@inproceedings{kralev-2025-fusion,
title = "Fusion of Object-Centric and Linguistic Features for Domain-Adapted Multimodal Learning",
author = "Kralev, Jordan Konstantinov",
editor = "Angelova, Galia and
Kunilovskaya, Maria and
Escribe, Marie and
Mitkov, Ruslan",
booktitle = "Proceedings of the 15th International Conference on Recent Advances in Natural Language Processing - Natural Language Processing in the Generative AI Era",
month = sep,
year = "2025",
address = "Varna, Bulgaria",
publisher = "INCOMA Ltd., Shoumen, Bulgaria",
url = "https://aclanthology.org/2025.ranlp-1.69/",
pages = "587--594",
abstract = "Modern multimodal systems often struggle to link domain-specific visual content with textual descriptions, especially when object recognition is limited to general categories (e.g. COCO classes) and lacks customised adaptation to language models. In this paper, we present a novel framework that integrates a domain-specific adapted Detectron2 model into predefined models via a trainable projection layer, enabling precise crossmodal adaptation for specialised domains. Our approach extends Detectron2{'}s recognition capabilities to new categories by fine-tuning on multi-domain datasets, while a lightweight linear projection layer maps region-based visual features to the model{'}s embedding space without completely retraining the model. We evaluated the framework for domain-specific image captioning. The presented approach provides a scalable design for combining domain-specific visual recognition with language inference, with applications in domains that require fine-grained multimodal understanding."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="kralev-2025-fusion">
<titleInfo>
<title>Fusion of Object-Centric and Linguistic Features for Domain-Adapted Multimodal Learning</title>
</titleInfo>
<name type="personal">
<namePart type="given">Jordan</namePart>
<namePart type="given">Konstantinov</namePart>
<namePart type="family">Kralev</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-09</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 15th International Conference on Recent Advances in Natural Language Processing - Natural Language Processing in the Generative AI Era</title>
</titleInfo>
<name type="personal">
<namePart type="given">Galia</namePart>
<namePart type="family">Angelova</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Maria</namePart>
<namePart type="family">Kunilovskaya</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marie</namePart>
<namePart type="family">Escribe</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ruslan</namePart>
<namePart type="family">Mitkov</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>INCOMA Ltd., Shoumen, Bulgaria</publisher>
<place>
<placeTerm type="text">Varna, Bulgaria</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Modern multimodal systems often struggle to link domain-specific visual content with textual descriptions, especially when object recognition is limited to general categories (e.g. COCO classes) and lacks customised adaptation to language models. In this paper, we present a novel framework that integrates a domain-specific adapted Detectron2 model into predefined models via a trainable projection layer, enabling precise crossmodal adaptation for specialised domains. Our approach extends Detectron2’s recognition capabilities to new categories by fine-tuning on multi-domain datasets, while a lightweight linear projection layer maps region-based visual features to the model’s embedding space without completely retraining the model. We evaluated the framework for domain-specific image captioning. The presented approach provides a scalable design for combining domain-specific visual recognition with language inference, with applications in domains that require fine-grained multimodal understanding.</abstract>
<identifier type="citekey">kralev-2025-fusion</identifier>
<location>
<url>https://aclanthology.org/2025.ranlp-1.69/</url>
</location>
<part>
<date>2025-09</date>
<extent unit="page">
<start>587</start>
<end>594</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Fusion of Object-Centric and Linguistic Features for Domain-Adapted Multimodal Learning
%A Kralev, Jordan Konstantinov
%Y Angelova, Galia
%Y Kunilovskaya, Maria
%Y Escribe, Marie
%Y Mitkov, Ruslan
%S Proceedings of the 15th International Conference on Recent Advances in Natural Language Processing - Natural Language Processing in the Generative AI Era
%D 2025
%8 September
%I INCOMA Ltd., Shoumen, Bulgaria
%C Varna, Bulgaria
%F kralev-2025-fusion
%X Modern multimodal systems often struggle to link domain-specific visual content with textual descriptions, especially when object recognition is limited to general categories (e.g. COCO classes) and lacks customised adaptation to language models. In this paper, we present a novel framework that integrates a domain-specific adapted Detectron2 model into predefined models via a trainable projection layer, enabling precise crossmodal adaptation for specialised domains. Our approach extends Detectron2’s recognition capabilities to new categories by fine-tuning on multi-domain datasets, while a lightweight linear projection layer maps region-based visual features to the model’s embedding space without completely retraining the model. We evaluated the framework for domain-specific image captioning. The presented approach provides a scalable design for combining domain-specific visual recognition with language inference, with applications in domains that require fine-grained multimodal understanding.
%U https://aclanthology.org/2025.ranlp-1.69/
%P 587-594
Markdown (Informal)
[Fusion of Object-Centric and Linguistic Features for Domain-Adapted Multimodal Learning](https://aclanthology.org/2025.ranlp-1.69/) (Kralev, RANLP 2025)
ACL