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Abstract

Explainable AI (XAI) attribution methods seek
to illuminate the decision-making process of
generative models by quantifying the contri-
bution of each input token to the generated
output. Different attribution algorithms, of-
ten rooted in distinct methodological frame-
works, can produce varied interpretations of
feature importance. In this study, we utilize
attribution mappings derived from three dis-
tinct methods as weighting signals during the
training of encoder-decoder models. Our find-
ings demonstrate that Attention and Value Ze-
roing attribution weights consistently lead to
improved model performance. To better under-
stand the linguistic information these mappings
capture, we extract part-of-speech (POS), de-
pendency, and named entity recognition (NER)
tags from the input-output pairs and compare
them with the XAI attribution maps. Although
the Saliency method shows greater alignment
with POS and dependency annotations than
Value Zeroing, it exhibits more divergence in
places where its attributions do not conform to
these linguistic tags, compared to the other two
methods, and it contributes less to the models’
performance1.

1 Introduction

The remarkable advancements in machine learn-
ing have led to increasingly sophisticated and ro-
bust models. However, this progression towards
larger and more complex architectures, often re-
ferred to as ‘black boxes’, has come at the cost of
transparency (Xu et al., 2019; Arya et al., 2019;
Vieira and Digiampietri, 2022; Saeed and Om-
lin, 2023). As a result, interpreting the internal
decision-making processes of these systems has be-
come progressively more challenging (Jacovi and
Goldberg, 2020). To improve our understanding
of these models, researchers have turned to XAI

1https://github.com/ariana2011/xai att ling.git

methods, which aim to provide greater transparency
and facilitate more interpretable outcomes (Lipton,
2018). A key approach in XAI involves attribu-
tion methods, which seek to identify and quantify
the contribution of individual input features to a
model’s prediction (Sundararajan et al., 2017a; Wal-
lace et al., 2019; Madsen et al., 2022).

In this work, we explore XAI attribution
methods in Transformer-based (Vaswani, 2017)
Sequence-to-Sequence (seq2seq) models, which
are predominantly based on the encoder-decoder
architecture (Sutskever, 2014). Encoder-decoder
architecture is a common pipeline in many NLP
tasks, such as machine translation, text summa-
rization, and dialogue generation. The literature
has focused more on attribution methods in simpler
classification tasks (Lal et al., 2021; Attanasio et al.,
2023), and comparatively less attention has been
given to generative seq2seq models. In the context
of seq2seq models, attribution methods aim to iden-
tify which parts of the input sequence were most
influential in generating each segment of the output
sequence (Sarti et al., 2023). In machine translation
(MT), several studies have sought to quantify and
compare the word alignments produced by statisti-
cal models such as GIZA++ (Och and Ney, 2003)
or annotated alignments (Ding et al., 2019; Li et al.,
2019; Chen et al., 2020).

To obtain the attribution of features or tokens,
several methods have been proposed. Approaches
such as Saliency maps (Simonyan et al., 2013),
Integrated Gradients (Sundararajan et al., 2017b),
and DeepLIFT (Shrikumar et al., 2017) analyze the
gradients of the output with respect to the input
embeddings. These approaches are called post-
hoc methods, in which the model behaviour is ex-
tracted after the training process (Arrieta et al.,
2020). In these methods, higher gradient values
indicate greater importance of the corresponding
input feature. Perturbation-based methods involve
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Figure 1: After the extraction of the attribution maps, we
integrate this information into the attention mechanism
throughout the training and testing processes.

systematically altering parts of the input sequence
(e.g., masking or replacing) and observing the im-
pact on the output (Ivanovs et al., 2021). Signifi-
cant changes indicate the importance of the per-
turbed elements. On the other hand, the atten-
tion mechanism is an inherent, model-based in-
terpretable component (Bahdanau et al., 2016), al-
though some studies have questioned whether its
representations truly reflect the model’s decision-
making process (Serrano and Smith, 2019).

Having obtained attribution maps from XAI
methods, evaluating their faithfulness and valid-
ity remains a challenging task (Nielsen et al., 2023;
Kamath et al., 2024). How do we know if an at-
tribution map is truly reflecting the model’s rea-
soning? This work is based on the premise that
distinct attribution methods generate unique sets of
scores. We consider these scores to be informative
weights, signifying that each method captures a
distinct perspective on how input tokens contribute
to the model’s output. We conjecture that these
weights can be integrated with the model as exter-
nal knowledge, and their effects can be measured
in terms of the output performance. Additionally,
our approach raises questions about the nature of
the extracted relations. Do attribution maps cap-
ture surface-level statistical associations, or do they
correspond to deeper, linguistically meaningful re-
lationships, such as those indicated by POS and
dependency structures? Considering these ques-
tions, we outline our contributions:

• We evaluate and compare three attribution
methods, each representing a distinct category,

to measure their effects on four machine trans-
lation tasks.

• We propose an approach to construct semantic
and syntactic mappings between source and
target sequences.

• We use the extracted linguistic information
to compare XAI-based attribution methods in
terms of the knowledge they encode.

2 Related work

2.1 Evaluation of XAI methods
There are various ways to evaluate XAI approaches.
One common strategy is human judgment, which
assesses whether the explanations produced by
XAI methods align with human intuition and ex-
pectations (Kim et al., 2024; Lopes et al., 2022).
However, human evaluation is costly and time-
consuming. Notable automatic evaluation tech-
niques for attribution maps have been developed in
the context of image classification (Ribeiro et al.,
2016; Hooker et al., 2019; Nauta et al., 2023) as
well as NLP (Madsen et al., 2022; Moradi et al.,
2021), where researchers mask or isolate or keep
only the highlighted regions during training or
testing. These approaches operate under the as-
sumption that the marked attributions correspond
to important features that affect the model’s perfor-
mance.

In the context of MT Li et al. (2019); Chen et al.
(2020) have tried to understand if NMT models
capture traditional word alignment between source
and target words. Key findings indicate that while
NMT models capture alignment information and
dedicated alignment objectives, hybrid models of-
ten enhance both translation accuracy and align-
ment reliability. Zenkel et al. (2020) They address
the challenge of word alignment induction in NMT,
specifically with Transformer architectures. While
previous research indicated that Transformer at-
tention weights yield poor alignments, this study
demonstrates that attention can produce accurate
alignments when extracted at the appropriate de-
coding step. Ding et al. (2019) more interestingly,
they use Saliency and SmoothGrad methods to in-
duce the word alignment. Experimental results re-
veal that, especially under force decoding, their pro-
posed methods can yield higher-quality alignments
than traditional tools like fast-align (Dyer et al.,
2013), highlighting the latent alignment capabili-
ties of NMT systems. On the other hand, Ferrando
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and Costa-jussà (2021) present an in-depth analy-
sis of attention weights in Transformer-based NMT
models. Their study finds that encoder-decoder
attention weights systematically make alignment
errors and often focus on uninformative source to-
kens rather than accurately aligning corresponding
words between sequences.

A closer work to ours is done by (Li et al., 2020),
where they train surrogate models to predict words
based on a window of highest attribution tokens
extracted from XAI methods. The current work dif-
fers in that we measure the influence of attribution
methods directly within the NMT task.

2.2 Attribution Methods

Saliency: Saliency computes gradients of the out-
put with respect to the input to generate a Saliency
map, highlighting influential features (Simonyan
et al., 2013). For an input x and a model f(x) that
outputs a score for a class c, the Saliency S(x)i for
the i-th input feature is often computed as the mag-
nitude of the gradient of the output with respect to
that input feature:

S(x)i =

∣∣∣∣∂fc(x)∂xi

∣∣∣∣
Attention: In the Transformer model, attention
is a mechanism that allows the model to weigh
the importance of different tokens in an input se-
quence when encoding or decoding at each posi-
tion (Vaswani, 2017). Specifically, for each token,
the model computes three vectors of query, key, and
value by projecting the token’s embedding through
learned weight matrices. Attention scores are ob-
tained by taking the dot product of each query with
all keys, scaling and normalizing via a softmax to
produce weights that reflect how much one token
should “attend” to another:

Attention = softmax

(
QKT

√
dk

)
V

Value Zeroing: Value Zeroing is a novel method
to analyze how information is integrated across
tokens within Transformer models. This approach
overlooks the significant roles of other components,
such as feedforward networks, in the encoder block.
Value Zeroing addresses this by zeroing out the
value vectors of specific tokens during the forward
pass, which in turn allows for an assessment of
each token’s contribution to the model’s output.
The effect is calculated by determining the distance

between a changed output representation of token
x̃¬ji where x̃¬ji is calculated by removing token j’s
value vector (Mohebbi et al., 2023):

Ci,j = cosine(x̃¬ji , x̃i)

Inseq is a Python library that provides a compre-
hensive tool for analyzing and comparing different
explainability methods of generative language mod-
els (Sarti et al., 2023). The library offers a range
of gradient-based, perturbation-based, and internal
representations of the encoder-decoder transformer
models.

3 Methodology

To evaluate each of these XAI methods, we use
a dataset of source and target pairs and apply
the attribution technique to a pre-trained model,
deriving a 2D matrix that captures the contribu-
tion of each input token to the output tokens.(
s
(i)
src, s

(i)
tgt

)
Attribution−−−−−−→

(
s
(i)
src, s

(i)
tgt , e

(i)
)

. Then the
result is a triplet of source, target, and explanation
mapping, which we then use to train and test an
untrained model.

For the Saliency method, this gradient-based ap-
proach yields a tensor e ∈ Rj×k×l, where j is the
input sequence length, k is the output sequence
length, and l is the hidden dimension of the model
as the gradient is calculated for each dimension of
the input token vector. We compute the ℓ2-norm
along the last dimension to reach e ∈ Rj×k for
the attribution of each input token with respect to
the output token at position k. ℓ2-norm measures
the length or magnitude of a vector in a Euclidean
space.

For Attention, the scores are calculated for each
head and for each layer of the cross-attention
weights. As a result, the output of the attention
score is e ∈ Rj×k×n×h, where n and h are the
number of layers and heads respectively. We get
the average over the last two axes of the represen-
tation to reach the same e ∈ Rj×k representation.
Likewise, Value Zeroing is calculated by measuring
the effect of replacing the value vector of xi with a
zero vector on all layers, so the output e ∈ Rj×k×n.
We get the average of the scores along the last di-
mension. In all cases, we reach the mapping of
values indicating the weight of the connection be-
tween the output tokens and each individual input
token.

To identify the single most ‘attributing’ token in
each row of the attribution map, we first apply a
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row-wise softmax:

Sjk =
exp(Xjk)∑K

m=1 exp(Xjm)

So that each row J of S sums to 1 across
columns. We then form a one-hot mask e ∈
{0, 1}j×k by setting

Ejk =

{
1, if k = argmax

m
Sjm,

0, otherwise.

Taking the argmax of the attribution factors is a
common approach for converting the soft scores of
attribution maps into hard scores (Garg et al., 2019;
Chen et al., 2020).

In the attention head, the dot product of Q and K
determines how relevant each word query is to the
key of all other tokens in the sequence. To incorpo-
rate this information into the attention mechanism,
we utilize the Q,K, V matrices as usual, and inject
the attribution masks E as follows:

Attention = softmax
(
QK⊤
√
dk

⊙E

)
V (1)

Here ⊙ denotes element-wise multiplication and
E is broadcasted (i.e., 0 padded) to match the shape
of the attention logits. One should pay attention as
the attributions are binary numbers; multiplying by
binary matrices simply zeroes the product of the
dot product at positions where Ejk = 0 before the
softmax. This operation has been done only on the
encoder self-attention.

4 Model and Data

Throughout our experiments, we used the Hugging-
face implementation of Opus-MT2 to extract the
attributions and train the models from scratch. To
get the attribution mappings according to the XAI
methods, we used the Inseq (Sarti et al., 2023)3

library to derive the mappings for each language
pair.

To evaluate our approach, we used 200,000
samples from the French→English (fr-en),
German→English (de-en) (Bojar et al., 2014),
Spanish→Italian(es-it), and English→Danish
(en-da) (Koehn, 2005) language pairs. We selected
samples with fewer than 128 tokens to ensure

2https://huggingface.co/Helsinki-NLP
3https://inseq.org/

efficient training and evaluation of our models
from scratch. We reserved 15,000 samples for
evaluation and testing for each language pair. The
models were trained for 20 epochs, with early
stopping triggered after three epochs without
improvement on the evaluation set. As a baseline,
we used models without attribution merging
(vanilla models). Our models matched the original
Opus-MT configuration, using six attention layers
and eight attention heads. In all experiments, the
injected attribution information was incorporated
into every layer of the encoder self-attention. To
evaluate our models, we used the BLEU score
throughout the experiments.

5 Results

5.1 Effect of Attribution Injection on Model
Output

The results in Table 1 show that incorporating attri-
bution maps into the attention mechanism signifi-
cantly improves performance across various lan-
guage pairs. The Attention and Value Zeroing
methods consistently yield better results compared
to both the Saliency approach and the baseline
model. For instance, the fr-en and es-it pairs see
approximately a 10-point increase when using the
Attention and Value Zeroing attributions merged.
The gaps are even wider for the en-da pair for the
Attention attributions.

Moreover, the Value Zeroing method (except
for en-da) closely matches the Attention method’s
performance. This suggests that possibly Value Ze-
roing and Attention may capture similar attribution
patterns. In contrast, the Saliency method offers
only modest gains over the baseline in fr-en and
en-da pairs and generally lags behind the other two
methods. These findings highlight the substantial
benefit of attribution-informed adjustments to the
attention mechanism, which enhance translation
quality across multiple language scenarios, as well
as a comparison between the methods from which
these attributions are derived.

5.2 Encoded Information

As the result suggested, when these attribution
maps are merged with sentence pairs during both
training and testing, we see a significant improve-
ment in the evaluation metric. This consistent in-
crease across all evaluated language pairs suggests
that attribution-guided signals provide the model
with valuable cues for sequence alignment and
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Language Pair Saliency Attention Value Zeroing Baseline

fr-en 30.02 40.00 39.95 28.79
es-it 29.07 36.74 38.40 29.05
de-en 16.74 22.41 23.69 16.85
en-da 15.43 38.67 26.35 13.93

Table 1: BLEU score results of the baseline and merging attributions to the encoder-decoder model.

Language Pair POS DEP NER Baseline

fr-en 43.46 37.67 27.80 28.79
es-it 40.57 38.23 29.04 29.05
de-en 21.05 15.14 15.41 16.85
en-da 21.94 13.82 11.60 13.93

Table 2: BLEU score results of the baseline and merging POS, DEP, and NER tags to the encoder-decoder model.

translation quality. Such improvements highlight
the utility of incorporating interpretability tools not
just for model understanding but as active com-
ponents in enhancing model behavior. However,
this observation raises an important question re-
garding the nature of the information captured by
these attribution maps. What exactly do these attri-
bution mappings encode that leads to such perfor-
mance gains? It is plausible that these attribution
methods highlight linguistically meaningful corre-
spondences between source and target tokens or
capture subtle contextual dependencies. Under-
standing whether the injected attributions reflect
lexical alignments, semantic equivalence, or more
abstract relationships could provide insights into
the mechanisms underlying improved performance.

To further investigate the nature of the linguis-
tic insights captured by attribution maps, we pro-
pose examining their overlap with explicit linguis-
tic annotations. Specifically, we aim to identify
whether the information encoded by attribution-
based mappings aligns with syntactic and semantic
relationships represented through linguistically in-
formed matrices. To accomplish this, we employ
SpaCy4 to annotate our datasets, extracting Part-of-
Speech (POS) tags, dependency parsing relation-
ships (DEP), and Named Entity Recognition (NER)
labels.

Formally, given a source sentence S =
(s1, . . . , sJ) and a target sentence T =
(t1, . . . , tK), we construct binary matrices to en-
code these linguistic annotations explicitly. For
each annotation type, we define a binary matrix

4https://spacy.io/

L ∈ RJ×K such that each element is computed as:

Ljk =

1, if tags of sj and tk match,

0, otherwise.
(2)

To account for the subword tokenization com-
monly done in the transformer models, we assign
the tag of the untokenized token to each subtoken.
As a result, our derived linguistic tags are not one-
hot encoded5. In the next step, we train our models
with the same setting, but instead of injecting the
attribution maps, we provide the models with the
POS, DEP, and NER mapping of the source and
target pairs.

Table 2 presents the outcomes of incorporating
linguistic knowledge during both training and test-
ing of the model. For the French-English (fr-en)
and Spanish-Italian (es-it) pairs, integrating part-
of-speech (POS) and dependency (DEP) tags leads
to the most significant improvements over the base-
line, as indicated by the bolded scores in those
columns. These results suggest that, for Romance
language pairs, syntactic information is particu-
larly valuable for enhancing the performance of
encoder-decoder models. In the German-English
(de-en) setting, improvements are more modest and
only happen for the POS tags alignment. For en-
da, multiplying DEP and NER information does
not yield improvements; in fact, it reduces perfor-
mance, while POS tagging provides a marginal
gain similar to de-en.

5We use a heuristic to assign the tag to each subword. The
Opus-MT tokenizer does not provide the offset mapping.
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German, Spanish, English, and Italian differ in
this respect due to their morphological character-
istics. German is a morphologically rich language
characterized by extensive inflection. Furthermore,
German exhibits complex word formation through
processes like compounding, where multiple mor-
phemes fuse to create new lexical items (Günther
et al., 2019). Assignment of a tag to all the sub-
words most likely dilutes the fine-grained specific
attention weight required for extracting better attri-
butions. We guess that this leads to a lower gain
compared to other language pairs.

In all cases, incorporating NER information re-
sulted in a decrease in performance. This is most
likely because NER tags are less frequent than POS
and DEP tags. When NER information is unavail-
able for certain tokens, multiplying by a zero matrix
leads to a loss of signal, thereby reducing overall
model performance.

Quantifying overlap. After observing the impact
of linguistic annotation on model performance, we
aimed to quantify the extent to which attribution
methods overlap with each linguistic tag. To this
end, we measure the recall to quantify this overlap.
Let T ⊆ {1, . . . , N} denote the set of positions
annotated with a specific linguistic tag, and A ⊆
{1, . . . , N} denote the set of positions identified by
the attribution method in linearized matrices. We
calculate the recall as follows:

Recall =
|T ∩A|
|T|

Table 3 presents the recall scores quantifying the
overlap between each attribution method and the
linguistic tags. One immediate observation is the
consistently low recall for the NER tags across all
methods and language pairs, typically below 3.0.
This likely reflects the low frequency of named en-
tity tokens relative to POS and dependency tags.
Notably, NER also did not contribute to improved
model performance and evaluations with this in-
formation. However, still, Attention attributions
overlap more with the NER tags than the other two
XAI methods.

In contrast, POS and DEP tags demonstrate sub-
stantially higher coverage by the attribution maps,
especially for Attention and Saliency methods. For
example, for the fr-en language pair on POS tags,
Attention achieves a recall of 26.56, while Saliency
achieves 25.30. DEP has the lowest recall scores
for de-en compared to other languages. The Value

Zeroing method tends to show lower and more var-
ied coverage compared to Attention or Saliency.

However, these recall values merely reflect
where the attributions overlap with the annotated
indices. Notably, Saliency overlaps more with POS
and DEP, yet, as earlier results showed, Saliency
does not enhance the model’s performance. To fur-
ther investigate, we also calculated the recall for
pairs of attribution methods (reported at the bottom
of Table 3). Here, Attention and Value Zeroing
exhibit closer recall scores across all languages,
whereas the gap between Attention and Saliency,
as well as Value Zeroing and Saliency, remains
wider. This pattern suggests that while Saliency
covers a greater portion of POS and DEP informa-
tion, possibly where they don’t overlap, it has a
degrading effect and potentially introduces noise,
diminishing its contribution to model performance.

6 Discussion and Conclusion

In this study, we investigated the impact of three
attribution mapping methods for seq2seq models,
each designed to quantify the contribution of in-
dividual input tokens to the generation of out-
put tokens. We also extracted linguistic infor-
mation, specifically, part-of-speech (POS), depen-
dency (DEP), and named entity (NER) tags, for
both the source and target languages and aligned
them together. By identifying and aligning tokens
with matching tags across source and target sen-
tences, we constructed a heuristic mapping to serve
as a proxy for cross-lingual token alignment. This
mapping was subsequently used as a form of knowl-
edge injection to train new models from scratch.

Our results demonstrate that both Attention-
based and Value Zeroing attribution mappings con-
sistently enhance model performance, as measured
by the BLEU score, compared to the gradient-based
Saliency method. Additionally, the integration of
dependency and POS tag mappings in fr-en and
es-it led to an improvement of the results, but for
de-en and en-da, only POS tags increased the per-
formance.

While both Attention and Saliency methods ex-
hibited higher overlap with POS and DEP informa-
tion, the relatively lower correspondence between
Saliency and the other two attribution methods sug-
gests that Saliency highlights input regions that
may dilute the effectiveness of where it covers POS
and DEP information, ultimately resulting in di-
minished performance compared to Attention and
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Pairs fr-en es-it de-en en-da
Attention-POS 26.56 41.16 32.89 37.44
Attention-DEP 11.30 31.50 4.98 17.06
Attention-NER 1.16 2.73 0.88 1.92
Value Zeroing-POS 14.64 21.31 21.02 24.88
Value Zeroing-DEP 5.99 15.56 4.26 10.68
Value Zeroing-NER 0.75 1.73 0.70 1.46
Saliency-POS 25.30 28.92 31.78 30.17
Saliency-DEP 11.91 22.18 4.94 15.93
Saliency-NER 0.84 1.44 0.78 1.48
Attention-Value Zeroing 66.92 57.02 62.53 66.28
Attention-Saliency 22.38 23.99 23.61 24.79
Value Zeroing-Saliency 15.03 14.84 14.03 16.42

Table 3: Recall scores for different attribution methods across language pairs, indicating the overlap with POS, DEP,
NER tags, and other attribution methods.

Value Zeroing approaches.
These results are noteworthy from several per-

spectives. First, the location where these mappings
are merged is itself of interest. While self-attention
in the encoder is generally designed to map infor-
mation from input to input, introducing meaningful
information from the output to the input can alter
the model’s predictive power. Second, in cases
where the encoded information is insufficient (e.g.,
NER or Saliency), the changes in performance com-
pared to the baseline are minimal. This latter point
aligns with the observations of Wiegreffe and Pin-
ter (2019), who noted that models can still learn
effectively under noisy attention. However, when
attention was provided with well-encoded informa-
tion, it had the potential to significantly enhance
the model’s predictive performance.

7 Future work

For future work, we suggest exploring the inte-
gration of additional linguistic features that cap-
ture finer-grained commonalities such as gender,
number, or morphological characteristics at a more
granular token level. Incorporating these attributes
could further refine the mapping between source
and target languages. Also, we used one-hot en-
coded attribution mappings. It would be interesting
to conduct the same experiments by assigning 1 to
the k highest attribution values.

Finally, in this study, we relied on external mod-
els to extract both attribution mappings and lin-
guistic tags, which proved effective in improving
model performance in the case of POS. However,

our current approach still requires access to these
annotations during inference. A promising direc-
tion for future research would be to enable the
models to internalize and learn these attributions or
linguistic patterns during training, hence eliminat-
ing the need for explicit extraction and application
of these features at test time. Such an approach can
be found in Bai et al. (2022).
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Daniel Molina, Richard Benjamins, et al. 2020. Ex-
plainable artificial intelligence (xai): Concepts, tax-
onomies, opportunities and challenges toward respon-
sible ai. Information fusion, 58:82–115.

Vijay Arya, Rachel KE Bellamy, Pin-Yu Chen, Amit
Dhurandhar, Michael Hind, Samuel C Hoffman,
Stephanie Houde, Q Vera Liao, Ronny Luss, Alek-
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