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Abstract

Predicting the difficulty of exam questions or
items is essential to effectively assembling and
calibrating exams. While item response theory
(IRT) models can estimate item difficulty, they
require student responses that are costly and
rarely available at scale. Natural language pro-
cessing methods offer a text-only alternative;
however, due to the scarcity of real-world la-
beled data, prior work often relies on synthetic
or domain-specific corpora, limiting generaliz-
ability and overlooking the nuanced challenges
of real-world text-based item difficulty estima-
tion. Addressing this gap, we benchmark 122
classifiers on 935 German Vocational Educa-
tion and Training (VET) items labeled via previ-
ous IRT analysis to assess feasibility under real-
world conditions. In our setup, a stacked ensem-
ble that combines linguistic features, pre-trained
embeddings, and external semantic resources
outperforms both transformer-based models and
few-shot large language models, achieving mod-
erate performance. We report findings and dis-
cuss limitations in the context of German VET.

1 Introduction

In psychometrics, pretesting is the standard prac-
tice for item difficulty estimation: recruiting a rep-
resentative student sample, recording their item
responses, and fitting an IRT model to obtain pre-
cise difficulty estimates (Lord and Novick, 1968;
Baker, 2001). Gathering representative high-stakes
student response data is complex and seldom fea-
sible. High financial and administrative costs for
sourcing a domain-specific, diverse examinee pool,
challenges embedding items in live exams, and lim-
ited pretesting capacity all contribute to its scarcity.

Educators gauge item difficulty via expert review
of phrasing combined with their assessment expe-
rience. For example, one may consider the lexi-
cal, syntactic, and semantic attributes of the item’s
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Topic: Mathematical Aptitude
Question Type: Single Choice

Question: “How many kilograms (kg) are in one ton (t)? (10,
100, 1000, 10000)”
Predicted Difficulty: 0.0

True Difficulty: 0.0

Topic: Information Technology Aptitude

Question Type: Single Choice

Question: “What is a cloud? (1) A program that cannot be
installed on a PC, (2) hardware for a PC, (3) a storage space that
is not on a PC”

Predicted Difficulty: 1.0  True Difficulty: 1.0

Topic: Clerks in Office Management
Question Type: Single Choice

Question: “Out of 100 orders, on average 5 orders are returned.
How many orders were shipped if 10 orders are returned? (a) 190,
(b) 205, (c) 195, (d) 200"

Predicted Difficulty: 1.0  True Difficulty: 2.0

Figure 1: On bfz’s VET data, the ensemble classified
easy and medium correctly but overestimated hard.

text (Dale and Chall, 1949; Martinc et al., 2021).
Following this difficulty estimation approach, natu-
ral language processing models have recently been
applied to estimate item difficulty, e.g., via text re-
gression or classification techniques (AlKhuzaey
et al., 2023; Benedetto et al., 2023).

In education, estimating item difficulty is key
for comprehensive exam assembly and calibra-
tion (Palomino et al., 2024, 2025). Prior research
relies on domain-specific or synthetic student re-
sponse datasets in English; therefore, difficulty esti-
mation in German Vocational Education and Train-
ing (VET) remains unexplored, and evidence on ex-
isting methods’ performance on real data is lacking.
To address this gap, we ask: RQ: How accurately
do popular text classifiers estimate the difficulty
of German VET test items? Partnering with bfz!,
Germany’s largest VET services provider, we evalu-
ated 122 text-classification methods on an industry-
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grade VET dataset of 935 IRT-labeled items and
found that items requiring ambiguity resolution,
technical or domain-specific knowledge or visual
inference were most often misclassified, underlin-
ing the limits of current approaches®. Among the
tested approaches, a stacked ensemble achieved the
strongest production-level performance (balanced
accuracy 0.60). Figure 1 compares predicted and
true difficulty, showing correct easy and medium
classifications but overestimation of hard items.
Sections 2-5 outline the literature, dataset, methods,
results, and conclusions.

2 Related Work

Psychometrics traditionally estimates item diffi-
culty via Classical Test Theory (CTT) and Item
Response Theory (IRT), where CTT defines dif-
ficulty as the proportion of correct responses (0-
1) and IRT fits latent-trait models, both requiring
pretesting data (Lord and Novick, 1968; Baker,
2001; Embretson and Reise, 2013). By contrast,
NLP methods predict difficulty directly from text:
Loukina et al. (2016) used a random forest on
text-complexity features for listening items, Huang
et al. (2017) applied a CNN to sentence-level
reading items, Ha et al. (2019) combined ELMo,
Word2Vec and retrievability features for medical
exams, and Xue et al. (2020) demonstrated that
transfer learning from completion-time estimation
could improve estimation. Yaneva et al. (2021)
clustered linguistic features to split 18,961 medical
exam items into low/high response-process com-
plexity. Benedetto et al. (2021) compared term-
frequency, BERT/DistilBERT, and IRT models on
proprietary and ASSISTments data, finding trans-
formers with additional text features most effective.
Byrd and Srivastava (2022) simulated pretesting
with QA ensembles to infer IRT scores on Hot-
potQA. Park et al. (2024) proposed a zero-shot,
resource-intensive framework generating synthetic
responses via LLM clusters and aggregating their
outputs. Surveys by Benedetto et al. (2023) and
AlKhuzaey et al. (2023), covering 122 and 88 stud-
ies, highlighted dataset scarcity due to confiden-
tiality and concluded that semantic/syntactic fea-
tures remain the strongest predictors. Yaneva et al.
(2024) organized a medical exam shared task with
17 teams; framed as regression, models showed
minimal improvements over baselines. Zotos et al.
(2025) found LLM uncertainty correlates with dif-

Research artifacts available at: https://git.hub/kipwb
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ficulty on 451 Biopsychology items, though gener-
alizability is unclear.

3 Text-based Item Difficulty Estimation
3.1 Dataset

We used data from bfz’s assessment platform,
where item difficulties (-3.0 to +3.0) were estimated
with a 1-parameter IRT model on 935 items from
a vocational cohort (Paaf3en et al., 2022b,a). For
exam assembly and interpretability, scores were dis-
cretized into easy, medium, and hard classes to re-
duce cognitive load (Schwarz, 2007; Weijters et al.,
2010) and mitigate noise and bias (Caruana and
Niculescu-Mizil, 2006; Ribeiro et al., 2016; Furn-
ham and Boo, 2011). Though granularity is lost,
discrete classes are directly usable by test design-
ers and support categorical constraints. Thresholds
were set empirically via quantile inspection and
stability checks to preserve ordinal structure while
limiting noise. Following Yaneva et al. (2024),
we aimed for balanced splits, but real-world class
imbalance posed challenges. Despite testing over-
sampling, class weighting, and alternative binning,
we retained the configuration that best preserved
item characteristics: 19% easy, 75% medium, 5%
hard; 71% single-choice, 20% multiple-choice, 8%
matrix; and topic distributions of 30% IT, 16% Ger-
man, and others <1%. To safeguard privacy and
intellectual property, raw data remain unavailable,
but anonymized embeddings are shared.

3.2 Task and Experimental Setup

We model difficulty as a three-class task (O easy,
1 medium, 2 hard) using text and meta-attributes
(topic, type, skills). Stratified 10-fold cross-
validation preserves distributions. We report bal-
anced accuracy, macro F1, and weighted preci-
sion/recall; models are retrained on the full set and
evaluated on a stratified hold-out. Labels are 19%
easy, 75% medium, 5% hard; formats 71% single-
choice, 20% multiple-choice, 8% matrix. Table 2
lists the five most frequent topics; Figure 2b shows
IRT scores; Table 1 details the split.

3.3 Models

Classic:  We trained baseline classifiers (uniform
random and majority-class) and supervised algo-
rithms k-nearest neighbors, decision trees, ran-
dom forests, support vector machines, logistic
regression variants, and neural networks using
scikit-learn and Keras (Pedregosa et al., 2011;


https://github.com/alonsopg/ranlp25-item-difficulty-estimation-initial-findings

(a) (b)

Difficulty Level Count  Difficulty Level Count
Easy 139 Easy 40
Medium 566 Medium 139
Hard 43 Hard 8
Total 748 Total 187
Training Testing

Table 1: The class difficulty distribution for training and
testing data folds.

@

Topic Count
Information technology aptitude 272
German language competence 150
Warehousing & logistics 78
Professional Advice & self-assessment 69
Clerks in office management 59
Total Items 935
(b)

Levels of Difficulty

Easy }—m
L

-2 -1 0 1 2 3
IRT Estimate Scores

Medium

Table 2: (a) shows the top-5 topic distribution, while (b)
displays the summary of IRT scores.

Chollet et al., 2015).

Ensemble: We used stacked generaliza-
tion (Wolpert, 1992; Pedregosa et al., 2011),
combining balanced linear (PA, logistic regres-
sion, SVM, perceptron) and tree-based models
(randomized trees, AdaBoost). Their outputs fed a
dense meta-network (128-64-32-10-3) to predict
difficulty (Chollet et al., 2015).

DistilBERT and FSL: We fine-tuned and eval-
uated existing BERT models for text complexity
estimation, a semantically similar task (Face, 2024;
Anschiitz and Groh, 2022; Ruben Klepp, 2022).
Additionally, we evaluated few-shot learning (FSL)
via SetFit (Tunstall et al., 2022).

LLMs: We built a German few-shot pipeline
with GPT-4, GPT-40, and ol-preview (Achiam
et al., 2023; Hurst et al., 2024; Jaech et al., 2024).
Prompts defined labels (0-2) with up to 10 strat-
ified exemplars; for tests, the 10 most similar
items (cosine similarity) were retrieved. Param-
eters were fixed for determinism, and three runs
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per item were aggregated by majority voting us-
ing the Instructor library (Liu and Contributors,
2024).

Linguistic Features Each item’s stem, answers,
distractors, topics, and skills were encoded with
embeddings and features:

1. Stylometry and Format: We extracted sen-
tence count and punctuation frequencies; noun-
to-word ratio; character distribution and average
characters per word; the Coleman-Liau read-
ability index (Coleman and Liau, 1975); and
encoded question types (single choice, multiple
choice, matrix) as one-hot vectors.

2. LIWC and Text Complexity: We extracted
39 German LIWC dimensions with high corre-
lation to difficulty labels, including analytical
thinking, advanced vocabulary, quantifiers, in-
sight, certainty, negative emotion, discrepancy
and tone measures (Boyd et al., 2022). We re-
duced features to two components via PCA and
used the Anschiitz and Groh (2022) text com-
plexity model as an auxiliary difficulty signal.

3. Embeddings and Visual Content: We ex-
tracted embeddings from ten pretrained models,
including the top five from the MTEB text clas-
sification leaderboard (other languages) (Muen-
nighoff et al., 2022) and five trending German
similarity models from HuggingFace’. Encod-
ing only the stem and answer improved classifi-
cation. Among these, embeddings (8), (4), and
(10) yielded the best results. Visual content was
captured via one-hot encoding of categorical
metadata.

4. Topics and Skills: After comparing several
pretrained models, we found that the model
of Rogge (2024) best captured topics and skill
themes for difficulty prediction; we therefore
use it to embed those attributes.

5. Semantic Relations and Negation Cues: We
applied cosine similarity matching with the
ODENet lexical base (Siegel and Bond, 2021)
to identify hypernyms and hyponyms and used
a manually curated negation cue list to count
explicit negation terms.

6. Semantic Similarities and Named Entities:
We computed cosine similarities between each
item’s stem and its answers and distractors and
used the NER model of Schiesser (2024) to

3https://huggingface.co/spaces/mteb/
leaderboard
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Model Classifier Embedding Features Acc Acc F1 F1
Type Version (Train)  (Test)  (Train) (Test)
Stratified 0.32 0.34 0.61 0.59
Dummy Most Freq. N/A N/A 0.33 0.33 0.65 0.63
SVM severinsimmler/xIm stem + answer + stylometry + topics +
(modified -roberta- complexity + hypernyms + skills 0.52 0.58 0.65 0.62
huber, 11) longformer-base-
16384
Logistic intfloat/multilingual stem + answer + stylometry + topics +
Regression -e5-base complexity + hypernyms + skills + negation 0.51 0.56 0.59 0.55
Classic (log, 11) cues
Logistic severinsimmler/xIm stem + answer + stylometry + topics +
Regression -roberta- complexity + hypernyms + skills + negation 0.52 0.54 0.63 0.61
(log, 11) longformer-base- cues + PCA LIWC
16384
Logistic danielheinz/e5-base- stem + answer + stylometry + topics +
Regression sts-en-de complexity + hypernyms 0.49 0.54 0.59 0.59
(log, 11)
Logistic danielheinz/e5-base- stem + answer + stylometry + topics +
Regression sts-en-de format/type + LIWC + complexity 0.50 0.53 0.59 0.57
(log, 11)
intfloat/multilingual  stem + answer + stylometry + format/type +
Ensemble Stacking -e5-base topics + complexity + hypernyms + skills + 0.54 0.60 0.65 0.73
PCA LIWC
distilbert-base-
DistilBERT german-cased N/A 0.58 0.56 0.68 0.73
MiriUll/distilbert-
Transformer DistilBERT german-tgxt- N/A 0.56 0.54 0.66 0.72
complexity
krupper/text-
DistilBERT complexity- N/A 0.42 0.48 0.67 0.70
classification
MiriUll/distilbert-
FSL SetFit german-text- N/A 0.48 0.48 0.53 0.48
complexity
GPT-4 0.37 0.38 0.47 0.49
LLM GPT-40 N/A N/A 041 034 041 043
ol-preview 0.33 0.33 0.65 0.63

Table 3: The top-performing balanced accuracy and weighted F1 metrics of the evaluated item difficulty classifiers.

count location, organization and person entity
frequencies.

4 Results

Addressing RQ, Table 3 reports balanced accuracy
and weighted F1 for the best models among 122
configurations. Combining stem and answer em-
beddings with stylometric, semantic, topic, and
skill features yielded the strongest results. A
stacked ensemble of balanced linear and tree-based
learners achieved 0.60 balanced accuracy and 0.73
weighted F1. DistilBERT variants followed (0.58,
0.56), while logistic regression and SVMs gave
moderate scores. LLMs (GPT-40, ol-preview)
performed worst, with several complex models
overfitting due to data scarcity and imbalance, un-
derscoring the trade-off between balanced accu-
racy and weighted F1 in practice. Examination
of ensemble predictions highlights key limitations.
As Table 3 shows, easy items reached an F1 of
0.55 (moderate), medium items 0.81 across 139
instances (strong), and hard items only 0.24 on
eight instances (weak). By topic, “content cre-
ation,” “basic technology use,” and “German cul-
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tural competence” achieved perfect balanced accu-
racy (1.0), while “women in the workforce,” “ware-
housing and logistics,” and “IT aptitude” averaged
0.22. Misclassifications often involved items re-
quiring contextual or ambiguous reasoning, com-
plex instructions, technical/domain expertise, or
visual/geopolitical inference (e.g., cargo securing,

Schengen Agreement impacts).

5 Conclusions

Partnering with bfz, a major VET provider, we
benchmarked 122 models for item difficulty clas-
sification on real German VET data, unlike prior
work on medical or synthetic English datasets. The
best model was a stacked ensemble combining stem
and answer embeddings, stylometric features, and
semantic metadata, achieving 0.60 balanced accu-
racy and 0.73 weighted F1, outperforming fine-
tuned transformers and LLM prompting. While
first framed as a standard text classification task,
our results highlight its complexity and the impor-
tance of non-linguistic features. Future work will
apply active learning for data acquisition and fine-
tune larger encoders.
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