@inproceedings{miehling-etal-2025-investigating,
title = "Investigating Polarization in {Y}ou{T}ube Comments via Aspect-Based Sentiment Analysis",
author = {Miehling, Daniel and
Dakota, Daniel and
K{\"u}bler, Sandra},
editor = "Angelova, Galia and
Kunilovskaya, Maria and
Escribe, Marie and
Mitkov, Ruslan",
booktitle = "Proceedings of the 15th International Conference on Recent Advances in Natural Language Processing - Natural Language Processing in the Generative AI Era",
month = sep,
year = "2025",
address = "Varna, Bulgaria",
publisher = "INCOMA Ltd., Shoumen, Bulgaria",
url = "https://aclanthology.org/2025.ranlp-1.83/",
pages = "718--728",
abstract = "We investigate the use of Aspect-Based Sentiment Analysis (ABSA) to analyze polarization in online discourse. For the analysis, we use a corpus of over 3 million user comments and replies from four state-funded media channels from YouTube Shorts in the context of the 2023 Israel{--}Hamas war. We first annotate a subsample of approx. 5 000 comments for positive, negative, and neutral sentiment towards a list of topic related aspects. After training an ABSA model (Yang et al., 2023) on the corpus, we evaluate its performance on this task intrinsically, before evaluating the usability of the automatic analysis of the whole corpus for analyzing polarization. Our results show that the ABSA model achieves an F1 score of 77.9. The longitudinal and outlet analyses corroborate known trends and offer subject experts more fine-grained information about the use of domain-specific language in user-generated content."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="miehling-etal-2025-investigating">
<titleInfo>
<title>Investigating Polarization in YouTube Comments via Aspect-Based Sentiment Analysis</title>
</titleInfo>
<name type="personal">
<namePart type="given">Daniel</namePart>
<namePart type="family">Miehling</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Daniel</namePart>
<namePart type="family">Dakota</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sandra</namePart>
<namePart type="family">Kübler</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-09</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 15th International Conference on Recent Advances in Natural Language Processing - Natural Language Processing in the Generative AI Era</title>
</titleInfo>
<name type="personal">
<namePart type="given">Galia</namePart>
<namePart type="family">Angelova</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Maria</namePart>
<namePart type="family">Kunilovskaya</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marie</namePart>
<namePart type="family">Escribe</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ruslan</namePart>
<namePart type="family">Mitkov</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>INCOMA Ltd., Shoumen, Bulgaria</publisher>
<place>
<placeTerm type="text">Varna, Bulgaria</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We investigate the use of Aspect-Based Sentiment Analysis (ABSA) to analyze polarization in online discourse. For the analysis, we use a corpus of over 3 million user comments and replies from four state-funded media channels from YouTube Shorts in the context of the 2023 Israel–Hamas war. We first annotate a subsample of approx. 5 000 comments for positive, negative, and neutral sentiment towards a list of topic related aspects. After training an ABSA model (Yang et al., 2023) on the corpus, we evaluate its performance on this task intrinsically, before evaluating the usability of the automatic analysis of the whole corpus for analyzing polarization. Our results show that the ABSA model achieves an F1 score of 77.9. The longitudinal and outlet analyses corroborate known trends and offer subject experts more fine-grained information about the use of domain-specific language in user-generated content.</abstract>
<identifier type="citekey">miehling-etal-2025-investigating</identifier>
<location>
<url>https://aclanthology.org/2025.ranlp-1.83/</url>
</location>
<part>
<date>2025-09</date>
<extent unit="page">
<start>718</start>
<end>728</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Investigating Polarization in YouTube Comments via Aspect-Based Sentiment Analysis
%A Miehling, Daniel
%A Dakota, Daniel
%A Kübler, Sandra
%Y Angelova, Galia
%Y Kunilovskaya, Maria
%Y Escribe, Marie
%Y Mitkov, Ruslan
%S Proceedings of the 15th International Conference on Recent Advances in Natural Language Processing - Natural Language Processing in the Generative AI Era
%D 2025
%8 September
%I INCOMA Ltd., Shoumen, Bulgaria
%C Varna, Bulgaria
%F miehling-etal-2025-investigating
%X We investigate the use of Aspect-Based Sentiment Analysis (ABSA) to analyze polarization in online discourse. For the analysis, we use a corpus of over 3 million user comments and replies from four state-funded media channels from YouTube Shorts in the context of the 2023 Israel–Hamas war. We first annotate a subsample of approx. 5 000 comments for positive, negative, and neutral sentiment towards a list of topic related aspects. After training an ABSA model (Yang et al., 2023) on the corpus, we evaluate its performance on this task intrinsically, before evaluating the usability of the automatic analysis of the whole corpus for analyzing polarization. Our results show that the ABSA model achieves an F1 score of 77.9. The longitudinal and outlet analyses corroborate known trends and offer subject experts more fine-grained information about the use of domain-specific language in user-generated content.
%U https://aclanthology.org/2025.ranlp-1.83/
%P 718-728
Markdown (Informal)
[Investigating Polarization in YouTube Comments via Aspect-Based Sentiment Analysis](https://aclanthology.org/2025.ranlp-1.83/) (Miehling et al., RANLP 2025)
ACL