@inproceedings{martnishn-etal-2025-forecasting,
title = "Forecasting Online Negativity Spikes with Multilingual Transformers for Strategic Decision-Making",
author = "Martnishn, Rowan and
Green, Vishal and
Kadari, Varun and
Athikinasetti, Shravan and
Miller, Zach and
Brady, Julia and
Chawda, Viraj and
Badlani, Nikhil",
editor = "Angelova, Galia and
Kunilovskaya, Maria and
Escribe, Marie and
Mitkov, Ruslan",
booktitle = "Proceedings of the 15th International Conference on Recent Advances in Natural Language Processing - Natural Language Processing in the Generative AI Era",
month = sep,
year = "2025",
address = "Varna, Bulgaria",
publisher = "INCOMA Ltd., Shoumen, Bulgaria",
url = "https://aclanthology.org/2025.ranlp-1.81/",
pages = "704--710",
abstract = "Social media platforms like Reddit, YouTube, and Instagram amplify rapid dissemination of negative sentiment, potentially causing harm and fostering extremist discourse. This paper addresses the NLP challenge of predicting sudden spikes in negative sentiment by fine-tuning multilingual transformer models. We present a structured pipeline emphasizing linguistic feature extraction and temporal modeling. Our experimental results, obtained from extensive Reddit, YouTube, and Instagram data, demonstrate improved forecasting accuracy over baseline methods. Ethical considerations and implications for deployment in social media moderation are thoroughly discussed. The system includes user-centric interactive features such as real-time filtering dashboards, customizable negativity thresholds, and forecasting analytics, providing actionable insights for preventative content moderation. Given its real-time deployment potential and cross-platform applicability, our system offers actionable insights for proactive content moderation."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="martnishn-etal-2025-forecasting">
<titleInfo>
<title>Forecasting Online Negativity Spikes with Multilingual Transformers for Strategic Decision-Making</title>
</titleInfo>
<name type="personal">
<namePart type="given">Rowan</namePart>
<namePart type="family">Martnishn</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Vishal</namePart>
<namePart type="family">Green</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Varun</namePart>
<namePart type="family">Kadari</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Shravan</namePart>
<namePart type="family">Athikinasetti</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zach</namePart>
<namePart type="family">Miller</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Julia</namePart>
<namePart type="family">Brady</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Viraj</namePart>
<namePart type="family">Chawda</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nikhil</namePart>
<namePart type="family">Badlani</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-09</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 15th International Conference on Recent Advances in Natural Language Processing - Natural Language Processing in the Generative AI Era</title>
</titleInfo>
<name type="personal">
<namePart type="given">Galia</namePart>
<namePart type="family">Angelova</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Maria</namePart>
<namePart type="family">Kunilovskaya</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marie</namePart>
<namePart type="family">Escribe</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ruslan</namePart>
<namePart type="family">Mitkov</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>INCOMA Ltd., Shoumen, Bulgaria</publisher>
<place>
<placeTerm type="text">Varna, Bulgaria</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Social media platforms like Reddit, YouTube, and Instagram amplify rapid dissemination of negative sentiment, potentially causing harm and fostering extremist discourse. This paper addresses the NLP challenge of predicting sudden spikes in negative sentiment by fine-tuning multilingual transformer models. We present a structured pipeline emphasizing linguistic feature extraction and temporal modeling. Our experimental results, obtained from extensive Reddit, YouTube, and Instagram data, demonstrate improved forecasting accuracy over baseline methods. Ethical considerations and implications for deployment in social media moderation are thoroughly discussed. The system includes user-centric interactive features such as real-time filtering dashboards, customizable negativity thresholds, and forecasting analytics, providing actionable insights for preventative content moderation. Given its real-time deployment potential and cross-platform applicability, our system offers actionable insights for proactive content moderation.</abstract>
<identifier type="citekey">martnishn-etal-2025-forecasting</identifier>
<location>
<url>https://aclanthology.org/2025.ranlp-1.81/</url>
</location>
<part>
<date>2025-09</date>
<extent unit="page">
<start>704</start>
<end>710</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Forecasting Online Negativity Spikes with Multilingual Transformers for Strategic Decision-Making
%A Martnishn, Rowan
%A Green, Vishal
%A Kadari, Varun
%A Athikinasetti, Shravan
%A Miller, Zach
%A Brady, Julia
%A Chawda, Viraj
%A Badlani, Nikhil
%Y Angelova, Galia
%Y Kunilovskaya, Maria
%Y Escribe, Marie
%Y Mitkov, Ruslan
%S Proceedings of the 15th International Conference on Recent Advances in Natural Language Processing - Natural Language Processing in the Generative AI Era
%D 2025
%8 September
%I INCOMA Ltd., Shoumen, Bulgaria
%C Varna, Bulgaria
%F martnishn-etal-2025-forecasting
%X Social media platforms like Reddit, YouTube, and Instagram amplify rapid dissemination of negative sentiment, potentially causing harm and fostering extremist discourse. This paper addresses the NLP challenge of predicting sudden spikes in negative sentiment by fine-tuning multilingual transformer models. We present a structured pipeline emphasizing linguistic feature extraction and temporal modeling. Our experimental results, obtained from extensive Reddit, YouTube, and Instagram data, demonstrate improved forecasting accuracy over baseline methods. Ethical considerations and implications for deployment in social media moderation are thoroughly discussed. The system includes user-centric interactive features such as real-time filtering dashboards, customizable negativity thresholds, and forecasting analytics, providing actionable insights for preventative content moderation. Given its real-time deployment potential and cross-platform applicability, our system offers actionable insights for proactive content moderation.
%U https://aclanthology.org/2025.ranlp-1.81/
%P 704-710
Markdown (Informal)
[Forecasting Online Negativity Spikes with Multilingual Transformers for Strategic Decision-Making](https://aclanthology.org/2025.ranlp-1.81/) (Martnishn et al., RANLP 2025)
ACL
- Rowan Martnishn, Vishal Green, Varun Kadari, Shravan Athikinasetti, Zach Miller, Julia Brady, Viraj Chawda, and Nikhil Badlani. 2025. Forecasting Online Negativity Spikes with Multilingual Transformers for Strategic Decision-Making. In Proceedings of the 15th International Conference on Recent Advances in Natural Language Processing - Natural Language Processing in the Generative AI Era, pages 704–710, Varna, Bulgaria. INCOMA Ltd., Shoumen, Bulgaria.