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Abstract

Traditional machine learning (ML) and deep
learning (DL) models have shown effectiveness
in natural language processing (NLP) tasks,
such as sentiment analysis. However, they of-
ten struggle with complex linguistic structures,
such as sarcasm and implicit claims. This paper
introduces a Quantum Long Short-Term Mem-
ory (QLSTM) framework for detecting sarcasm
and identifying claims in text, aiming to en-
hance the analysis of complex sentences. We
evaluate four approaches: (1) classical LSTM,
(2) quantum framework using QLSTM, (3) vot-
ing ensemble combining classical and quantum
LSTMs, and (4) hybrid framework integrating
both types. The experimental results indicate
that the QLSTM approach excels in sarcasm de-
tection, while the voting framework performs
best in claim identification.

1 Introduction

Sarcasm and claims play a crucial role in everyday
communication, especially on social media. Sar-
casm, defined as remarks that convey the opposite
of their literal meaning for humorous or critical ef-
fect, poses a challenge due to its ironic nature (e.g.,
“Oh, I just love it when my internet decides to take
a vacation in the middle of an important Zoom
call.”). At the same time, social media serves as a
vast source of information, where ‘claims’ (state-
ments presented as facts) require verification to
combat misinformation and fake news.

While natural language processing (NLP) has
advanced significantly in detecting sarcasm and
identifying claims, its exploration within emerg-
ing quantum computing environments remains lim-
ited. Quantum Computing (QC), leveraging princi-
ples such as superposition and entanglement (Gy-
ongyosi and Imre, 2019), offers the potential for
faster computation and more efficient resource
utilization, as demonstrated by Shor’s algorithm

(Shor, 1997), which can break RSA encryption
(Rivest et al., 1978) significantly faster than classi-
cal methods.

Quantum Machine Learning (QML), a key ap-
plication of QC, shows promise in handling com-
plex, noisy data and learning from smaller datasets
more effectively than classical approaches (Neu-
mann et al., 2019). Inspired by these advantages,
we analyze the application of QML to these chal-
lenging NLP tasks.

This paper evaluates QML frameworks in sar-
casm detection and claim identification against
classical machine learning methods. Key contribu-
tions include: 1) Development of classical LSTM
and quantum LSTM (QLSTM) frameworks, 2) A
voting approach combining classical and quantum
models, and 3) A hybrid classical-quantum LSTM
framework for improved performance.

2 Related Work

Quantum computing applications in NLP are still
in their early stages despite increasing interest.
Early works explored quantum language models us-
ing quantum probability theory, demonstrating im-
proved perplexity scores and aiding in word sense
disambiguation (Basile and Tamburini, 2017; Tam-
burini, 2019).

Recently, quantum probability has been applied
to multimodal tasks, including sentiment and sar-
casm detection (Liu et al., 2021) as well as emo-
tion detection (Li et al., 2023). Additionally, Vari-
ational Quantum Circuits (VQC) have been em-
ployed for multimodal sentiment analysis, demon-
strating promising results on datasets such as CMU-
MOSEI (Phukan and Ekbal, 2023).

Beyond these, QLSTM variations have been ex-
plored for Part-of-Speech (POS) tagging, including
unidirectional (Sipio et al., 2021; Pandey et al.,
2022) and bidirectional approaches (Pandey and
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Pakray, 2023), even for low-resource and code-
mixed languages. Quantum frameworks have also
explored in text classification (Xu et al., 2024; Shi
et al., 2023), sentiment analysis (Yan et al., 2024;
Zhang et al., 2019), and metaphor detection (Qiao
et al., 2024).

The “DisCoCat” framework (Coecke et al.,
2020) is a notable quantum NLP approach that pre-
serves linguistic structure by mapping it to quantum
circuits. Its applications, particularly in sentiment
analysis, have been explored using the ‘lambeq’
open-source Python library (Ruskanda et al., 2023,
2022; Ganguly et al., 2022). For a more compre-
hensive overview of Quantum NLP, several sur-
vey papers provide detailed discussions (Wu et al.,
2021; Guarasci et al., 2022; Varmantchaonala et al.,
2024; Widdows et al., 2024).

3 Dataset

We utilized two publicly available datasets for sar-
casm detection and claim identification. For sar-
casm detection, we focused on the “Eye-tracking
and Sentiment Analysis II”” dataset (Mishra et al.,
2016), specifically its sarcasm labels. This dataset
comprises a total of 994 sentences, with 664 in-
stances being non-sarcastic and 350 cases being
sarcastic.

For claim identification, we utilized the dataset
by Rosenthal and McKeown (2012), which com-
prises 3985 sentences from LiveJournal blogs and
Wikipedia discussions. Of these, 2480 were opin-
ionated claims and 1505 were not claims.

Both datasets used an 85-15 ratio for training
and testing. For sarcasm detection, 844 instances
were trained (549 sarcastic, 295 non-sarcastic),
and 150 instances were used for testing (95 sar-
castic, 55 non-sarcastic). For claim identification,
3,386 samples were used for training (2,129 claims,
1,257 non-claims) and 597 samples for testing (351
claims, 246 non-claims).

4 Methodology

Task Defination: Given tokenized sequence S =
[t1,ta, ..., ty]. Our objective is to classify S as ei-
ther sarcastic/non-sarcastic and claim/not-claim,
utilizing quantum machine learning.

For this work, we developed four system frame-
works: 1) Classical LSTM-based framework, em-
ploying standard LSTM, 2) Quantum-based frame-
work, utilizing Quantum LSTM (QLSTM), 3)
Voting-based framework, which combines predic-
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tions from classical and QLSTM models based on
confidence scores, and 4) Hybrid framework, inte-
grating both QLSTM and classical LSTM layers
sequentially. The overall system framework is de-
picted in Figure 1.

4.1 Framework Description

For all frameworks, input tokenized sequences
were first passed through an embedding layer of 50
dimensions to obtain the embedding representation
of the tokenized input.

Classical LSTM: As illustrated in Figure 1(a)
(left), the embedding matrix was processed through
a classical LSTM layer of 64 hidden units.

QLSTM: In Figure 1(a) (right), this framework
illustrates a replacement of the classical LSTM
with a QLSTM layer that has 64 hidden units. The
QLSTM, introduced by Chen et al. (2020), trans-
forms the weight matrices of the classical LSTM
Wy, Wi, We, W,) into VQCs. The fundamental
operations of the QLSTM cell can be mathemati-
cally expressed as follows:

fe = a(VQCy([ht—1,24]))

it = o(VQC;([hi—1,z4]))

C; = tanh(VQCe ([hi—1, z4]))
ct = ft@thl@it@)ét

or = o (VQCy([h—1,24]))

hi = o, ® tanh(c;)

where h;_; is the previous hidden state, x; is the
current input, o is sigmoid function, and ®, ¢ are
element-wise multiplication and addition. VQCs,
as shown in Figure 2, consist of a data encoding
block (U(x)), a variational block (V'(6)), followed
by CNOT and single-qubit rotation gates, and a
quantum measurement block. The rotation angles
in V (0) are iteratively updated via gradient descent.

Hybrid Framework: As shown in Figure 1(b),
the embedding matrix was first fed to a QLSTM
layer with 64 hidden units, whose output then
served as input to a classical LSTM layer with
64 hidden units.

4.2 Classification

For both sarcasm detection and claim identifica-
tion, the final output from the LSTM-based layers
(LST M,yt), whether classical or quantum, feeds
into a feed-forward output layer with two hidden
units. The output layers used softmax as their acti-
vation function.
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Figure 1: System framework flow diagram: (a) classical LSTM, quantum LSTM, and voting-based prediction; (b)

hybrid framework.

Figure 2: Typical block diagram of a Variational Quan-
tum Circuit (VQC) (Chen et al., 2020). U(x) is a data
encoding, V' (0) is the variational block, and a Quantum
Measurement block measures the output.

For the claim identification task specifically, a
dropout layer (with a rate of 0.2) was applied im-
mediately before the final output layer for model
regularization. The classification process can be
formally represented as:

P = softmax(Dropout(LST Myyt))
Y = argmax(P)
J
(Note: Dropout was applied only for Claim Identiﬁcation)

Where P represents the probability value for each
class, Y indicates the predicted class label, and j
denotes the number of classes.

4.3 Voting-Based Prediction

This scheme combines predictions from the classi-
cal and QLSTM frameworks. The final prediction
Y is chosen from the framework (classical or quan-
tum) whose predicted output label has a higher
confidence score (C = max(P)).

{

~

argmaxj (Plstm)a if Clstm > qustm

argmax;(Pyistm), otherwise
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4.4 Training

During the training process, the dataset was divided
into 85% for training and 15% for validation. All
frameworks were trained with the ‘CrossEntropy’
loss function and the Adam optimizer (Kingma and
Ba, 2017), with a learning rate of 2.5e-4. The num-
ber of epochs was taken as 20 for all frameworks,
except for the hybrid framework, which was trained
for varying durations: 5 and 8 epochs for sarcasm
detection in the 2-qubit and 4-qubit frameworks,
respectively, and 10 epochs for claim identification.

S Experimental Setup and Result

All experiments were conducted in the Kaggle en-
vironment using PyTorch and PennyLane'. All QL-
STM modules were configured with 2 and 4 qubits
with a single quantum layer and executed on Penny-
lane’s default .qubit quantum simulator. Per-
formance of classical, QLSTM, voting-based, and
hybrid frameworks for sarcasm and claim identifi-
cation was evaluated using Precision, Recall, and
macro F1-score on the test split.

Sarcasm Detection: Table 1 summarizes the
overall results of sarcasm detection. The classi-
cal LSTM achieved a strong baseline F1-score of
84.17. In contrast, standalone QLSTM frameworks
exhibited lower performance, with the 4-qubit QL-
STM recording an Fl-score of 76.20. However,
the 4-qubit Hybrid framework achieved the high-
est overall F1-score of 87.18%. This represents an
improvement of 3.46% over the classical LSTM

"https://pennylane.ai/
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and 12.49% over the 4-qubit QLSTM, highlight-
ing the advantages of integrating classical and
quantum components. Additionally, voting-based
frameworks performed comparably to the classical
LSTM.

Framework Qubit Precision Recall F1-score
LSTM _ 8677 8282  84.17
2 7492 7431 7458
QLSTM 4 7649 7852 7620
Votin 2 8624 8191 8333
g 4 8787 8335  84.84
. 2 7774 7794 7783
Hybrid 4 8746 8693  87.18

Table 1: Overall Result of Sarcasm Detection

The class-wise results presented in Table 2 indi-
cate that systems based on 4 qubits (QLSTM, Vot-
ing, Hybrid) generally achieved higher F1 scores
for identifying sarcastic sentences compared to
their 2-qubit counterparts. In particular, the 4-
qubit Hybrid framework excelled at recognizing
both sarcastic sentences (F1 score: 83.93) and non-
sarcastic sentences (F1 score: 90.43), outperform-
ing the classical LSTM.

F K Qubit Non-Sarcastic Sarcastic
I k

) R F ) R F

LSTM © 8491 9474 8955 8864 7091 7879
2 8061 8316 8187 6923 6545 67.29

QLST™ 4 8947 7158 7953 6351 8545 7287
Vorin 2 8411 9474 8911 8837 69.09 77.55
ing 4 8505 9579 9010 9070 7091 79.59
b 2 8404 8316 8360 7143 7273 7207
y 4 9140 8947 9043 8246 8545 83.93

Table 2: Class-wise Result of Sarcasm Detection

Claim Identification: Table 3 displays the claim
identification results. Unlike sarcasm detection,
the 2-qubit voting framework achieved the high-
est overall F1-score of 70.04%. The standalone
QLSTM and hybrid frameworks did not surpass
the performance of the classical LSTM, which
achieved an F1-score of 68.05% for this task.

Analyzing the class-wise results (see Table 4),
the classical LSTM model achieved the highest F1
score for ‘Claim’ sentences at 76.92. Meanwhile,
the 2-qubit Voting framework demonstrated the
highest precision for ‘Claim’ sentences at 74.66,
as well as the highest F1 score for ‘No Claim’ sen-
tences at 64.17. Notably, the 2-qubit Hybrid frame-
work recorded the highest recall for ‘Claim’ sen-
tences at 83.48. This suggests a complex interplay

Framework Qubit Precision Recall F1-score
LSTM _ 6916 6775  68.05
2 6304 6306 6114
QLST™M 4 5081 6058  59.80
Votin 2 7023 6990  70.04
g 4 6866 6708 6737
. 2 5492 5505  54.80
Hybrid 4 6739 6521 6540

Table 3: Overall Result of Claim Identification

of strengths among the various models employed
for claim identification.

Framework Qubit No Claim Claim
p R F p R F

LSTM - 6812 5732 6225 73.08 8120 7692
2 5200 7398 61.07 7409 5214 61.20
QLST™ 4 5182 5772 5462 67.80 6239 64.99
Votin 2 6581 6260 64.17 7466 7721 7591
oting 4 6616 5325 59.01 7118 8091 7573
Hybrid 2 5797 3252 4167 63.83 8348 7235
y 4 6538 4837 55.61 69.40 82.05 7520

Table 4: Class-wise Result of Claim Identification

6 Conclusion

This paper examines quantum LSTM (QLSTM)-
based frameworks for sarcasm detection and claim
identification, comparing their performance with
that of classical LSTM. Our primary goal was to
analyze the efficacy of QML in these challenging
NLP tasks.

For sarcasm detection, the hybrid QLSM-
classical LSTM framework, particularly with four
qubits, significantly outperformed both standalone
classical and QLSTM models, demonstrating the
benefit of quantum-classical integration for iden-
tifying sarcastic and non-sarcastic content with
higher results.

For claim identification, the 2-qubit voting-based
framework achieved the best overall Fl-score.
While the classical LSTM achieved the highest
F1 score for ‘Claim’ sentences, and the 2-qubit hy-
brid framework had the highest recall for ‘Claim’
sentences, this task presented a more complex per-
formance landscape across models.

In future work, we plan to validate these find-
ings on larger datasets, explore architectures with
more qubits, and investigate other quantum models,
such as Quantum-GRU or Quantum-Transformer,
to enhance performance further.
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