.co/datasets/Nevidu/tamil_synthetic_ocr
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Figure 1: An example of the use of rounded script in
Tamil and Sinhala languages.

and Singapore (Wijeratne et al., 2019). It also has a
unique script that is also a descendant of the Indian
Brahmi Script (Paneerselvam, 1972). Both Sinhala
and Tamil are considered LRLs by the criteria pro-
posed by Ranathunga and de Silva (2022), where
Sinhala is deemed to be lower resourced (Category
02) as opposed to Tamil (Category 03).

2 Existing Works

Despite extensive research over the past several
decades, the challenge of accurately recognising
Sinhala characters in OCR systems remains a
formidable obstacle (Anuradha et al., 2020). In-
dic languages, such as Tamil, present a myriad of
complexities and character variations, significantly
complicating the development of effective OCR
solutions. In clear terms, the accuracy of South
Asian rounded scripts is significantly behind that
of Latin-based scripts, highlighting a crucial area
for improvement and development (Anuradha et al.,
2021).

2.1 Sinhala OCR Systems

Several research studies have been conducted on
developing Sinhala OCR systems. A proposed sys-
tem for the Sinhala language by Anuradha et al.
(2020) utilises the Tesseract 4.0 OCR engine with
a graphical user interface, comprising a user, an
API, the Tesseract engine (Smith, 2007), a post-
processor, and a data store. The Tesseract engine
employs Long Short Term Memory (LSTM) based
deep learning techniques for text recognition from
images. However, it occasionally fails to recognise
certain characters. The post-processor addresses

this by applying linguistic rules for improved ac-
curacy. Using various commercially available font
types, varying in size, this system achieved an av-
erage accuracy of 94%.

A study on multi-style printed Sinhala character
recognition (Maduranga and Jayalal, 2022) utilized
a hybrid Artificial Neural Network (ANN) model,
following four steps: Data Preprocessing for im-
age enhancement and noise removal; Feature Ex-
traction, dividing 50x50px character images into 9
zones with 12 pieces each to create a 108-signal fea-
ture vector; Development and Training, using line
features from an 850-character database (mainly
Iskoola Pota font2) to train a backpropagation net-
work in MATLAB, achieving about 75% training
accuracy over 138 epochs; and Testing, evaluating
performance with a dataset of 1253 characters.

Velayuthan and Ambegoda (2025) conducted
a comparative analysis of OCR models, includ-
ing Surya3, TR-OCR4, EasyOCR5, and Tesseract
OCR (Smith, 2007), focusing on digitising doc-
uments in low-resource languages. Although the
study aimed at Sinhala and Tamil, it reported results
only for Sinhala using synthetic datasets and for
English via the FUNSD dataset (Jaume et al., 2019).
Metrics like CER (Character Error Rate) and WER
(Word Error Rate) were employed, revealing that
Surya outperformed the other models on the Sin-
hala datasets. While all models had high error rates
on English, Surya was the most balanced for Sin-
hala, achieving good accuracy with moderate com-
putational demands and superior power efficiency,
using 0.69 kWh less on average than TR-OCR. The
accuracy difference between Sinhala and English
is attributed to the nature of the datasets, with syn-
thetic Sinhala datasets versus noisy English form
document images.

2.2 Tamil OCR Systems

Various research initiatives have been undertaken to
create OCR systems for the Tamil language. Unlike
Sinhala, which is primarily spoken in Sri Lanka,
the Tamil language has a much wider geographical
spread across the South Asian region. Notwith-
standing their different linguistic roots, Tamil also
utilises a rounded script similar to Sinhala, as de-
picted in Figure 1, due to their writing systems

2
https://learn.microsoft.com/en-us/typography/

font-list/iskoola-pota
3
https://github.com/VikParuchuri/surya

4
https://huggingface.co/Ransaka/TrOCR-Sinhala

5
https://github.com/JaidedAI/EasyOCR

https://learn.microsoft.com/en-us/typography/font-list/iskoola-pota
https://learn.microsoft.com/en-us/typography/font-list/iskoola-pota
https://github.com/VikParuchuri/surya
https://huggingface.co/Ransaka/TrOCR-Sinhala
https://github.com/JaidedAI/EasyOCR
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being related. This leads to similar challenges in
the development of OCR technology.

Liyanage et al. (2015) developed a Tamil OCR
system using the open-source Tesseract OCR en-
gine, inspired by its applications with scripts such
as Sinhala and Bangla. The methodology involved
creating a 169-character OCR alphabet and prepar-
ing training data from selected words in various
Unicode fonts. They tested different training com-
binations and found that a model using data from
three fonts at three sizes achieved the best results.
The system was evaluated using 20 scanned images
from ancient Tamil books, achieving an accuracy of
81%. This was benchmarked only against Tesser-
act’s existing Tamil module, over which, a 12.5%
improvement was shown.

Recent research introduced the Nayana frame-
work (Kolavi et al., 2025), which enhances Vision-
Language Models (VLMs) like GOT (General
OCR Theory) (Wei et al., 2024) for low-resource
languages, including Tamil. It addresses data
scarcity through a layout-aware synthetic data
generation pipeline and Low-Rank Adaptation
(LoRA) (Hu et al., 2022). This system trans-
lates English documents into Tamil while maintain-
ing their layout, followed by a two-phase Cross-
Modal Alignment training with LoRA. Nayana-
OCR achieved a WER of 0.551 and a METEOR
score of 0.592, significantly outperforming the
base GOT model (WER 1.020, METEOR 0.051)
and other traditional OCR systems like Tesser-
act (Smith, 2007) and PaddleOCR6 on the Tamil
test set.

3 Methodology

As discussed earlier, contemporary studies are util-
ising open-source tools to effectively fine-tune
models for new languages and improve existing
capabilities. Many of these tools offer multilingual
support. Additionally, several organisations have
developed commercial engines that excel in OCR.
In this study, we thoroughly evaluate the capabili-
ties of selected OCR engines for Sinhala and Tamil
languages in a zero-shot setting.

3.1 Overview of Selected OCR Technologies

In this study, we benchmark the capabilities of
six selected open-source and commercial engines
specifically designed for OCR tasks.

6
https://github.com/PaddlePaddle/PaddleOCR

Cloud Vision API7: The Cloud Vision API enables
developers to seamlessly incorporate vision detec-
tion features into their applications. This includes
functionalities such as image labelling, face and
landmark detection, OCR, and the tagging of ex-
plicit content. The first version of the API launched
for general availability in May 2017. The API is
designed to perform OCR on files such as Portable
Document Formats (PDFs) and Tag Image File For-
mats (TIFFs), as well as on images with dense text.
It is particularly optimised for image documents
containing large amounts of text and those that fea-
ture handwriting, allowing for accurate recognition
and conversion to machine-readable text.
Document AI8: Document AI is a document un-
derstanding platform that transforms unstructured
data from documents into structured data, mak-
ing it easier to understand, analyse, and utilise. It
employs machine learning and Google Cloud to de-
velop scalable, end-to-end cloud-based document
processing applications. The API provides organi-
sation through content classification, entity extrac-
tion, advanced searching, and more. The OCR pro-
cessor specifically enables the identification and
extraction of text, including handwritten text, from
documents in over 200 languages. Additionally,
the processor uses machine learning to assess the
quality of a document based on the readability of
its content.
Tesseract: Tesseract OCR is a widely used
open-source text recognition engine developed by
Hewlett-Packard and now funded by Google. It
combines Hidden Markov Models and various ma-
chine learning algorithms with traditional computer
vision techniques. Tesseract 4.0 introduced deep
learning methods using LSTM networks, signifi-
cantly enhancing performance compared to earlier
versions that primarily relied on conventional ap-
proaches (Smith, 2007; Nazeem et al., 2024). In
this study, we use Tesseract 5.5.0, which improves
upon 4.0 with the existing LSTM engine and addi-
tional performance enhancements.
Subasa OCR9: The study by Anuradha et al.
(2020) extended the analysis of Sinhala OCR using
deep learning (LSTM) with Tesseract 4.0, exam-
ining factors such as text genre, image resolution,
and algorithmic complexity. Training utilised the
UCSC 10M Sinhala corpus10, incorporating vari-

7
https://cloud.google.com/vision/docs/ocr

8
https://cloud.google.com/document-ai/

9
https://ocr.subasa.lk/

10
https://ltrl.ucsc.lk/tools-and-resourses/

https://github.com/PaddlePaddle/PaddleOCR
https://cloud.google.com/vision/docs/ocr
https://cloud.google.com/document-ai/
https://ocr.subasa.lk/
https://ltrl.ucsc.lk/tools-and-resourses/
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ous fonts and image qualities, with a focus on char-
acter segmentation. Evaluation involved 30 test
images from old newspapers (200 DPI), old books
(72 DPI), and contemporary books (300 DPI), in-
cluding low-DPI (96px) contemporary images. The
OCR engine achieved character accuracy of up to
67.02% on old newspapers, 87.53% on old books,
and 87.63% on contemporary books, maintaining a
high accuracy of 87.88% on low-DPI images (Anu-
radha et al., 2021).

Surya3: This OCR toolkit supports over 90 lan-
guages and benchmarks favourably against cloud
services. It offers line-level text detection, lay-
out analysis (including detection of tables, images,
headers, etc.), reading order detection, and LaTeX
OCR capabilities. The text detection model, built
from the ground up using a modified EfficientViT
architecture, was trained for three days on four
A6000 GPUs. The text recognition model was
trained on the same hardware for two weeks, using
a modified Donut model that incorporates Grouped
Query Attention (GQA) (Ainslie et al., 2023) and
a Mixture of Experts (MoE) layer (Shazeer et al.,
2017), Unicode Transformation Format-16 (UTF-
16) decoding, and changes to the layer configu-
ration. It is important to note that this system is
designed for printed text and not for handwriting.

EasyOCR5: This is an OCR technique that sup-
ports over 80 languages. EasyOCR utilises ResNet
(He et al., 2016), LSTM, and Connectionist Tem-
poral Classification (CTC) (Graves et al., 2006)
models for character recognition. The detection
component of EasyOCR employs the Character
Region Awareness For Text detection (CRAFT) Al-
gorithm (Baek et al., 2019). EasyOCR consists of
three key elements. The first is feature extraction,
which is executed by the ResNet model. The sec-
ond element is sequence labelling, for which the
LSTM algorithm is utilised, and the last compo-
nent is decoding which relies on CTC. The Easy-
OCR’s Readtext function is utilized during text
recognition which can read letters and numbers
from images while providing their location coordi-
nates (Awalgaonkar et al., 2021).

The Google Cloud Vision API and Document AI
are commercial engines, whereas Google Tesser-
act, Surya, and EasyOCR are open-source systems.
Additionally, we selected Subasa OCR, which is a
fine-tuned version of the Tesseract model available
through a web application9, though the source code
and model are not directly accessible.

3.2 Dataset Selection and Assembly

As noted by Ranathunga et al. (2024); de Silva
(2025), free and open datasets for this task are
scarce for low-resourced languages; even when
some published research may exist. To achieve
optimal results, we employed distinct datasets
for each of the two selected languages, ensuring
a tailored approach that enhances the effective-
ness of our analysis. For the Sinhala language,
we chose a dataset published in Hugging Face,
sinhala synthetic ocr-large11 by Rav-
ihara (2024), consisting of 6,969 pairs of images
and reference texts created using five different font
families; Noto Sans Sinhala12, Gemunu Libre13,
Noto Serif Sinhala14, Yaldevi15, and Abhaya Li-
bre16.

Text Retrieval from OPUS 

Line Segmentation

Length-based Filtration

Text to Image

Random Selection of Records

Figure 2: Overview of the Tamil synthetic OCR dataset
creation.

Since we considered a synthetically generated
dataset for Sinhala, we also aimed to evaluate syn-
thetically generated data for Tamil to ensure a fair
comparison. However, we could not find any pub-
licly available Tamil datasets developed in a similar
manner to the selected Sinhala dataset. As a result,
we decided to create a new dataset for the Tamil lan-
guage. The overview of the Tamil dataset creation
is shown in Figure 2.

The Tamil text was obtained from

11
https://huggingface.co/datasets/Ransaka/sinhala_

synthetic_ocr-large
12
https://fonts.google.com/noto/specimen/Noto+

Sans+Sinhala
13
https://fonts.google.com/specimen/Gemunu+Libre

14
https://fonts.google.com/noto/specimen/Noto+

Serif+Sinhala
15
https://fonts.google.com/specimen/Yaldevi

16
https://fonts.google.com/specimen/Abhaya+Libre

https://huggingface.co/datasets/Ransaka/sinhala_synthetic_ocr-large
https://huggingface.co/datasets/Ransaka/sinhala_synthetic_ocr-large
https://fonts.google.com/noto/specimen/Noto+Sans+Sinhala
https://fonts.google.com/noto/specimen/Noto+Sans+Sinhala
https://fonts.google.com/specimen/Gemunu+Libre
https://fonts.google.com/noto/specimen/Noto+Serif+Sinhala
https://fonts.google.com/noto/specimen/Noto+Serif+Sinhala
https://fonts.google.com/specimen/Yaldevi
https://fonts.google.com/specimen/Abhaya+Libre
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OPUS17 (Tiedemann, 2012), specifically se-
lecting OpenSubtitles (Lison and Tiedemann,
2016) v202418. The content was then divided
line by line, focusing solely on Tamil characters
since the primary goal was language evaluation,
resulting in 2,437,960 records. Subsequently, this
set was filtered to retain only texts longer than
40 characters, yielding 222,658 records. This
filtration step ensured that word-level evaluation
was accurate. However, to ensure a fair comparison
with the Sinhala dataset, we decided to randomly
select 7,000 samples from the remaining texts to
equalise the sample sizes. This step was necessary
to prevent evaluation scores from being skewed by
differences in dataset size. Further, conducting
OCR on additional samples is challenging due to
the resource consumption involved.

We carefully selected six unique font families
out of a total of 17 from Google Fonts19 to diver-
sify the creation of images from the text records,
ensuring that each visual representation is impact-
ful for the analysis. We identified the unique fonts
visually, as some fonts, such as Mukta Malar20 and
Baloo Thambi 221, have characters that can appear
very similar to the naked eye. The selected six fonts
are Hind Madurai22, Noto Serif Tamil23, Kaviva-
nar24, Noto Sans Tamil25, Pavanam26, and Anek
Tamil27.

A function was then developed utilising the capa-
bilities of the Pillow28 library to systematically
convert textual data into image files. Its fundamen-
tal purpose is to ensure a proportional distribution
of input text records across the defined set of font
files, promoting an equitable use of fonts in the
generated image dataset. For each text entry, the
function dynamically calculates optimal image di-
mensions based on the measurements of the text
bounding box, rendering the text in black on a
white background. A significant feature of this
implementation is the precise centring of the text

17
https://opus.nlpl.eu/

18
https://opus.nlpl.eu/OpenSubtitles/ta&en/v2024/

OpenSubtitles
19
https://fonts.google.com/

20
https://fonts.google.com/specimen/Mukta+Malar

21
https://fonts.google.com/specimen/Baloo+Thambi+2

22
https://fonts.google.com/specimen/Hind+Madurai

23
https://fonts.google.com/noto/specimen/Noto+

Serif+Tamil
24
https://fonts.google.com/specimen/Kavivanar

25
https://fonts.google.com/noto/specimen/Noto+

Sans+Tamil
26
https://fonts.google.com/specimen/Pavanam

27
https://fonts.google.com/specimen/Anek+Tamil

28
https://pillow.readthedocs.io/

within the generated image, achieved through calcu-
lated positioning in relation to the height and width
of the image, thereby enhancing visual consistency
and quality.

The post-processing phase for the Tamil dataset
involved excluding records without string values
for both reference and generated features. For
the Sinhala dataset, an additional step removed
all non-Sinhala characters from the texts to focus
exclusively on the system’s targeted linguistic ca-
pabilities. Since we created the Tamil dataset, this
character-focused post-processing was addressed
during preprocessing. This synthetic Tamil OCR
public dataset1 is a key contribution to our study. A
few examples of a Tamil sentence in selected fonts
are shown in Figure 3.

Hind Madurai

Noto Serif Tamil

Kavivanar

Noto Sans Tamil

Pavanam

Anek Tamil

Figure 3: Examples of a single Tamil sentence in the
selected fonts, showing the style differences.

3.3 Integration of OCR Systems
Both the Google Cloud Vision API and Document
AI are available through the Google Cloud Plat-
form (GCP). However, while enabling the Cloud
Vision API is straightforward, as it only requires
activating the API in GCP, Document AI neces-
sitates the manual creation of a processor within
GCP. This created processor is then used to initiate
the OCR process.

The process of integrating the Tesseract en-
gine was quite simple through the use of the
pytesseract29 wrapper. This enabled the au-
tomation of character recognition for every record

29
https://pypi.org/project/pytesseract/

https://opus.nlpl.eu/
https://opus.nlpl.eu/OpenSubtitles/ta&en/v2024/OpenSubtitles
https://opus.nlpl.eu/OpenSubtitles/ta&en/v2024/OpenSubtitles
https://fonts.google.com/
https://fonts.google.com/specimen/Mukta+Malar
https://fonts.google.com/specimen/Baloo+Thambi+2
https://fonts.google.com/specimen/Hind+Madurai
https://fonts.google.com/noto/specimen/Noto+Serif+Tamil
https://fonts.google.com/noto/specimen/Noto+Serif+Tamil
https://fonts.google.com/specimen/Kavivanar
https://fonts.google.com/noto/specimen/Noto+Sans+Tamil
https://fonts.google.com/noto/specimen/Noto+Sans+Tamil
https://fonts.google.com/specimen/Pavanam
https://fonts.google.com/specimen/Anek+Tamil
https://pillow.readthedocs.io/
https://pypi.org/project/pytesseract/
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within each dataset, streamlining the overall data
processing workflow.

As previously mentioned, the Subasa OCR en-
gine is exclusively accessible via a web application.
This limitation meant that we had to manually in-
put images one by one to perform OCR, a process
that proves impractical given our substantial Sin-
hala dataset of 6,969 records. To streamline this
tedious task and enhance efficiency, we resolved to
automate it using Selenium30 after meticulously
identifying the element locations by inspecting the
web source code.

The seamless integration of Surya and EasyOCR
was straightforward, largely due to their compre-
hensive documentation. Both engines are accessi-
ble on GitHub and can be conveniently installed as
libraries directly through Python, making the setup
process efficient and user-friendly.

3.4 Evaluation Mechanism

The evaluation was performed using the generated
text against the reference text of the datasets. For
the comparison, we employed five different mea-
surements;
Character Error Rate (CER): It is based on the
concept of Levenshtein distance, which measures
the minimum number of character-level operations
(substitutions, deletions, and insertions) necessary
to transform the ground truth text into the output
generated by OCR. The CER formula is expressed
as (S+ I+D)/N , where S represents the number
of substitutions, I denotes insertions, D signifies
deletions, and N is the total number of characters
in the ground truth text (Nazeem et al., 2024).
Word Error Rate (WER): Similar to the CER, the
WER is calculated by comparing the text produced
by the OCR system against a ground truth or refer-
ence text. The WER is determined by the number
of word-level errors made by the OCR engine. The
formula for calculating the word error rate is also
(S + I +D)/N , but considered at the word level
instead of the character level (Nazeem et al., 2024).
Bilingual Evaluation Understudy (BLEU): It is a
method for automatically evaluating machine trans-
lation quality by comparing it to one or more pro-
fessional human translations. The score measures
proximity to these human reference translations us-
ing a weighted average of variable-length phrase
matches, based on modified n-gram precision. It
also includes a brevity penalty to discourage overly

30
https://www.selenium.dev/

brief candidate translations. The final BLEU score,
ranging from 0 to 1, is calculated as the geometric
mean of the modified n-gram precisions multiplied
by the brevity penalty (Papineni et al., 2002).
Average Normalised Levenshtein Similarity
(ANLS): This metric takes into account both rea-
soning errors and shortcomings of OCR. To eval-
uate answers, it calculates a similarity score be-
tween the response of the model and the ground
truth using Levenshtein distance. A key feature of
this scoring system is its application of a thresh-
old (τ=0.5) on the normalised Levenshtein distance
(NL): if NL is less than or equal to 0.5, the simi-
larity score is calculated as 1-NL; otherwise, the
score is 0. This approach allows ANLS to provide
intermediate scores (ranging from 0.5 to 1) for re-
sponses that are logically correct but may contain
minor recognition errors, contrasting with standard
accuracy metrics, which would score them as zero
(Biten et al., 2019).

ANLS =
1

N

N∑
i=0

(
max

j
s(aij , oqi)

)
(1)

s(aij , oqi) =

{
1−NL(aij , oqi) if NL(aij , oqi) < τ

0 if NL(aij , oqi) ≥ τ

Metric for Evaluation of Translation with Ex-
plicit ORdering (METEOR): Similar to BLEU,
METEOR is also a metric designed for evaluating
the quality of machine translation. It identifies uni-
gram matches between machine-generated outputs
and human translations, considering surface forms,
stemmed forms, and synonyms. Designed to over-
come BLEU’s limitations, METEOR computes a
score by integrating unigram precision, unigram
recall (with greater emphasis on recall), and a frag-
mentation penalty for word order of matched words.
This method has shown better correlation with hu-
man judgments and has been widely adopted in
OCR studies, making it a preferred choice for eval-
uation (Banerjee and Lavie, 2005).

4 Discussion of Results

This section analyses the results from our compar-
ative evaluation of OCR systems, presented sep-
arately for Sinhala and Tamil in Table 1. Except
for Subasa OCR and EasyOCR, all other systems
processed both languages selected for evaluation
in this study. Subasa OCR is a monolingual system

https://www.selenium.dev/
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OCR System Language CER↓ WER↓ BLEU↑ ANLS↑ METEOR↑
Cloud Vision API Sinhala 0.0619 0.0767 0.9193 0.9447 0.9269

Tamil 0.0079 0.1204 0.5790 0.9922 0.8751
Surya Sinhala 0.0076 0.0261 0.9396 0.9920 0.9723

Tamil 0.1392 0.6500 0.1487 0.8672 0.3359
Document AI Sinhala 0.0610 0.0758 0.9199 0.9455 0.9278

Tamil 0.0078 0.1198 0.5803 0.9923 0.8762
Subasa OCR Sinhala 0.0761 0.1799 0.6894 0.9259 0.8099

Tamil - - - - -
Tesseract Sinhala 0.0702 0.1489 0.7553 0.9319 0.8436

Tamil 0.0780 0.6145 0.0493 0.9264 0.3201
EasyOCR Sinhala - - - - -

Tamil 0.1172 0.2876 0.3461 0.8828 0.6744

Table 1: The evaluation of OCR systems for the Sinhala and Tamil languages

specifically fine-tuned for Sinhala, while EasyOCR
lacks Sinhala support. When evaluating the over-
all results for both languages, the Cloud Vision
API and Document AI produced similar results,
but Document AI outperformed the other engines
for Tamil across all metrics.

Overall, the best WER results for Tamil are no-
tably higher than those for Sinhala. This obser-
vation highlights the disparity between character
and word identification. Document AI, despite
achieving a very low CER, achieves a compara-
tively higher WER, indicating that while the sys-
tem effectively identifies characters, it struggles
with word formation and spacing of the Tamil lan-
guage. This issue is common across all engines
and applies to both languages, as systems tend to
perform better at recognising characters but strug-
gle with forming words and managing spacing. In
contrast, the METEOR and ANLS scores for both
languages are relatively high, suggesting a strong
alignment in terms of content, word order, and se-
mantic meaning. However, the BLEU scores for
Tamil are markedly lower than those of other met-
rics, likely due to the elevated WER, which results
in fewer successful n-gram overlaps.

Performance of Surya on the Sinhala language
has been nothing short of extraordinary, emerging
as the standout among the others. The metrics
clearly illustrate this success, as highlighted in Ta-
ble 1. When we compare the best WER for Tamil
at 11.98% with that of Sinhala at an impressive
2.61% as depicted in Figure 4, the superiority of
the accuracy of the Surya engine for Sinhala be-
comes strikingly apparent. Furthermore, the ME-
TEOR and ANLS scores of 0.9723 and 0.9920,

respectively, underscore its near-perfect word-level
performance.

(a) Sinhala (b) Tamil

Figure 4: WER results for Sinhala and Tamil

The comparison between Subasa OCR and
Tesseract is particularly compelling, as Subasa
OCR represents a fine-tuned adaptation of the
Tesseract 4.0 engine specifically for Sinhala. The
authors of Subasa assert that their modifications
yield significantly superior results compared to the
standard Tesseract 4.0 (Anuradha et al., 2021). The
metric evaluations reveal that Tesseract 5.5.0 now
outperforms Subasa OCR across all metrics. This
indicates that the latest version of Tesseract by
Google has made substantial enhancements for the
Sinhala language, even in its vanilla form. How-
ever, Tesseract’s performance in Tamil is not com-
petitive compared to other systems.

As discussed earlier, due to its lack of support for
Sinhala, EasyOCR is evaluated solely on Tamil, on
which it demonstrated superior performance among
the open-source systems we compared. While the
results show a notable decline compared to two
commercial engines, the contrast with other open-
source solutions is significant.

Furthermore, we performed a character-level er-
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ror analysis for the best models of each language.
This analysis involved counting the number of er-
rors per character by comparing the generated text
to a reference. In Sinhala, we identified erroneous
characters based on a threshold of more than 5,000
errors. Diacritics such as ‘ ◌ා ’, ‘ ◌ු ’, ‘ ◌ි ’, and
‘ ◌් ’ were particularly difficult to identify. In ad-
dition, letters such as ‘ න ’, ‘ ක ’, ‘ ය ’, ‘ ර ’, and
‘ ව ’ posed challenges for Surya in terms of accu-
rate detection.

For Tamil, we set a threshold of more than 1,600
errors to identify erroneous characters. The dia-
critic ‘ ◌் ’ emerged as the most error-prone char-
acter, while letters such as ‘ க ’, ‘ த ’, ‘ன ’, and
‘ ர ’ were also among the most problematic for
Document AI.

The number of character errors is generally
higher for Sinhala compared to Tamil. However,
the best CER scores for both languages do not high-
light this difference. This discrepancy arises be-
cause, despite having a greater number of character-
level errors, the overall usage frequency per char-
acter in Sinhala is also comparably higher, which
reduces the average error rate. This phenomenon
is potentially due to the differences in the sizes of
their alphabets31: Sinhala has 60 characters, while
Tamil contains 247.

5 Conclusion

In this study, we evaluated six different OCR en-
gines for two distinct South Asian languages in a
zero-shot setting. To facilitate this evaluation, we
created a synthetic Tamil OCR dataset, utilising six
different fonts to be parallel to the existing Sinhala
dataset. The performance of selected OCR systems
was thoroughly analysed using five measurements
that evaluated accuracy levels at both the character
and word levels.

The results indicated that Document AI per-
formed best for Tamil, while Surya excelled in
Sinhala. Both the Cloud Vision API and Docu-
ment AI showed reasonable performance in OCR
for these languages, highlighting the capabilities of
commercial engines, as anticipated. A standout per-
former was Surya for Sinhala, which outperformed
all other OCR systems in each metric. Furthermore,
the significant disparity between the best CER and
WER results for Tamil compared to Sinhala in-
dicates that while Document AI excels at charac-

31The moniker Alphabet is used in the general meaning here.
Both these scripts are in fact Abugidas rather than Alphabets.

ter recognition, it falls short in accurately identi-
fying words through proper character formation
and white-space detection. Additionally, zero-shot
Tesseract 5.5.0 outperformed a fine-tuned Tesseract
4.0 system on Sinhala (Subasa OCR). Moreover,
The differences in scores between the commercial
OCR systems are largely a black box, likely aris-
ing from nuances in their architectures and training
data.

Out of approximately 2.2 million Tamil text
records, we selected only 7,000 records to ensure a
fair comparison with the Sinhala dataset, which has
only 6,969 records. In future studies, it would be
possible to expand the two synthetic datasets and
consider more fonts, backgrounds, and varied noise
conditions to create more realistic simulations.

Limitations

The analysis assessed various OCR engines for
Tamil and Sinhala printed scripts without fine-
tuning, focusing solely on existing systems. A lim-
itation is that both datasets used were synthetically
created, featuring black text on a white background,
which does not reflect real-world conditions. Syn-
thetic data was chosen due to the lack of similar
realistic datasets for these two low-resourced lan-
guages to ensure a fair comparison.

While a considerable amount of work exists for
Indic languages such as Hindi, according to the
observations of de Silva (2025), the Devanagari
script of Hindi has a distance of 5 from Sinhala and
a distance of 7 from Tamil, as opposed to a distance
of 4 between Sinhala and Tamil. Further, according
to Rao (2021), scripts such as Sinhala and Tamil
are considered rounded scripts, while Hindi is not.
For these reasons, our work could not rely much
on the progress made for Hindi OCR.

OCR technology struggles with real-world data
due to poor image quality, especially in historical
documents and low-resource languages. Factors
like low resolution, shading, blurriness, and distor-
tion can severely impact accuracy (Hegghammer,
2022). Issues such as textured backgrounds, clut-
tered environments, disconnected line segments,
isolated dots, breaks in lines, rotation, and motion
blur complicate character recognition, leading to
higher error rates. Additionally, low resolutions
can slow down OCR speed due to uncertainty in
character representation (Anuradha et al., 2021).
Therefore, the accuracy for camera-captured im-
ages may differ notably from this study’s results.
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